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Asset Pricing with Markov Chains

Stochastic Asset Pricing with Discrete States

Setup:

• Assume a discrete number, 1, … 𝑁, of possible states of the world
• Let 𝑃 be the transition matrix of the Markov chain for these states, and let 𝐴 ≡ 𝑃 ⊤ (the

transpose)
• If 𝜋𝑡 is the pmf as a row vector, let 𝑥𝑡 ≡ 𝜋⊤

𝑡 be the distribution (pmf) of possible states
for the random variable as a column vector

Take the standard forecast, 𝜋𝑡+1 = 𝜋𝑡𝑃 and take the transpose of both sides to get 𝑥𝑡+1 ≡
𝜋⊤

𝑡+1 = (𝑃 ⊤𝜋⊤
𝑡 ) = 𝐴𝑥𝑡. Then we see the forecast 𝑗 into the future is

𝑥𝑡+𝑗 = 𝐴𝑗 ⋅ 𝑥𝑡

Let the payoff in each state be 𝐺 = [𝑦1 ⋯ 𝑦𝑁], so

𝑦𝑡 = [𝑦1 ⋯ 𝑦𝑁] ⋅
⎡
⎢
⎢
⎣

𝑥1𝑡
𝑥2𝑡
⋮

𝑥𝑛𝑡

⎤
⎥
⎥
⎦

= 𝐺 ⋅ 𝑥𝑡

Given the possible payout states, the random variable 𝑌𝑡 is all of the possible payouts in 𝐺
with probability 𝑥𝑡. So

𝑦𝑡 ≡ 𝔼𝑡 [𝑌𝑡] = 𝐺𝑥𝑡
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Compare to the linear state space model: 𝑥𝑡+1 = 𝐴𝑥𝑡 and 𝑦𝑡 = 𝐺𝑥𝑡.

Example:

• 𝑦𝑡 = 𝑦1 if 𝑥1𝑡 = 1
• 𝑦𝑡 = 𝑦𝑁 if 𝑥𝑁𝑡 = 1
• If 50% chance in each of the first 2 states:

𝑦𝑡 = 𝐺 ⋅ 𝑥𝑡 = [𝑦1 ⋯ 𝑦𝑁] ⋅
⎡
⎢
⎢
⎢
⎣

1
2
1
2
0
⋮
0

⎤
⎥
⎥
⎥
⎦

= 1
2

𝑦1 + 1
2

𝑦2

This gives the expected dividends.

Using Markov chains for forecasting:

• 𝑥𝑡+𝑗 = 𝐴𝑗𝑥𝑡
• 𝑦𝑡 = 𝐺 ⋅ 𝑥𝑡
• Using the forecast and weighting by the pmf: 𝑦𝑡+𝑗 = 𝔼𝑡 [𝑌𝑡+𝑗] = 𝐺𝑥𝑡+𝑗

Asset pricing formula:

𝑝𝑡(𝑥𝑡) = 𝔼𝑡 [
∞

∑
𝑗=0

𝛽𝑗𝑌𝑡+𝑗] = 𝐺 (
∞

∑
𝑗=0

𝛽𝑗𝐴𝑗) 𝑥𝑡

This is close to our old form (note that we have the transpose 𝐴 ≡ 𝑃 ⊤):

𝑝(𝑥𝑡) = 𝐺(𝐼 − 𝛽𝐴)−1𝑥𝑡

Compare to the deterministic formula!
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Sequential vs. Recursive Thinking

Figure 1: Expected PDV of dividends

An example is an H/L process of dividends:

• Dividends are 𝑦𝐻 with probability 0.5 and 𝑦𝐿 with probability 0.5 (iid). Can denote
these as ℙ (𝐻) = ℙ (𝐿) = 0.5

• What is the expected present discounted value of payoffs? That is, 𝑝(𝑌0) =
𝔼𝑡 [∑∞

𝑗=0 𝛽𝑗𝑌𝑡+𝑗 ∣ 𝑌0]?

The figure above shows how complicated this is to think through sequentially. But can we
write down a recursive version of this under the assumption that the price should be only a
function of the current state?

Define 𝑝𝐻 and 𝑝𝐿 as the prices in state 𝐻 vs. 𝐿. With this, we can write down a system of two
equations and two unknowns.

