

Stochastic Permanent Income Model and Government Fiscal Policy

Honours Intermediate Macro

Jesse Perla

Stochastic Permanent Income

Basic Setup

Linear State Space + Normal Shock:

Let

$$\begin{aligned}x_{t+1} &= Ax_t + Cw_{t+1} \\y_t &= G \cdot x_t\end{aligned}$$

where A is $n \times n$ matrix, x is $n \times 1$ vector, C is $n \times m$ matrix, $w_{t+1} \sim N(0, I_{m \times m})$ are i.i.d. normal shocks; G is $1 \times n$ vector, y_t is a scalar representing labor income.

Consumer's Budget Constraint (assuming $\beta R = 1$):

$$F_{t+1} = \underbrace{\frac{1}{\beta}}_{\substack{\text{gross} \\ \text{interest} \\ \text{rate}}} \left(\underbrace{F_t}_{\substack{\text{Financial} \\ \text{wealth}}} + y_t - c_t \right) \quad (1)$$

Recall if $\{y_t\}$ is deterministic, and $R = 1/\beta$, then for any strictly concave $u(c)$ they achieved perfect consumption smoothing:

$$c_t = (1 - \beta) \left(\underbrace{F_t}_{\substack{\text{Financial} \\ \text{wealth}}} + \underbrace{\sum_{j=0}^{\infty} \beta^j y_{t+j}}_{\substack{\text{PDV of} \\ \text{human} \\ \text{wealth}}} \right)$$

If y_t is stochastic, can we just replace the above equation with expected value?

$$c_t = (1 - \beta) \underbrace{\left(F_t + \mathbb{E}_t \left[\sum_{j=0}^{\infty} \beta^j y_{t+j} \right] \right)}_{\substack{\text{expected PDV} \\ \text{of human wealth} \\ \text{with information at} \\ \text{time } t}} \quad (2)$$

Note: If $u'(c)$ is not linear, then this is only an approximation.

Combine Equation 1 and Equation 2:

$$\begin{aligned} F_{t+1} &= \frac{1}{\beta} \left[F_t + y_t - (1 - \beta) \left(F_t + \mathbb{E}_t \left[\sum_{j=0}^{\infty} \beta^j y_{t+j} \right] \right) \right] \\ &= \frac{1}{\beta} \left[\beta F_t + y_t - (1 - \beta) \mathbb{E}_t \left[\sum_{j=0}^{\infty} \beta^j y_{t+j} \right] \right] \\ \Rightarrow F_{t+1} - F_t &= \frac{1}{\beta} \left[y_t - (1 - \beta) \mathbb{E}_t \left[\sum_{j=0}^{\infty} \beta^j y_{t+j} \right] \right] \end{aligned} \quad (3)$$

That is, agents add the difference between y_t and permanent income. Now use Equation 2 at t and $t + 1$:

$$\begin{aligned} c_{t+1} &= (1 - \beta) \left[F_{t+1} + \mathbb{E}_{t+1} \left[\sum_{j=0}^{\infty} \beta^j y_{t+j+1} \right] \right] \\ c_t &= (1 - \beta) \left[F_t + \mathbb{E}_t \left[\sum_{j=0}^{\infty} \beta^j y_{t+j} \right] \right] \\ \Rightarrow c_{t+1} - c_t &= (1 - \beta)(F_{t+1} - F_t) + (1 - \beta) \left[\mathbb{E}_{t+1} \left[\sum_{j=0}^{\infty} \beta^j y_{t+j+1} \right] - \mathbb{E}_t \left[\sum_{j=0}^{\infty} \beta^j y_{t+j} \right] \right] \end{aligned}$$

Use Equation 3 to find (after many steps):

$$c_{t+1} - c_t = (1 - \beta) \sum_{j=0}^{\infty} \beta^j \left(\underbrace{\mathbb{E}_{t+1}(y_{t+j+1})}_{\substack{\text{Forecast of } t+1, t+2, \dots \\ \text{with time } t+1 \\ \text{information}}} - \underbrace{\mathbb{E}_t(y_{t+j+1})}_{\substack{\text{With time } t \\ \text{information}}} \right)$$

