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Permanent Income Model

Basic Setup

The permanent income hypothesis started with Friedman (1957) in the 1950s, and was extended
to rational expectations by Hall (1978) in the late 1970s.

• Agent has an (exogenous) deterministic income {𝑦𝑡+𝑗}
∞
𝑗=0

and (initially exogenous) savings
𝐹𝑡.

• Chooses sequence of consumption to maximize the PDV of utility of consumption 𝑢(𝑐𝑡)
for all 𝑡.

• That is: at time 𝑡, solves (given exogenous {𝑦𝑡+𝑗} and 𝐹𝑡):

max
(𝑐𝑡+𝑗)∞

𝑗=0

{
∞

∑
𝑗=0

𝛽𝑗𝑢(𝑐𝑡+𝑗)}

subject to the lifetime budget constraint:

∞
∑
𝑗=0

( 1
𝑅

)
𝑗

⏟
discounting with

interest rate

⎛⎜
⎝

𝑦𝑡+𝑗⏟
labor income

− 𝑐𝑡+𝑗⏟
consumption

⎞⎟
⎠

+ 𝐹𝑡⏟
assets

= 0 (1)

where 𝛽 ∈ (0, 1) is the discount factor and 𝑅 > 1 is the gross interest rate. Assets are used to
finance any difference between consumption and labor income over the lifetime.
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Figure 1: Strictly Concave Utility, 𝑢′(𝑐) > 0 and 𝑢″(𝑐) < 0

Lagrangian

ℒ =
∞

∑
𝑗=0

𝛽𝑗𝑢(𝑐𝑡+𝑗) + 𝜆 [
∞

∑
𝑗=0

( 1
𝑅

)
𝑗
(𝑦𝑡+𝑗 − 𝑐𝑡+𝑗) + 𝐹𝑡]

Note:

• Infinite number of variables {𝑐𝑡+𝑗}
∞
𝑗=0

and one constraint
• The constraint is a lifetime budget constraint

First Order Necessary Condition (FONC):

𝑐𝑡+𝑗 ∶ 𝛽𝑗𝑢′(𝑐𝑡+𝑗) − 𝜆𝑅−𝑗 = 0 ⇒ 𝑢′(𝑐𝑡+𝑗) = ( 1
𝛽𝑅

)
𝑗

⋅ 𝜆, ∀𝑗

Example: If 𝑅 = 1/𝛽, then 𝑢′(𝑐𝑡+𝑗) = ( 1
𝛽𝑅)

𝑗
⋅ 𝜆 = 𝜆 for all 𝑗. The slope at 𝑐𝑡+𝑗 equals 𝜆,

which means the marginal utility is constant. Therefore 𝑐𝑡+𝑗 is constant for all 𝑗, giving us
̄𝑐 = 𝑐𝑡+𝑗 = 𝑢′−1(𝜆).

Budget constraint: From Equation 1,
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Figure 2: Lagrange Multiplier is the Slope of Tangent at Optimal ̄𝑐

∞
∑
𝑗=0

𝑅−𝑗𝑐𝑡+𝑗 = 𝐹𝑡 +
∞

∑
𝑗=0

𝑅−𝑗𝑦𝑡+𝑗

Example: If 𝑅 = 1/𝛽, solve for ̄𝑐:

̄𝑐 = (1 − 𝛽)⏟
marginal propensity

to consume
out of wealth

⎡
⎢
⎢
⎢
⎣

∞
∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗
⏟⏟⏟⏟⏟

PDV of
human wealth

+ 𝐹𝑡⏟
Financial

wealth

⎤
⎥
⎥
⎥
⎦

Manipulating the Budget Constraint

At time 𝑡:

∞
∑
𝑗=0

𝑅−𝑗𝑦𝑡+𝑗 + 𝐹𝑡 =
∞

∑
𝑗=0

𝑅−𝑗𝑐𝑡+𝑗

At time 𝑡 + 1:
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∞
∑
𝑗=0

𝑅−𝑗𝑦𝑡+𝑗+1 + 𝐹𝑡+1 =
∞

∑
𝑗=0

𝑅−𝑗𝑐𝑡+𝑗+1

Multiply the time 𝑡 + 1 equation by 1/𝑅 and write out terms.

