Markov Chains and Unemployment
Honours Intermediate Macro
Markov Chains
A model of a stochastic process with a discrete number of states.
Random Variables and Mathematical Expectation
Notation for discrete states:
\(n = 1, \ldots, N\) represents possible “states of the world” (e.g., individual unemployed, employed, …)
\(\pi_n = {\mathbb{P}_{}\left( {\text{state of the world is } n} \right)}\)
- \(\pi_n \geq 0\), \(\sum_{n=1}^{N} \pi_n = 1\), i.e., the world must be in one of the states
- Stack as a vector: \(\pi \equiv \begin{bmatrix} \pi_1 & \ldots & \pi_N \end{bmatrix}\)
Random variable \(Y \in \left\{{y_1, \ldots, y_N}\right\}\)
Values mapping states of the world for r.v. \(Y\): \(y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}\)
e.g., if event \(n\) is unemployed, then income if unemployed is \(y_n\)
Mathematical Expectation:
- \({\mathbb{E}_{{}}\left[ {Y} \right]} = \sum_{n=1}^{N} {\mathbb{P}_{}\left( {Y = y_n} \right)} y_n = \sum_{n=1}^{N} \pi_n y_n = \pi \cdot y\) (i.e., inner product)
- Weight the realizations with the probabilities
- e.g., if probability of unemployment is \(\pi_1 = 0.1\), income from unemployment insurance is \(y_1 = 15{,}000\); probability of employment is \(\pi_2 = 0.9\), income from employment is \(y_2 = 40{,}000\). Then expected income (or average across states of world):
- \({\mathbb{E}_{{}}\left[ {Y} \right]} = (0.1 \times 15{,}000) + (0.9 \times 40{,}000)\)
- We could use this to find an individual’s expected income at some point in the future. Alternatively, we can use this to find averages for a continuum of population—a step towards aggregation.
- e.g., if 10% of population is unemployed at $15,000 and 90% of population is employed at $40,000, then the average income is \({\mathbb{E}_{{}}\left[ {Y} \right]}\)
Transitions
Let \(\phi\) = probability to become employed, and \(\alpha\) = probability to lose job.
Let State \(1 \leftrightarrow E\) (Employed), State \(2 \leftrightarrow U\) (Unemployed).
Transition Matrix:
\[ P = \begin{array}{@{}cc@{}} \begin{array}{@{}cc@{}} E_{t+1} & U_{t+1} \end{array} \\ \begin{bmatrix} 1-\alpha & \alpha \\ \phi & 1-\phi \end{bmatrix} \end{array} \kern0.5em \begin{array}{@{}l@{}} \quad \\ E_t \\ U_t \end{array} \]
Let \(\pi_t\) be the probability mass function (pmf) of a random variable of an agent’s employment status at time \(t\). This is a probability mass function (pmf) since the possible events are discrete.
- If employed at time 0: \(\pi_0 = \begin{bmatrix} 1 & 0 \end{bmatrix}\)
- If 50% chance of employment at time 3: \(\pi_3 = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix}\)
Evolution of Probability Distribution
Find the evolution of the probability mass function for the random variable with the transition matrix \(P\). A property of Markov chains:
\[ \pi_{t+1} = \pi_t \cdot P \]
Careful with the order of the matrix product!
Iterate forward:
\[ \pi_{t+j} = \pi_t \cdot P^j \]
Example: Started employed at \(t=0\), i.e., \(\pi_0 = \begin{bmatrix} 1 & 0 \end{bmatrix}\).