- Consumption only changes due to “surprise” of new information changing expected value
- Only **unanticipated** changes in y_{t+j}, \dots or other information which changes forecasts
- Could be unanticipated changes in government policy or shock realizations

Finally, for a shock between $t \rightarrow t + 1$ with our linear state space model:

$$\begin{aligned}
c_{t+1} - c_t &= (1 - \beta) \left[\sum_{j=0}^{\infty} \beta^j (\mathbb{E}_{t+1}(y_{t+j+1}) - \mathbb{E}_t(y_{t+j+1})) \right] \\
&= (1 - \beta) [G(I - \beta A)^{-1} x_{t+1} - G(I - \beta A)^{-1} A x_t] \\
&= (1 - \beta) G(I - \beta A)^{-1} \left[\underbrace{A x_t + C w_{t+1}}_{x_{t+1}} - A x_t \right] \\
c_{t+1} - c_t &= \underbrace{(1 - \beta)}_{\substack{\text{Propensity to} \\ \text{consume}}} \underbrace{G(I - \beta A)^{-1} \cdot C w_{t+1}}_{\substack{\text{PDV of impulse response to} \\ \text{a shock to } x_{t+1}}}
\end{aligned}$$

That is, the PDV of changes to forecasts from the realized shock.

Special Case of Quadratic Preferences

Recall Euler equation for Permanent Income Model:

$$u'(c_t) = \beta(1 + r)u'(c_{t+1}), \quad \forall t = 0, \dots, T - 1$$

If stochastic consumption and $\beta = \frac{1}{1+r}$, just replace with expectation?

$$\begin{array}{ccc}
\overbrace{u'(c_t)}^{\substack{\text{Marginal utility} \\ \text{this period}}} & = & \overbrace{\mathbb{E}_t[u'(c_{t+1})]}^{\substack{\text{Expectation of} \\ \text{marginal utility} \\ \text{next period}}}
\end{array}$$

Let $u(c) = \frac{a_1}{2}c^2 + a_2c + a_3 \Rightarrow u'(c) = a_1c + a_2$.

In the Euler equation:

$$a_1 c_t + a_2 = \mathbb{E}_t(a_1 c_{t+1} + a_2) \implies c_t = \mathbb{E}_t(c_{t+1})$$

That is, the Euler equation implying perfect consumption smoothing with a deterministic process translates to consumption being a **martingale** if stochastic!

Notes:

- In general, $\mathbb{E}_t(u(c)) \neq u(\mathbb{E}_t(c))$
- Then, we can use the linear-stochastic state space model for forecasting $\mathbb{E}_t(c_{t+1})$
- Due to linearity, it simply forecasts the mean
- This is a general result called **Certainty Equivalence** of optimizing a quadratic objective subject to a linear-Gaussian state space model
- The decision is identical in a model with or without the uncertainty
- However, the realized sequence contingent on the shocks, and utility, are not the same

Certainty Equivalence, Risk, and Prudence

A clean way to see what is special about quadratic utility is to start from the stochastic Euler equation (risk-free return, interior solution). Assume $\beta R = 1$.

$$u'(c_t) = \mathbb{E}_t[u'(c_{t+1})]$$

- If $u'(\cdot)$ is **linear** (equivalently $u'''(\cdot) = 0$, i.e. u is quadratic), then

$$\mathbb{E}_t[u'(c_{t+1})] = u'(\mathbb{E}_t[c_{t+1}]) \Rightarrow c_t = \mathbb{E}_t[c_{t+1}],$$

so the **conditional variance** of c_{t+1} does not enter the consumption choice (though it still affects realized utility).