At time 𝑡:

𝐹𝑡 + 𝑦𝑡 + 𝑅−1𝑦𝑡+1 + 𝑅−2𝑦𝑡+2 + ⋯ = 𝑐𝑡 + 𝑅−1𝑐𝑡+1 + 𝑅−2𝑐𝑡+2 + ⋯

At time 𝑡 + 1 (multiplied by 1/𝑅):

𝑅−1𝐹𝑡+1 + 𝑅−1𝑦𝑡+1 + 𝑅−2𝑦𝑡+2 + ⋯ = 𝑅−1𝑐𝑡+1 + 𝑅−2𝑐𝑡+2 + ⋯

Subtracting equations, most terms cancel out:

𝐹𝑡 − 𝑅−1𝐹𝑡+1 + 𝑦𝑡 = 𝑐𝑡

Therefore:

𝐹𝑡+1⏟
next period’s

wealth

= 𝑅⏟
gross interest

rate

⎡
⎢⎢
⎣

𝐹𝑡⏟
this period’s

wealth

+ 𝑦𝑡 − 𝑐𝑡⏟
savings

⎤
⎥⎥
⎦

(2)

Note: Sometimes we define 1 + 𝑟⏟
net interest

rate

≡ 𝑅⏟
gross interest

rate

.

So an equivalent form of the Permanent Income Hypothesis is:

max
{𝑐𝑡,𝐹𝑡+1}∞

𝑡=0

{
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡)} , 𝐹0 given

s.t. 𝐹𝑡+1 = 𝑅(𝐹𝑡 + 𝑦𝑡 − 𝑐𝑡), 𝑡 = 0, … , ∞

Note:

• In addition, it will require a variation of lim𝑇 →∞ 𝛽𝑇 +1𝐹𝑇 +1 ≥ 0 (Transversality Condition,
No Ponzi-condition, etc.). Agent cannot asymptotically have debt. We will ignore this
constraint for now.

• There are period-by-period budget constraints.
• Chooses consumption and savings for next period.
• 𝑅 is the gross rate of return on assets.
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Lagrangian with Period-by-Period Constraints

Lagrangian for Lagrange multipliers 𝜆̂𝑡 on budgets:

ℒ =
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡) +
∞

∑
𝑡=0

𝜆̂𝑡 [𝑅(𝐹𝑡 + 𝑦𝑡 − 𝑐𝑡) − 𝐹𝑡+1]

where 𝜆̂𝑡 is the Lagrange multiplier on the budget constraint at time 𝑡.

Writing out portions of the sequence:

ℒ = ⋯+𝛽𝑡𝑢(𝑐𝑡)+𝛽𝑡+1𝑢(𝑐𝑡+1)+𝜆̂𝑡[𝑅(𝐹𝑡 +𝑦𝑡 −𝑐𝑡)−𝐹𝑡+1]+𝜆̂𝑡+1[𝑅(𝐹𝑡+1 +𝑦𝑡+1 −𝑐𝑡+1)−𝐹𝑡+2]+⋯

FOC(𝑐𝑡):

0 = 𝛽𝑡𝑢′(𝑐𝑡) − 𝜆̂𝑡𝑅 ⇒ 𝜆̂𝑡𝑅 = 𝛽𝑡𝑢′(𝑐𝑡) (3)

FOC(𝐹𝑡+1):

0 = −𝜆̂𝑡 + 𝜆̂𝑡+1𝑅 ⇒
𝜆̂𝑡+1

𝜆̂𝑡
= 1

𝑅
(4)

Take Equation 3 at time 𝑡 + 1 and at time 𝑡:

𝛽𝑡+1

𝛽𝑡
𝑢′(𝑐𝑡+1)
𝑢′(𝑐𝑡)

=
𝜆̂𝑡+1 ⋅ 𝑅
𝜆̂𝑡 ⋅ 𝑅

Use Equation 4:

𝛽
𝑢′(𝑐𝑡+1)
𝑢′(𝑐𝑡)

= 1
𝑅

Therefore:

𝑢′(𝑐𝑡) = 𝛽𝑅 𝑢′(𝑐𝑡+1) (Euler equation) (5)

Note in Equation 3, let 𝜆𝑡𝛽𝑡 ≡ 𝜆̂𝑡 (just a new definition for 𝜆𝑡), then 𝜆𝑡𝛽𝑡𝑅 = 𝛽𝑡𝑢′(𝑐𝑡), so
𝑢′(𝑐𝑡) = 𝑅𝜆𝑡. These are present-value Lagrange multipliers and can be stationary instead of
exponentially shrinking (i.e., if 𝑐𝑡 → ̄𝑐).
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Interpreting the Euler Equation

c

u(
c)

ctct + 1

Figure 3: Utility of Consumption

Figure 3 shows what it might be like to have the utility of consumption of two different 𝑐𝑡 and
𝑐𝑡+1. The corresponding Figure 4 shows the intertemporal tradeoff of lowering 𝑐𝑡 to increase
𝑐𝑡+1, which has higher marginal utility of consumption.

