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Asset Pricing with Markov Chains

Stochastic Asset Pricing with Discrete States

Setup:

¢ Assume a discrete number, 1, ... N, of possible states of the world

o Let Pbe the transition matrix of the Markov chain for these states, and let A = P ' (the
transpose)

o If 7, is the pmf as a row vector, let z, = m,] be the distribution (pmf) of possible states
for the random variable as a column vector

Take the standard forecast, m,,; = m, P and take the transpose of both sides to get x;,,, =

7, = (P'w]) = Az,. Then we see the forecast j into the future is

Tyyj = Al -z,

Let the payoff in each state be G = [yl yN], S0
L1t

x

x

Given the possible payout states, the random variable Y, is all of the possible payouts in G
with probability z,. So

y = L [Y] = Ga,



Compare to the linear state space model: z, ., = Az, and y, = Gz,.
Example:
s Y=y ifry, =1

sy =ynifzy, =1
o If 50% chance in each of the first 2 states:
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2

1
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yt:G'xt:[yl yN]' 0 253/1‘1‘53/2

0

This gives the expected dividends.

Using Markov chains for forecasting:

¢ Ty = Az,
[ ) yt = G . xt
o Using the forecast and weighting by the pmf: y,,; = E, [Y;Jrj] =Gy

Asset pricing formula:

e (i BfAj) 2,

7=0

p(zy) = E, [Z BjYHj
j=0

This is close to our old form (note that we have the transpose A = P'):

p(z,) = G(I — pA) ',

Compare to the deterministic formula!



Sequential vs. Recursive Thinking

time t time t|
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Figure 1: Expected PDV of dividends

An example is an H/L process of dividends:

o Dividends are y; with probability 0.5 and y; with probability 0.5 (iid). Can denote
these as P (H) =P (L) =0.5
o What is the expected present discounted value of payoffs? That is, p(Y,) =

E [0 Y | Ya)?

The figure above shows how complicated this is to think through sequentially. But can we
write down a recursive version of this under the assumption that the price should be only a
function of the current state?

Define py and p; as the prices in state H vs. L. With this, we can write down a system of two
equations and two unknowns.

py =Yy +BE[p; | H =yy + B[P (H)py + P (L)p,]
pr =y +BE[p; | L] =y, + B[P (H)py + P (L)p,]

Stack as vectors:



p=py Pl
G = [?JH ZUL]
A

Then rewrite the system of equations:

p =G+ BpA

Rearrange, being careful with the commutative rules of matrices:

p(I —BA) =G

And assuming things are invertible:

p=G(I—pA~"

In the more general case of a Markov chain, the A becomes the transpose of a Markov chain—as
it does in the previous section. Here the columns are identical because the switches between L
and H are iid.

To complete the solution, note that this p is a row vector, so if we set z, as a column vector as

above, r = [(1)] if H, x = [O

1] if L, then we can calculate the price as p(z,) = G(I — BA)1z,.

Stochastic Asset Pricing with Continuous State Spaces

Information Sets

o Conditional expectation E(X|Y) means that in forming the expectation of X, can use
anything in Y as if known with certainty (i.e., not a random variable)

o [E,(C,,,) is the abbreviation for E(C, ., | C,,C,_;,C,_,,---and anything else we know at t)

o If first-order Markov, then E,(C,,,) = E(C,,, | C}) (i.e., all info in last state)

e« What to choose for the state? Think through necessary information set of an agent.



Properties of Expectations

Key: Expectation is a linear operator and can be over scalars, vectors, or matrices.

Some properties of expectations:

o Let a and b be scalar constants, and {z,} and {z,} be scalar random variables
o Lylawyyy + bz ] = aly [z, ] + BE, [2,4]
e But, be careful not to apply this for multiplication with other random variables:

— B [z, 0201) # &, [2,4]E, [2,,1] in general (true if independent)

- E [274] # (E, [acHl])2 in general. Note z,,; and z,,, are never independent.

— As always, just be careful to keep the order (i.e., not commutative in general)

— Of course, if the information is known then the expectation is the value itself:
E, [z, = E [)|z,] = 2,

o Law of iterated expectations: E,[E, [z, ,]] = E, [z, ,]. Note: time ¢ has less
information than that of time ¢ 4 1.

Generalizing, let X, and Z, be vector random variables, and A and B be matrices or vectors:

c HA- X, +B-Z ] =A-E[X, ]+ B-E[Z,]
o These also all hold for any conditional expectation as well: £, [A- X, + B-Z, 1| Z,, X,] =
AB (X2, X+ B-E, 2,12, X}]

A Few Tricks with Normal Variables

e If a random variable z is distributed as a normal random variable with mean p and
variance o2, it is denoted

2~ N(p,0?)

o In terms of expectations, one can show that: E [z] = p and E [2?] = p? + o2
o Let w~ N(0,1) be a normalized random variable. Then you can show that

zZ=u+ow

e That is, you can convert any normal random variable to a linear function of a normalized
one

o With multivariate normal random variable, ¢ € R", denote its distribution as ¢ ~ N (u, %)
where the mean p € R™ and X € R™*"™ is the variance-covariance matrix

o Keeping things simple, if the vector random variable has mean 0 and is independent (i.e.,
none of the components of the vector have any correlation) then we would write it as
g~ N(,,1L,..)

n) —nxn



Asset Pricing in Our State Space Model
The Deterministic Model

Recall: In the deterministic linear state space, we have

., =A-z, (Evolution)

Yy =G xy (Observation)

And the asset pricing formula under risk neutrality is:
P = Z/Bjyt+j =G —-p-A)"
=0

Making This a Stochastic Linear State Space

Add randomness w,, ;, an m X 1 vector random variable:

zyq = Az, + C-w,,,; (Evolution, stochastic)

vy, =G -, (Observation, still noise free)

where A is n x n matrix, C'is n x m matrix, w,,,; are m x 1 matrices, x is n x 1 vector; G is
1 x n vector, y, are scalars.