𝑝𝐻 = 𝑦𝐻 + 𝛽𝔼 [𝑝𝑖 | 𝐻] = 𝑦𝐻 + 𝛽 [ℙ (𝐻)𝑝𝐻 + ℙ (𝐿)𝑝𝐿]
𝑝𝐿 = 𝑦𝐿 + 𝛽𝔼 [𝑝𝑖 | 𝐿] = 𝑦𝐿 + 𝛽 [ℙ (𝐻)𝑝𝐻 + ℙ (𝐿)𝑝𝐿]

Stack as vectors:
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𝑝 ≡ [𝑝𝐻 𝑝𝐿]
𝐺 ≡ [𝑦𝐻 𝑦𝐿]

𝐴 ≡ [ℙ (𝐻) ℙ (𝐻)
ℙ (𝐿) ℙ (𝐿)]

Then rewrite the system of equations:

𝑝 = 𝐺 + 𝛽𝑝𝐴

Rearrange, being careful with the commutative rules of matrices:

𝑝(𝐼 − 𝛽𝐴) = 𝐺

And assuming things are invertible:

𝑝 = 𝐺(𝐼 − 𝛽𝐴)−1

In the more general case of a Markov chain, the 𝐴 becomes the transpose of a Markov chain—as
it does in the previous section. Here the columns are identical because the switches between 𝐿
and 𝐻 are iid.

To complete the solution, note that this 𝑝 is a row vector, so if we set 𝑥𝑡 as a column vector as

above, 𝑥 = [1
0] if H, 𝑥 = [0

1] if L, then we can calculate the price as 𝑝(𝑥𝑡) = 𝐺(𝐼 − 𝛽𝐴)−1𝑥𝑡.

Stochastic Asset Pricing with Continuous State Spaces

Information Sets

• Conditional expectation 𝔼(𝑋|𝑌 ) means that in forming the expectation of 𝑋, can use
anything in 𝑌 as if known with certainty (i.e., not a random variable)

• 𝔼𝑡(𝐶𝑡+1) is the abbreviation for 𝔼(𝐶𝑡+1 ∣ 𝐶𝑡, 𝐶𝑡−1, 𝐶𝑡−2, ⋯ and anything else we know at t)
• If first-order Markov, then 𝔼𝑡(𝐶𝑡+1) = 𝔼(𝐶𝑡+1 ∣ 𝐶𝑡) (i.e., all info in last state)
• What to choose for the state? Think through necessary information set of an agent.
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Properties of Expectations

Key: Expectation is a linear operator and can be over scalars, vectors, or matrices.

Some properties of expectations:

• Let 𝑎 and 𝑏 be scalar constants, and {𝑥𝑡} and {𝑧𝑡} be scalar random variables
• 𝔼𝑡 [𝑎𝑥𝑡+1 + 𝑏𝑧𝑡+1] = 𝑎𝔼𝑡 [𝑥𝑡+1] + 𝑏𝔼𝑡 [𝑧𝑡+1]
• But, be careful not to apply this for multiplication with other random variables:

– 𝔼𝑡 [𝑥𝑡+1𝑧𝑡+1] ≠ 𝔼𝑡 [𝑥𝑡+1]𝔼𝑡 [𝑧𝑡+1] in general (true if independent)
– 𝔼𝑡 [𝑥2

𝑡+1] ≠ (𝔼𝑡 [𝑥𝑡+1])2 in general. Note 𝑥𝑡+1 and 𝑥𝑡+1 are never independent.
– As always, just be careful to keep the order (i.e., not commutative in general)
– Of course, if the information is known then the expectation is the value itself:

𝔼𝑡 [𝑥𝑡] = 𝔼 [𝑥𝑡|𝑥𝑡] = 𝑥𝑡

• Law of iterated expectations: 𝔼𝑡 [𝔼𝑡+1 [𝑥𝑡+2]] = 𝔼𝑡 [𝑥𝑡+2]. Note: time 𝑡 has less
information than that of time 𝑡 + 1.