Figure 5 shows the simple case of 𝛽𝑅 = 1 and two periods. If you take the average of the
two periods’ consumption for both, it has a lower marginal utility of consumption—which
corresponds to a higher utility as we see in Figure 6.

Rescaling Lagrange Multipliers

In general, Lagrange multipliers can be rescaled and redefined to make either math or interpre-
tation easier. One way to think of this is to notice that both problems

arg max
𝑥

𝑓(𝑥) s.t. 𝑔(𝑥) = 0 and arg max
𝑥

𝑓(𝑥) s.t. 𝐴 ⋅ 𝑔(𝑥) = 0

have the same solution 𝑥∗ for all 𝐴 ≠ 0 (which, crucially, cannot depend on 𝑥).

What this means is that the FONCs using the two Lagrange multipliers would lead to the same
𝑥 solutions. That is, solving the FONC of
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Figure 4: Marginal Utility of Consumption

u′
(c

)

ctct + 1 c

u′(c)
u′(c)
(u′(ct) + u′(ct + 1))/2

Figure 5: Smoothing is Better: Marginal Utility
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u(
c)

ctct + 1 c

u(c)
u(c)
(u(ct) + u(ct + 1))/2

Figure 6: Smoothing is Better: Utility

ℒ1 ≡ 𝑓(𝑥) + 𝜆1𝑔(𝑥)

and

ℒ2 ≡ 𝑓(𝑥) + 𝜆2𝐴𝑔(𝑥)

would lead to different 𝜆1 ≠ 𝜆2 solutions, but would have the same 𝑥.

Because of this, we may sometimes skip rescaling steps like the above and write down the
Lagrange multipliers directly as 𝜆2 from max𝑥 𝑓(𝑥) s.t. 𝑔(𝑥) = 0 directly, skipping the multipli-
cation by 𝐴 as above.

Alternative Lagrangian (Generally Preferred)

Directly group the 𝜆𝑡 inside the sum:

ℒ =
∞

∑
𝑡=0

𝛽𝑡 [𝑢(𝑐𝑡) + 𝜆𝑡 [𝑅(𝐹𝑡 + 𝑦𝑡 − 𝑐𝑡) − 𝐹𝑡+1]]

Inside the sum, 𝜆𝑡 is the same as 𝜆𝑡𝛽𝑡 ≡ 𝜆̂𝑡.
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ℒ = ⋯+𝛽𝑡[𝑢(𝑐𝑡)+𝜆𝑡[𝑅(𝐹𝑡+𝑦𝑡−𝑐𝑡)−𝐹𝑡+1]]+𝛽𝑡+1[𝑢(𝑐𝑡+1)+𝜆𝑡+1[𝑅(𝐹𝑡+1+𝑦𝑡+1−𝑐𝑡+1)−𝐹𝑡+2]]+⋯

𝜕/𝜕𝑐𝑡:

𝛽𝑡[𝑢′(𝑐𝑡) − 𝜆𝑡𝑅] = 0 ⇒ 𝑢′(𝑐𝑡) = 𝑅𝜆𝑡 (6)

𝜕/𝜕𝐹𝑡+1:

−𝛽𝑡𝜆𝑡 + 𝛽𝑡+1𝑅𝜆𝑡+1 = 0 ⇒
𝜆𝑡+1
𝜆𝑡

= 1
𝛽𝑅

(7)

Take Equation 6 divided at 𝑡 and 𝑡 + 1:

𝑢′(𝑐𝑡+1)
𝑢′(𝑐𝑡)

=
𝜆𝑡+1
𝜆𝑡

(These are called ”present-value Lagrange multipliers”)

Using Equation 7:

𝑢′(𝑐𝑡+1)
𝑢′(𝑐𝑡)

= 1
𝛽𝑅

Therefore:

𝑢′(𝑐𝑡) = 𝛽𝑅 𝑢′(𝑐𝑡+1) (Identical Euler equation)

Recall that budget constraints need to be held. Could use either the ∞ number of period-by-
period constraints, or lifetime budget constraint:

∞
∑
𝑗=0

( 1
𝑅

)
𝑗
𝑐𝑡+𝑗 = 𝐹𝑡 +

∞
∑
𝑗=0

( 1
𝑅

)
𝑗
𝑦𝑡+𝑗

With this and the Euler equation, we may not need to solve for intermediate 𝐹𝑡+1 choices,
though we could at the end.
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Finite Horizon

Finite Horizon (Formally)

Die at 𝑇 > 0, i.e., no utility from consumption after 𝑇. Need additional constraint so they do
not die in debt:

max
{𝑐𝑡,𝐹𝑡+1}𝑇

𝑡=0

{
𝑇

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡)}

s.t. 𝐹𝑡+1 = 𝑅(𝐹𝑡 + 𝑦𝑡 − 𝑐𝑡) for 𝑡 = 0, … , 𝑇

𝐹𝑇 +1 ≥ 0 (weakly positive assets at death)

𝐹0 given

Multipliers: Use present value constraints:

• 𝜆0, … , 𝜆𝑇 on first constraints
• 𝜆𝑇 +1 on last constraint

i.e., total of 𝑇 + 2 constraints.

ℒ =
𝑇

∑
𝑡=0

𝛽𝑡 [𝑢(𝑐𝑡) + 𝜆𝑡[𝑅(𝐹𝑡 + 𝑦𝑡 − 𝑐𝑡) − 𝐹𝑡+1]] + 𝛽𝑇 +1𝜆𝑇 +1⏟⏟⏟⏟⏟
terminal constraint

present value
𝜆̂𝑇+1≡𝛽𝑇+1𝜆𝑇+1

𝐹𝑇 +1

FOC(𝑐𝑡):

𝑢′(𝑐𝑡) = 𝑅𝜆𝑡, for 𝑡 = 0, … , 𝑇

i.e., die at 𝑇 + 1, no utility. Therefore:

𝑢′(𝑐𝑡+1)
𝑢′(𝑐𝑡)

=
𝜆𝑡+1
𝜆𝑡

, ∀𝑡 ≤ 𝑇 − 1

FOC(𝐹𝑡+1) for 𝑡 < 𝑇:
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0 = −𝜆𝑡 + 𝜆𝑡+1𝛽𝑅 ⇒ 𝜆𝑡 = 𝛽𝑅𝜆𝑡+1 (8)

FOC(𝐹𝑇 +1):

0 = −𝛽𝑇𝜆𝑇 + 𝛽𝑇 +1𝜆𝑇 +1 ⇒ 𝜆𝑇 = 𝛽𝜆𝑇 +1 (9)

With 𝛽𝑇 +1𝐹𝑇 +1𝜆𝑇 +1 = 0, 𝜆𝑇 +1 ≥ 0 (since inequality constraint, need complementary slack-
ness).

Does the Terminal Constraint Bind?

By Contradiction: Assume not, i.e., 𝜆𝑇 +1 = 0 (which implies 𝐹𝑇 +1 > 0). Then from
Equation 9, 𝜆𝑇 = 0, and from Equation 8, 𝜆𝑡 = 0 for all 𝑡.

So if it does not bind at time 𝑇 + 1, it never binds. Only possible if 𝑢′(𝑐𝑡) = 0 for all 𝑡, which
is a contradiction. Hence, 𝐹𝑇 +1 = 0 (unless there is a budget-feasible satiation point where
𝑢′(𝑐𝑡) = 0 for all 𝑡, e.g., quadratic utility with enormous budgets).

Period Budget Constraints and Lifetime Budget Constraints

See the derivation in Appendix: Lifetime Budget Constraint Derivation which takes the

𝐹𝑡+1 = 𝑅(𝐹𝑡 + 𝑦𝑡 − 𝑐𝑡), ∀𝑡 = 0, … , 𝑇

𝐹𝑇 +1 = 0

and finds

𝑇 −𝑡
∑
𝑗=0

𝑅−𝑗𝑐𝑡+𝑗
⏟⏟⏟⏟⏟

PDV of
consumption

=
𝑇 −𝑡
∑
𝑗=0

𝑅−𝑗𝑦𝑡+𝑗
⏟⏟⏟⏟⏟

PDV of
labor income

+ 𝐹𝑡⏟
Financial

wealth

If 𝑇 → ∞, then we see that this is identical to Equation 1. This result provides somewhat of
the opposite direction to Section , where we show that the sequential constraints imply the
lifetime budget constraint (under conditions on what happens to 𝐹𝑇 as 𝑇 → ∞).
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Summary of Equations

𝑢′(𝑐𝑡) = 𝛽𝑅 𝑢′(𝑐𝑡+1), ∀𝑡 = 0, … , 𝑇 − 1 (10)

𝐹𝑡+1 = 𝑅(𝐹𝑡 + 𝑦𝑡 − 𝑐𝑡), ∀𝑡 = 0, … , 𝑇 (11)

𝐹𝑇 +1 = 0, 𝐹0 given (12)

Given: 𝐹0, {𝑦𝑡}
𝑇
𝑡=0, find {𝑐𝑡}

𝑇
𝑡=0. How?