Note: w,,, are independent, identically distributed variables; Gaussian of mean 0, covariance

matrix I, ... Hence, E(w;, ;) =0 for all i =1,---m, and

1 ifi=di,t=t

0 otherwise

E(w;wyy) = {
Notice that:

[Et<$t+1> =E (A -z, + th+1) =A-z,+C- [Et(wt-H) =A-z
=0

Ei(z440) = E, (A (Azy + Cwyyq) +C - wt+2) = E,(A%z, + ACw, ; + Cw, )

Ty

= A%z, + ACE,(wyy) + O (wy,5) = Az,
=0 =0




Repeat for t 4 3, -

Forecasting Formulas:

Ey(zyy;) = Az, and (Z 5jxt+j> =(I—-B-A) T,
=0

Ey(y,,) =G Alz, and E, (Z 5jyt+j> =G-(I—BA) 1z,
j=0

Price of a Stochastic Dividend Stream

p, =E, (Z ﬁjytﬂ») + possible bubble = G(I — SA)~ 1z, + possible bubble
7=0

Or, recursively:

pe= Y +B-E(peyq)
h/_/

4
dividend expectation
today of price

tomorrow

Method (Guess and Verify):
Guess p, = H - x,, where H is 1 x n vector to be determined, z is n x 1 vector.

Substitute into equation:
H-zy=y,+ 8 E (Hzy,)
H-z,=G-z,+pHE, (A -2, +C -w,,) =G -z, + HAx,
To hold for any x,:

H(I —BA) =G = H=G(I—BA)"

Therefore:

pr =G —pA) ',

Note:



o This is consistent with the EPDV calculation
e Same formula as without random w,

Forecast Errors

How far off are the agent’s forecasts of t+1 given time ¢ information? To do a simple example:

o Let v, =2, + 0wy,
o With w,,; ~ N(0,1). That is, E, [w,,,] =0 and E, [w?,,] = 1.
e This is a trivial linear-Gaussian-state space.

The expected forecast error is:

E, [FEt+1] =L, [xt+1 —-L [xm]] =L, [$t+1] —L [xt+1] =0

No systematic error. What about the variance of the forecast errors?
The variance of a random variable z, is defined as V, (z,,;) = E, [22,,] — (E, [z,,1])°-

So to find the variance of the forecast error:

2
\/t<FEt+1 t [FE152+1] ( [FEtH])
Tip1 — xt+1])2] -0

[(
¢ [(xt +owgy — [z +th+1]>2]
I

E
E,
L
L

2

¢ [(owyq) ]

Linear Gaussian State Space Example

« On average, a worker’s productivity, z,, adds a random draw of N(«,c?) each period
o Firm productivity ¢, adds 7 each period, which is deterministic
o Wages are a linear combination: W, = 6z, + (1 — 6)g,

Setup in Linear Gaussian form:

2t
gy
1

Note: if w,,; ~ N(0,1), then

Guess state: x, =

a+ow, 4 ~ N(a,o?)



The state space model is then:

2441 1 0 o] [ o
G| = |0 L v g |+ [0 weyy
1 0 01 1 0

What is the expected PDV of human capital? (i.e., stochastic version of the permanent
income calculations)

=G(I - BA) ',

o0
£, [Z BYs
j=0

Appendices

Stochastic Bubbles

To isolate the bubble term, consider the special case where y, = 0 for all ¢.

1

We want to solve p, = BE,(p; 1), where 8 = 1.

Guess: p, = C,7", where C, is a random variable, and {C,} is a martingale, that is, satisfies
E,(Cy11) = C, (i.e., best forecast of future value is today’s value, e.g., random walk).

To verify p, = BE,(p,, ), substitute our guess:

Cft =8B (B "C, ) =7 E(Cppy) = B7'C,

Verified that p, = C,3" satisfies the equation.

Example:
o A"1C, with probability A € (0,1)
17 0 with probability 1 — A

o Note: E,(Cy1) = A+ (A1C,) + 0 = C,, so this is a martingale
o Note that if at some point C,,; = 0, then C}, ;,; = 0, etc. (i.e., the bubble has popped)



e From any Cj:

o = A7tC, if bubble has not popped
"o if the bubble has popped

{ Bt At Cy = (BA)tC, until popped

b= 0 after the bubble has popped
pt = (BA)~'Co
g
v
2
a
Co Bubble pops
0 - 4—0—0—0—0—0—.
0 5 10 15 20

Time t

Figure 2: Parameters: 8 = 0.95, A = 0.9, C;; = 1, with bubble popping at ¢ = 12
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