Probability of unemployment/employment at \(t=1\):
\[ \pi_1 = \pi_0 \cdot P = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1-\alpha & \alpha \\ \phi & 1-\phi \end{bmatrix} = \begin{bmatrix} 1-\alpha & \alpha \end{bmatrix} \]
At time 2:
\[ \pi_2 = \pi_1 \cdot P = \begin{bmatrix} 1-\alpha & \alpha \end{bmatrix} \cdot \begin{bmatrix} 1-\alpha & \alpha \\ \phi & 1-\phi \end{bmatrix} = \begin{bmatrix} (1-\alpha)^2 + \alpha\phi & (1-\alpha)\alpha + \alpha(1-\phi) \end{bmatrix} \]
Interpretation:
\[ = \begin{bmatrix} {\mathbb{P}_{}\left( {E \to E, E \to E} \right)} + {\mathbb{P}_{}\left( {E \to U, U \to E} \right)} & {\mathbb{P}_{}\left( {E \to E, E \to U} \right)} + {\mathbb{P}_{}\left( {E \to U, U \to U} \right)} \end{bmatrix} \]
Iterating forward:
\[ \pi_{t+j} = \pi_t \cdot \underbrace{P \cdot P \cdots P}_{j \text{ times}} = \pi_t \cdot P^j \]
Stationarity and asymptotics. One possibility:
\[ \pi_{\infty} = \lim_{j \to \infty} \pi_{t+j} = \lim_{j \to \infty} \pi_t \cdot P^j \]
Another is to find a \(\pi_{\infty}\) which doesn’t change:
\[ \pi_{\infty} = \pi_{\infty} P \]
Questions:
- Does a unique limit exist? Is it independent of \(\pi_t\)?
- Is there an absorbing state? (e.g., all end up unemployed forever)
- These answers depend on \(P\).
- In some cases, we will refer to \(\pi_{\infty}\) as the stationary distribution.
Example: Stationary Distribution
Non-Degenerate Stationary Distribution
Consider:
\[ P = \begin{bmatrix} 1-\alpha & \alpha \\ \phi & 1-\phi \end{bmatrix}, \quad 0 < \alpha < 1, \quad 0 < \phi < 1 \]
The stationary random variable \(\pi_{\infty}\) satisfies:
\[ \pi_{\infty} = \pi_{\infty} \cdot P \]
i.e., it’s the r.v. associated with \(P\) such that it doesn’t change between periods.
Remark: In linear algebra, the left eigenvector associated with the unit eigenvalue.
To find \(\pi_{\infty}\):
- Use software to find the left eigenvector, or
- Solve system for simple examples:
Let \(\bar{\pi} = \text{prob of being employed}\); \(\pi_{\infty} = \begin{bmatrix} \bar{\pi} & 1-\bar{\pi} \end{bmatrix}\).
Then:
\[ \begin{bmatrix} \bar{\pi} & 1-\bar{\pi} \end{bmatrix} = \begin{bmatrix} \bar{\pi} & 1-\bar{\pi} \end{bmatrix} \cdot \begin{bmatrix} 1-\alpha & \alpha \\ \phi & 1-\phi \end{bmatrix} \]
\[ \Rightarrow \begin{bmatrix} \bar{\pi} \\ 1-\bar{\pi} \end{bmatrix}' = \begin{bmatrix} \bar{\pi}(1-\alpha) + (1-\bar{\pi})\phi \\ \bar{\pi} \cdot \alpha + (1-\bar{\pi})(1-\phi) \end{bmatrix}' \]
First equation:
\[ \bar{\pi} = (1-\alpha)\bar{\pi} - \phi\bar{\pi} + \phi \implies (1 - (1-\alpha) + \phi)\bar{\pi} = \phi \]
\[ \boxed{\bar{\pi} = \frac{\phi}{\alpha + \phi}} \tag{1}\]
\[ \boxed{\pi_{\infty} = \begin{bmatrix} \frac{\phi}{\alpha + \phi} & \frac{\alpha}{\alpha + \phi} \end{bmatrix}} \tag{2}\]
Second equation: would find identical solution (luckily, since there is only 1 variable and 2 equations).
Unemployment Application
Assume:
\[ P = \begin{bmatrix} 1-\alpha & \alpha \\ \phi & 1-\phi \end{bmatrix} \quad \begin{array}{c} \leftrightarrow E \\ \leftrightarrow U \end{array} \]
Invariant Distribution (i.e., “long run”):
\[ \bar{\pi} = {\mathbb{P}_{}\left( {E} \right)}, \quad 1-\bar{\pi} = {\mathbb{P}_{}\left( {U} \right)} \]
solves:
\[ \begin{bmatrix} \bar{\pi} & 1-\bar{\pi} \end{bmatrix} \begin{bmatrix} 1-\alpha & \alpha \\ \phi & 1-\phi \end{bmatrix} = \begin{bmatrix} \bar{\pi} & 1-\bar{\pi} \end{bmatrix} \]
From the equation \(\bar{\pi}(1-\alpha) + \phi(1-\bar{\pi}) = \bar{\pi}\):
\[ \bar{\pi} = \frac{\phi}{\alpha + \phi}, \quad 1-\bar{\pi} = \frac{\alpha}{\alpha + \phi} \]
Dividing top and bottom by \(\phi\alpha\):
\[ 1 - \bar{\pi} = \frac{1/\phi}{1/\phi + 1/\alpha} \]
Average Unemployment Spell
In each period an unemployed person gets a job with probability \(\phi\). Otherwise, stays unemployed.