Generalizing, let 𝑋𝑡 and 𝑍𝑡 be vector random variables, and 𝐴 and 𝐵 be matrices or vectors:

• 𝔼𝑡 [𝐴 ⋅ 𝑋𝑡+1 + 𝐵 ⋅ 𝑍𝑡+1] = 𝐴 ⋅ 𝔼𝑡 [𝑋𝑡+1] + 𝐵 ⋅ 𝔼𝑡 [𝑍𝑡+1]
• These also all hold for any conditional expectation as well: 𝔼𝑡 [𝐴 ⋅ 𝑋𝑡+1 + 𝐵 ⋅ 𝑍𝑡+1 | 𝑍𝑡, 𝑋𝑡] =

𝐴 ⋅ 𝔼𝑡 [𝑋𝑡+1 | 𝑍𝑡, 𝑋𝑡] + 𝐵 ⋅ 𝔼𝑡 [𝑍𝑡+1 | 𝑍𝑡, 𝑋𝑡]

A Few Tricks with Normal Variables

• If a random variable 𝑧 is distributed as a normal random variable with mean 𝜇 and
variance 𝜎2, it is denoted

𝑧 ∼ 𝑁(𝜇, 𝜎2)

• In terms of expectations, one can show that: 𝔼 [𝑧] = 𝜇 and 𝔼 [𝑧2] = 𝜇2 + 𝜎2

• Let 𝑤 ∼ 𝑁(0, 1) be a normalized random variable. Then you can show that

𝑧 = 𝜇 + 𝜎𝑤

• That is, you can convert any normal random variable to a linear function of a normalized
one

• With multivariate normal random variable, 𝑞 ∈ ℝ𝑛, denote its distribution as 𝑞 ∼ 𝑁 (𝜇, Σ)
where the mean 𝜇 ∈ ℝ𝑛 and Σ ∈ ℝ𝑛×𝑛 is the variance-covariance matrix

• Keeping things simple, if the vector random variable has mean 0 and is independent (i.e.,
none of the components of the vector have any correlation) then we would write it as
𝑞 ∼ 𝑁(0𝑛, 𝐼𝑛×𝑛)
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Asset Pricing in Our State Space Model

The Deterministic Model

Recall: In the deterministic linear state space, we have

𝑥𝑡+1 = 𝐴 ⋅ 𝑥𝑡 (Evolution)
𝑦𝑡 = 𝐺 ⋅ 𝑥𝑡 (Observation)

And the asset pricing formula under risk neutrality is:

𝑃𝑡 =
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗 = 𝐺(𝐼 − 𝛽 ⋅ 𝐴)−1 ⋅ 𝑥𝑡

Making This a Stochastic Linear State Space

Add randomness 𝑤𝑡+1, an 𝑚 × 1 vector random variable:

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐶 ⋅ 𝑤𝑡+1 (Evolution, stochastic)
𝑦𝑡 = 𝐺 ⋅ 𝑥𝑡 (Observation, still noise free)

where 𝐴 is 𝑛 × 𝑛 matrix, 𝐶 is 𝑛 × 𝑚 matrix, 𝑤𝑡+1 are 𝑚 × 1 matrices, 𝑥 is 𝑛 × 1 vector; 𝐺 is
1 × 𝑛 vector, 𝑦𝑡 are scalars.

Note: 𝑤𝑡+1 are independent, identically distributed variables; Gaussian of mean 0, covariance
matrix 𝐼𝑚×𝑚. Hence, 𝔼(𝑤𝑖𝑡+1) = 0 for all 𝑖 = 1, ⋯ 𝑚, and

𝔼(𝑤𝑖𝑡𝑤𝑖′𝑡′) = {
1 if 𝑖 = 𝑖′, 𝑡 = 𝑡′

0 otherwise

Notice that:

𝔼𝑡(𝑥𝑡+1) = 𝔼𝑡(𝐴 ⋅ 𝑥𝑡 + 𝐶𝑤𝑡+1) = 𝐴 ⋅ 𝑥𝑡 + 𝐶 ⋅ 𝔼𝑡(𝑤𝑡+1)⏟⏟⏟⏟⏟
=0

= 𝐴 ⋅ 𝑥𝑡

𝔼𝑡(𝑥𝑡+2) = 𝔼𝑡
⎛⎜
⎝

𝐴 (𝐴𝑥𝑡 + 𝐶𝑤𝑡+1)⏟⏟⏟⏟⏟⏟⏟
𝑥𝑡+1

+𝐶 ⋅ 𝑤𝑡+2
⎞⎟
⎠

= 𝔼𝑡(𝐴2𝑥𝑡 + 𝐴𝐶𝑤𝑡+1 + 𝐶𝑤𝑡+2)