- If $u'''(c) > 0$, then $u'(\cdot)$ is **convex**. By Jensen,

$$\mathbb{E}_t[u'(c_{t+1})] \geq u'(\mathbb{E}_t[c_{t+1}]),$$

with strict inequality when there is risk. Since u' is decreasing, holding the conditional mean fixed this pushes the Euler equation toward **lower** c_t (higher saving): the precautionary saving motive.

To quantify the effect, take a Taylor expansion of $u'(c_{t+1})$ around c_t and define $\Delta c_{t+1} := c_{t+1} - c_t$:

$$u'(c_{t+1}) \approx u'(c_t) + u''(c_t)\Delta c_{t+1} + \frac{1}{2}u'''(c_t)\Delta c_{t+1}^2.$$

Taking conditional expectations and substituting into the Euler equation gives

$$0 \approx u''(c_t)\mathbb{E}_t[\Delta c_{t+1}] + \frac{1}{2}u'''(c_t)\mathbb{E}_t[\Delta c_{t+1}^2].$$

Note that $\mathbb{E}_t[\Delta c_{t+1}^2] = \text{Var}_t(\Delta c_{t+1}) + (\mathbb{E}_t[\Delta c_{t+1}])^2$. Ignoring the small $(\mathbb{E}_t[\Delta c_{t+1}])^2$ term (a higher-order term in this approximation), we obtain

Define the coefficient of **relative prudence** (appropriate for homothetic preferences):

$$P_R(c) \equiv -\frac{c u'''(c)}{u''(c)}.$$

Divide both sides of the approximation by c_t and rewrite the variance in terms of relative consumption growth:

$$\frac{\mathbb{E}_t[\Delta c_{t+1}]}{c_t} \approx \frac{1}{2} P_R(c_t) \text{Var}_t\left(\frac{\Delta c_{t+1}}{c_t}\right).$$

Since $u'' < 0$ for concave utility, if $u'''(c) > 0$ then $P_R(c) > 0$. Higher relative risk therefore raises expected consumption growth, implying lower c_t today and more saving (**precautionary saving**).

For quadratic utility $u''' = 0$ (so $P_R = 0$), the approximation reduces to

$$\mathbb{E}_t[\Delta c_{t+1}] = 0,$$

independent of risk: the classic certainty-equivalence intuition.

Example (log utility): If $u(c) = \log c$, then

$$P_R(c) = -\frac{c \cdot (2/c^3)}{-1/c^2} = 2.$$

The relative form becomes

$$\mathbb{E}_t\left[\frac{\Delta c_{t+1}}{c_t}\right] \approx \text{Var}_t\left(\frac{\Delta c_{t+1}}{c_t}\right).$$

Intuitively, the consumer wants to save more today (lower c_t so higher c_{t+1}/c_t) when there is more risk to future consumption growth.

Examples

Pre-announced Tax Cut

This will use a shock to knowledge about deterministic income processes, rather than a constant stream of shocks to income.

Setup:

- Government announces at $t = 0$ that at $t = 1$ it will borrow α from international markets at interest rate $(1 + r)$ per period and give it to each consumer
- They also announce that to eventually balance the budget, they will pay it back at $t = 2$ for simplicity by increasing taxation that period
- Assume consumers had deterministic y_{t+j} . What happens to consumption?

Using our result:

$$c_{t+1} - c_t = (1 - \beta) \sum_{j=0}^{\infty} \beta^j [\mathbb{E}_{t+1}(y_{t+j+1}) - \mathbb{E}_t(y_{t+j+1})]$$

Define: $\{\hat{y}_{t+1}\}_{j=0}^{\infty} = \{y_t, \underbrace{y_{t+1} + \alpha, y_{t+2} - \alpha(1+r), y_{t+3}, \dots, y_{t+j}}_{\text{Only difference}} \dots\}$

- Note that from t to $t + 1$, the agent has the news that $\{y_{t+j}\} \rightarrow \{\hat{y}_{t+j}\}$
- This is a change in expectations:

$$\begin{aligned} c_1 - c_0 &= (1 - \beta) \sum_{j=0}^{\infty} \beta^j [\mathbb{E}_1(y_{j+1}) - \mathbb{E}_0(y_{j+1})] = (1 - \beta) \sum_{j=0}^{\infty} \beta^j (\hat{y}_{j+1} - y_{j+1}) \\ &= (1 - \beta) \sum_{j=0}^{\infty} \beta^j (y_{j+1} - y_{j+1}) + (1 - \beta) [\alpha - \beta(1 + r)\alpha] \end{aligned}$$

Result: If $\beta = \frac{1}{1+r}$, then $c_1 - c_0 = 0$.