Let \(N\) be the random variable “length of time it takes to find a job”. \(N=1\) means 1 period.
Let \(p_j = {\mathbb{P}_{}\left( {N = j} \right)}\).
Then:
- \(p_1 = \phi\) (success on first try)
- \(p_2 = \phi(1-\phi)\) (fail, success)
- \(p_3 = \phi(1-\phi)^2\) (fail, fail, success)
\[ \boxed{p_j = \phi(1-\phi)^{j-1}} \]
This is a proper probability distribution:
\[ \sum_{j=1}^{\infty} p_j = \phi \sum_{j=1}^{\infty} (1-\phi)^{j-1} = \phi \sum_{j=0}^{\infty} (1-\phi)^j = \frac{\phi}{1-(1-\phi)} = 1 \]
Another geometric series result:
\[ \boxed{\sum_{j=1}^{\infty} j a^{j-1} = \frac{1}{(1-a)^2} \text{ for } |a| < 1} \]
Expected waiting time:
\[ {\mathbb{E}_{{}}\left[ {N} \right]} = \text{expected/mean time to find a job} = \sum_{j=1}^{\infty} j \cdot p_j = \phi \sum_{j=1}^{\infty} j(1-\phi)^{j-1} = \phi \cdot \frac{1}{(1-(1-\phi))^2} = \frac{1}{\phi} \]
So the average number of periods in unemployment \(= \frac{1}{\phi}\).
More generally, this is the mean waiting time for a geometric distribution: if arrivals happen with probability \(a\), then the expected wait time \(= \frac{1}{a}\).
Summary of Formulas
- \(\bar{\pi} =\) proportion employed, \(1-\bar{\pi} =\) proportion unemployed
- \(\bar{\pi} = \dfrac{\phi}{\alpha + \phi}, \quad 1 - \bar{\pi} = \dfrac{\alpha}{\alpha + \phi} = \dfrac{1/\phi}{1/\phi + 1/\alpha}\)
- \(\mathbb{E}_{}\left[{\text{\# of periods to become employed}} \; \middle| \; {\text{start unemployed}} \right] = \frac{1}{\phi}\)
- \(\mathbb{E}_{}\left[{\text{\# of periods to become unemployed}} \; \middle| \; {\text{start employed}} \right] = \frac{1}{\alpha}\)
Calibration Example
Lets say you had the following data;
- Average unemployment duration = 16.8 weeks = 3.87 months
- Civilian unemployment: 4.7%
- Employment / population: 63%
- Labor force / population: 66%
- Civilian population: 231 million
- Civilian labor force: 153 million = 231 × 66% (not institutional military, etc.)
- Unemployment: 7 million = 153 million × 4.7%
Stationary Distribution:
- \(1 - \bar{\pi} = 0.047\) (proportion unemployed)
- \(\frac{1}{\phi} = 3.87\) (average unemployment length, in months)
From the equation for the stationary distribution:
\[ 1 - \bar{\pi} = \frac{1/\phi}{1/\phi + 1/\alpha} \]
\[ \Rightarrow 0.047 = \frac{3.87}{3.87 + 1/\alpha} \]
Solving for \(\frac{1}{\alpha}\):
\[ \frac{1}{\alpha} = 78.8 \]
i.e., average job length is 78 months.