= 𝐴2𝑥𝑡 + 𝐴𝐶𝔼𝑡(𝑤𝑡+1)⏟⏟⏟⏟⏟
=0

+ 𝐶𝔼𝑡(𝑤𝑡+2)⏟⏟⏟⏟⏟
=0

= 𝐴2𝑥𝑡
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Repeat for 𝑡 + 3, ⋯

Forecasting Formulas:

𝔼𝑡(𝑥𝑡+𝑗) = 𝐴𝑗𝑥𝑡 and 𝔼𝑡 (
∞

∑
𝑗=0

𝛽𝑗𝑥𝑡+𝑗) = (𝐼 − 𝛽 ⋅ 𝐴)−1𝑥𝑡

𝔼𝑡(𝑦𝑡+𝑗) = 𝐺 ⋅ 𝐴𝑗𝑥𝑡 and 𝔼𝑡 (
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗) = 𝐺 ⋅ (𝐼 − 𝛽𝐴)−1𝑥𝑡

Price of a Stochastic Dividend Stream

𝑝𝑡 = 𝔼𝑡 (
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗) + possible bubble = 𝐺(𝐼 − 𝛽𝐴)−1𝑥𝑡 + possible bubble

Or, recursively:

𝑝𝑡 = 𝑦𝑡⏟
dividend

today

+𝛽 ⋅ 𝔼𝑡(𝑝𝑡+1)⏟
expectation

of price
tomorrow

Method (Guess and Verify):

Guess 𝑝𝑡 = 𝐻 ⋅ 𝑥𝑡, where 𝐻 is 1 × 𝑛 vector to be determined, 𝑥 is 𝑛 × 1 vector.

Substitute into equation:

𝐻 ⋅ 𝑥𝑡 = 𝑦𝑡 + 𝛽 ⋅ 𝔼𝑡 (𝐻𝑥𝑡+1)

𝐻 ⋅ 𝑥𝑡 = 𝐺 ⋅ 𝑥𝑡 + 𝛽𝐻𝔼𝑡(𝐴 ⋅ 𝑥𝑡 + 𝐶 ⋅ 𝑤𝑡+1) = 𝐺 ⋅ 𝑥𝑡 + 𝛽𝐻𝐴𝑥𝑡

To hold for any 𝑥𝑡:

𝐻(𝐼 − 𝛽𝐴) = 𝐺 ⟹ 𝐻 = 𝐺(𝐼 − 𝛽𝐴)−1

Therefore:

𝑝𝑡 = 𝐺(𝐼 − 𝛽𝐴)−1𝑥𝑡

Note:
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• This is consistent with the EPDV calculation
• Same formula as without random 𝑤𝑡+1

Forecast Errors

How far off are the agent’s forecasts of 𝑡+1 given time 𝑡 information? To do a simple example:

• Let 𝑥𝑡+1 = 𝑥𝑡 + 𝜎𝑤𝑡+1
• With 𝑤𝑡+1 ∼ 𝑁(0, 1). That is, 𝔼𝑡 [𝑤𝑡+1] = 0 and 𝔼𝑡 [𝑤2

𝑡+1] = 1.
• This is a trivial linear-Gaussian-state space.

The expected forecast error is:

𝔼𝑡 [𝐹𝐸𝑡+1] ≡ 𝔼𝑡 [𝑥𝑡+1 − 𝔼𝑡 [𝑥𝑡+1]] = 𝔼𝑡 [𝑥𝑡+1] − 𝔼𝑡 [𝑥𝑡+1] = 0

No systematic error. What about the variance of the forecast errors?

The variance of a random variable 𝑧𝑡 is defined as 𝕍𝑡 (𝑧𝑡+1) ≡ 𝔼𝑡 [𝑧2
𝑡+1] − (𝔼𝑡 [𝑧𝑡+1])2.