That is, the tax cut has **no effect** because of the **anticipated rise** in taxes. Later, we will investigate cases why $\beta = \frac{1}{1+r}$ comes out of general equilibrium.

Timing of Tax Cuts

Setup:

- Between time 0 and 1, government announces that it will cut taxes to give α to each individual at a deterministic time $T \geq 1$
- Assume they do not need to pay it back and taxes will not rise to compensate
- What happens to consumption at time $\{0, \dots, T, T+1, \dots\}$?
- Assume y_{t+j+1} are deterministic

Solve:

$$\begin{aligned}
 c_1 - c_0 &= (1 - \beta) \sum_{j=0}^{\infty} \beta^j [\mathbb{E}_1(y_{j+1}) - \mathbb{E}_0(y_{j+1})] \\
 &= (1 - \beta) \sum_{j=0}^{\infty} \beta^j [y_{j+1} - y_{j+1}] + (1 - \beta) \cdot \beta^{T-1} \cdot \alpha \\
 &= \underbrace{(1 - \beta)}_{\text{MPC out of wealth}} \underbrace{\beta^{T-1} \cdot \alpha}_{\substack{\text{Change in} \\ \text{permanent income}}}
 \end{aligned}$$

For $t \geq 1$:

$$\mathbb{E}_{t+1}(y_{t+j+1}) = \mathbb{E}_t(y_{t+j+1}) \implies c_{t+1} - c_t = 0, \quad \forall t \geq 1$$

That is:

- Changes only happen at announcement, not at tax cut time T
- A similar approach with stochastic income would yield the same result

Variation: The only reason that T enters the above is that the PDV of the α delivery is discounted for T periods. If instead, the government announces they will set aside α , put it in the bank at R interest, and then deliver the α with interest at time T . In that case, interest compounds for $T - 1$ periods, which means that

$$c_1 - c_0 = (1 - \beta) \beta^{T-1} (R^{T-1} \alpha) = (1 - \beta) \alpha$$

That is, the tax break (no matter when it is actually implemented) adds α to the PDV of lifetime earnings.

Example from Friedman-Muth

Setup:

$$\begin{aligned} y_t &= z_t + u_t \\ z_{t+1} &= z_t + \sigma_1 w_{1t+1} \\ u_{t+1} &= \sigma_2 w_{2t+1} \end{aligned}$$

where y_t is income, z_t is the *persistent* or “permanent income”, u_t is transitory changes in income.

- Which one is a martingale (i.e., random walk here)?
- Define the vector of shocks $w_{t+1} = \begin{bmatrix} w_{1t+1} \\ w_{2t+1} \end{bmatrix} \sim N(0_2, I_{2 \times 2})$, i.e., iid normal distributed, mean 0, variance 1.

Setup in linear state space form:

Since $x_t = \begin{bmatrix} z_t \\ u_t \end{bmatrix}$, we have:

$$\begin{aligned} \underbrace{\begin{bmatrix} z_{t+1} \\ u_{t+1} \end{bmatrix}}_{x_{t+1}} &= \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}}_A \cdot \underbrace{\begin{bmatrix} z_t \\ u_t \end{bmatrix}}_{x_t} + \underbrace{\begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix}}_C \underbrace{\begin{bmatrix} w_{1t+1} \\ w_{2t+1} \end{bmatrix}}_{w_{t+1}} \\ y_t &= \underbrace{\begin{bmatrix} 1 & 1 \end{bmatrix}}_G \cdot \underbrace{\begin{bmatrix} z_t \\ u_t \end{bmatrix}}_{x_t} \end{aligned}$$