So, the transition matrix is:
\[ P = \begin{bmatrix} 1 - \frac{1}{78.8} & \frac{1}{78.8} \\ \frac{1}{3.87} & 1-\frac{1}{3.87} \end{bmatrix} \approx \begin{bmatrix} 0.987 & 0.013 \\ 0.258 & 0.742 \end{bmatrix} \]
Stationary distribution:
\[ \pi_{\infty} = \begin{bmatrix} 0.953 & 0.047 \end{bmatrix} \]
Questions:
Total jobs destroyed/month: \(0.013 \times 146\text{ million} \approx 1.85\text{ million}\)
If employed worker today, what is the probability to be employed in \(j\) months?
\[ {\mathbb{P}_{}\left( {E \text{ at } j} \right)} = \begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \left( \begin{bmatrix} 1 & 0 \end{bmatrix} P^j \right)' \]
What about as \(j \to \infty\)? \({\mathbb{P}_{}\left( {E \text{ at } j \to \infty} \right)} = \bar{\pi}\)
- The economy is away from its stationary equilibrium: \(\pi_0 \neq \pi_{\infty}\). What is the predicted sequence of unemployment rates?
\[ \pi_j = \begin{bmatrix} 0 & 1 \end{bmatrix} \cdot \left[ \pi_0 P^j \right]' \]
Appendices
Absorbing State of Unemployment
Let \(P = \begin{bmatrix} \alpha & 1 - \alpha \\ 0 & 1 \end{bmatrix}\),
i.e., \(\alpha\) chance to stay employed, and in unemployment never get a job (“absorbing”).
Let \(\pi_0 = \begin{bmatrix} a & 1-a \end{bmatrix}\).
\[ \pi_1 = \pi_0 P = \begin{bmatrix} a & 1-a \end{bmatrix} \begin{bmatrix} \alpha & 1-\alpha \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \alpha a & (1-\alpha)a + 1 - a \end{bmatrix} = \begin{bmatrix} \text{kept job} & \text{lost job or never had one} \end{bmatrix} \]
\[ \pi_2 = \pi_1 P = \begin{bmatrix} \alpha a & (1-\alpha)a + 1 - a \end{bmatrix} \begin{bmatrix} \alpha & 1-\alpha \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \alpha^2 a & (1-\alpha)\alpha a + (1-\alpha)a + (1-a) \end{bmatrix} \]
Note: \(\alpha^2 a\) represents keeping job twice.
General pattern:
\[ \pi_j = \pi_0 \cdot P^j = \begin{bmatrix} \alpha^j \cdot a & 1 - \alpha^j \cdot a \end{bmatrix} \]
\[ \lim_{j \to \infty} \pi_j = \begin{bmatrix} 0 & 1 \end{bmatrix} \]
i.e., all end up unemployed, independent of \(\pi_0\).
Or via powers of \(P\):
\[ P^2 = \begin{bmatrix} \alpha & 1-\alpha \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha & 1-\alpha \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \alpha^2 & \alpha(1-\alpha) + (1-\alpha) \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \alpha^2 & 1-\alpha^2 \\ 0 & 1 \end{bmatrix} \]
Generalize:
\[ P^j = \begin{bmatrix} \alpha^j & 1-\alpha^j \\ 0 & 1 \end{bmatrix}, \quad \lim_{j \to \infty} P^j = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \]
\[ \pi_{\infty} = \lim_{j \to \infty} \pi_0 P^j = \begin{bmatrix} a & 1-a \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} \]
Alternatively, solve \(\pi_{\infty} = \pi_{\infty} \cdot P\):
\[ \begin{bmatrix} \bar{\pi} & 1-\bar{\pi} \end{bmatrix} = \begin{bmatrix} \bar{\pi} & 1-\bar{\pi} \end{bmatrix} \begin{bmatrix} \alpha & 1-\alpha \\ 0 & 1 \end{bmatrix} \]
Equation: \(\bar{\pi} = \alpha \cdot \bar{\pi} + 0\)
If \(\alpha < 1\), then \(\bar{\pi} = 0\), so \(\pi_{\infty} = \begin{bmatrix} 0 & 1 \end{bmatrix}\).
No Ergodic Distribution
Consider:
\[ P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \]
i.e., switch from whatever you had.
\[ P^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]
\[ P^3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \]
\[ P^j = \begin{cases} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & \text{if } j \text{ even} \\ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} & \text{if } j \text{ odd} \end{cases} \]
\(\lim_{j \to \infty} P^j\) doesn’t exist in general.
Alternatively, solve \(\pi_{\infty} = \pi_{\infty} \cdot P\):
\[ \begin{bmatrix} a & 1-a \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} a & 1-a \end{bmatrix} \]
\[ \begin{bmatrix} 1-a & a \end{bmatrix} = \begin{bmatrix} a & 1-a \end{bmatrix} \implies \pi_{\infty} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix} \]
i.e., must start out with 50/50% probability for the distribution to be stationary.