So to find the variance of the forecast error:

𝕍𝑡(𝐹𝐸𝑡+1) = 𝔼𝑡 [𝐹𝐸2
𝑡+1] − (𝔼𝑡 [𝐹𝐸𝑡+1])2

= 𝔼𝑡 [(𝑥𝑡+1 − 𝔼𝑡 [𝑥𝑡+1])2] − 0

= 𝔼𝑡 [(𝑥𝑡 + 𝜎𝑤𝑡+1 − 𝔼𝑡 [𝑥𝑡 + 𝜎𝑤𝑡+1])2]

= 𝔼𝑡 [(𝜎𝑤𝑡+1)2] = 𝜎2

Linear Gaussian State Space Example

• On average, a worker’s productivity, 𝑧𝑡, adds a random draw of 𝑁(𝛼, 𝜎2) each period
• Firm productivity 𝑞𝑡 adds 𝛾 each period, which is deterministic
• Wages are a linear combination: 𝑊𝑡 = 𝜃𝑧𝑡 + (1 − 𝜃)𝑞𝑡

Setup in Linear Gaussian form:

Guess state: 𝑥𝑡 = ⎡⎢
⎣

𝑧𝑡
𝑞𝑡
1

⎤⎥
⎦

Note: if 𝑤𝑡+1 ∼ 𝑁(0, 1), then

𝛼 + 𝜎𝑤𝑡+1 ∼ 𝑁(𝛼, 𝜎2)
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The state space model is then:

⎡⎢
⎣

𝑧𝑡+1
𝑞𝑡+1

1
⎤⎥
⎦⏟

𝑥𝑡+1

= ⎡⎢
⎣

1 0 𝛼
0 1 𝛾
0 0 1

⎤⎥
⎦⏟⏟⏟⏟⏟

𝐴

⎡⎢
⎣

𝑧𝑡
𝑞𝑡
1

⎤⎥
⎦⏟

𝑥𝑡

+ ⎡⎢
⎣

𝜎
0
0
⎤⎥
⎦

𝑤𝑡+1

⏟⏟⏟⏟⏟
𝐶⋅𝑤𝑡+1

𝑊𝑡 = [𝜃 1 − 𝜃 0] ⎡⎢
⎣

𝑧𝑡
𝑞𝑡
1

⎤⎥
⎦

= 𝐺 ⋅ 𝑥𝑡

What is the expected PDV of human capital? (i.e., stochastic version of the permanent
income calculations)

𝔼𝑡 [
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗] = 𝐺(𝐼 − 𝛽𝐴)−1𝑥𝑡

Appendices

Stochastic Bubbles

To isolate the bubble term, consider the special case where 𝑦𝑡 = 0 for all 𝑡.

We want to solve 𝑝𝑡 = 𝛽𝔼𝑡(𝑝𝑡+1), where 𝛽 = 1
1+𝑟 .

Guess: 𝑝𝑡 = 𝐶𝑡𝛽−𝑡, where 𝐶𝑡 is a random variable, and {𝐶𝑡} is a martingale, that is, satisfies
𝔼𝑡(𝐶𝑡+1) = 𝐶𝑡 (i.e., best forecast of future value is today’s value, e.g., random walk).

To verify 𝑝𝑡 = 𝛽𝔼𝑡(𝑝𝑡+1), substitute our guess:

𝐶𝑡𝛽−𝑡 = 𝛽 ⋅ 𝔼𝑡(𝛽−(𝑡+1)𝐶𝑡+1) = 𝛽−𝑡 ⋅ 𝔼𝑡(𝐶𝑡+1) = 𝛽−𝑡𝐶𝑡

Verified that 𝑝𝑡 = 𝐶𝑡𝛽−𝑡 satisfies the equation.

Example:

𝐶𝑡+1 = {
𝜆−1𝐶𝑡 with probability 𝜆 ∈ (0, 1)
0 with probability 1 − 𝜆

• Note: 𝔼𝑡(𝐶𝑡+1) = 𝜆 ⋅ (𝜆−1𝐶𝑡) + 0 = 𝐶𝑡, so this is a martingale
• Note that if at some point 𝐶𝑡+𝑗 = 0, then 𝐶𝑡+𝑗+1 = 0, etc. (i.e., the bubble has popped)
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• From any 𝐶0:

𝐶𝑡 = {
𝜆−𝑡𝐶0 if bubble has not popped
0 if the bubble has popped

𝑝𝑡 = {
𝛽−𝑡 ⋅ 𝜆−𝑡 ⋅ 𝐶0 = (𝛽𝜆)−𝑡𝐶0 until popped
0 after the bubble has popped

0 5 10 15 20
Time t

0

C0

Pr
ice

 p
t

pt = ( ) tC0

Bubble pops

Figure 2: Parameters: 𝛽 = 0.95, 𝜆 = 0.9, 𝐶0 = 1, with bubble popping at 𝑡 = 12
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