Computing the key matrices:

$$I - \beta A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} \beta & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 - \beta & 0 \\ 0 & 1 \end{bmatrix}$$

$$(I - \beta A)^{-1} = \begin{bmatrix} \frac{1}{1-\beta} & 0 \\ 0 & 1 \end{bmatrix}$$

(Since diagonal matrix, its inverse is just 1 over each element)

$$G(I - \beta A)^{-1} = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{1-\beta} & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{1-\beta} & 1 \end{bmatrix}$$

Consumption:

Recall:

$$\begin{aligned}
c_t &= (1 - \beta) \left[F_t + \mathbb{E}_t \left(\sum_{j=0}^{\infty} \beta^j y_{t+j} \right) \right] \\
&= (1 - \beta) [F_t + G(I - \beta A)^{-1} x_t] \\
&= (1 - \beta) \left[F_t + \begin{bmatrix} \frac{1}{1-\beta} & 1 \end{bmatrix} \cdot \begin{bmatrix} z_t \\ u_t \end{bmatrix} \right] \\
&= (1 - \beta) \left[F_t + \frac{1}{1-\beta} z_t + u_t \right]
\end{aligned}$$

$$c_t = (1 - \beta)F_t + z_t + (1 - \beta)u_t$$

Note: The coefficient on u_t is $(1 - \beta)$, the marginal propensity to consume (MPC) out of transitory income; the coefficient on z_t is 1, which is the MPC out of permanent income. The marginal propensity to consume out of financial wealth F_t is the same as before.

Consumption changes:

Recall:

$$\begin{aligned}
c_{t+1} - c_t &= (1 - \beta)G(I - \beta A)^{-1} \cdot C \cdot w_{t+1} \\
&= (1 - \beta) \begin{bmatrix} \frac{1}{1-\beta} & 1 \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix} \cdot \begin{bmatrix} w_{1t+1} \\ w_{2t+1} \end{bmatrix}
\end{aligned}$$

$$c_{t+1} - c_t = \sigma_1 w_{1t+1} + (1 - \beta) \sigma_2 w_{2t+1}$$

That is, the consumer consumes all of the permanent shock, and the MPC out of the transitory shock.

Savings:

Recall:

$$\begin{aligned}
F_{t+1} - F_t &= \frac{1}{\beta} \left[y_t - (1 - \beta) \mathbb{E}_t \sum_{j=0}^{\infty} \beta^j y_{t+j} \right] \\
&= \frac{1}{\beta} [G \cdot x_t - (1 - \beta)G(I - \beta A)^{-1} x_t] \\
&= \frac{1}{\beta} G [I - (1 - \beta)(I - \beta A)^{-1}] x_t
\end{aligned}$$

Computing:

$$G \cdot I = [1 \ 1] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = [1 \ 1]$$

$$(1 - \beta)G(I - \beta A)^{-1} = [1 \ 1 - \beta]$$

Therefore:

$$\begin{aligned} F_{t+1} - F_t &= \frac{1}{\beta} \left[[1 \ 1] - [1 \ 1 - \beta] \right] \begin{bmatrix} z_t \\ u_t \end{bmatrix} \\ &= \frac{1}{\beta} [0 \ \beta] \begin{bmatrix} z_t \\ u_t \end{bmatrix} \\ &= [0 \ 1] \begin{bmatrix} z_t \\ u_t \end{bmatrix} \end{aligned}$$

$$F_{t+1} - F_t = u_t$$

That is, the consumer spends all of z_t and saves nothing, but saves a fraction of transitory income (which returns on savings to F_{t+1}). The fraction of u_t consumed is the annuity value $\frac{R-1}{R}u_t$ since $R(1 - \frac{R-1}{R})u_t = u_t$ for the rest of the income.

References