In general, we need computers to solve this problem. See Appendix: Shooting Method for an
example algorithm.

Examples

Assume we have utility as follows:

𝑢(𝑐) = log(𝑐), 𝑇 ≤ ∞ ⇒ 𝑢′(𝑐) = 1
𝑐

From the Euler equation:

1
𝑐𝑡

= 𝛽𝑅 1
𝑐𝑡+1

⇒ 𝑐𝑡+1 = 𝛽𝑅𝑐𝑡, for 𝑡 = 0, … , 𝑇

⇒ 𝑐𝑡 = (𝛽𝑅)𝑡𝑐0

Find 𝑐0 from the lifetime budget.
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Example 1: Infinite Horizon with Growing Income

𝑇 = ∞, 𝑦𝑡 = 𝛿𝑡𝑦0, 𝐹0 = 0

Use budget:

0 =
∞

∑
𝑗=0

𝑅−𝑗 ((𝛽𝑅)𝑗𝑐0 − 𝛿𝑗𝑦0)

⇒ 𝑐0

∞
∑
𝑗=0

𝛽𝑗 =
∞

∑
𝑗=0

( 𝛿
𝑅

)
𝑗
𝑦0 (assume ∣ 𝛿

𝑅
∣ < 1)

Therefore:

𝑐0 = (1 − 𝛽) ⋅ ( 1
1 − 𝛿

𝑅
) 𝑦0

Example 2: Finite Horizon with Growing Income

𝑇 < ∞, 𝑦𝑡 = 𝛿𝑡𝑦0, 𝐹0 = 0

0 =
𝑇

∑
𝑗=0

𝑅−𝑗 ((𝛽𝑅)𝑗𝑐0 − 𝛿𝑗𝑦0)

⇒ 𝑐0

𝑇
∑
𝑗=0

𝛽𝑗 =
𝑇

∑
𝑗=0

( 𝛿
𝑅

)
𝑗
𝑦0

Use partial geometric sums:

1 − 𝛽𝑇 +1

1 − 𝛽
𝑐0 = [

1 − ( 𝛿
𝑅)𝑇 +1

1 − 𝛿
𝑅

] 𝑦0
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Example 3: Retirement

𝐹0 = 0, 𝑇 = 70, 𝑦𝑡 = {
𝛿𝑡𝑦0, 𝑡 = 0, … , 50
0, 𝑡 = 51, … , 70

i.e., stop working at 50, die at 70, where 𝑡 is the age.

Put into budget:

𝑐0

70
∑
𝑡=0

𝑅−𝑡(𝛽𝑅)𝑡 =
50

∑
𝑡=0

( 𝛿
𝑅

)
𝑡

⋅ 𝑦0

⇒ 𝑐0 ⋅ 1 − 𝛽71

1 − 𝛽
=

1 − ( 𝛿
𝑅)51

1 − 𝛿
𝑅

𝑦0

Solution:

𝑐0 = 1 − 𝛽
1 − 𝛽71 ⋅

1 − ( 𝛿
𝑅)51

1 − 𝛿
𝑅

⋅ 𝑦0

𝑐𝑡 = (𝛽𝑅)𝑡 ⋅ 𝑐0

𝐹𝑡+1 = 𝑅(𝐹𝑡 + 𝑦0𝛿𝑡 − (𝛽𝑅)𝑡 ⋅ 𝑐0)

Can substitute for 𝑐0 to get lifetime savings.

Example: Special Case 𝛽𝑅 = 1

𝛽𝑅 = 1 ⇒ 𝑐𝑡 = 𝑐0 for all 𝑡. Constant consumption.
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Figure 7: Life-cycle consumption and savings when 𝛽𝑅 = 1
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Figure 8: Life-cycle with growing income: borrowing when young
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Example: Growing Income and Early Borrowing

Now consider the case where income grows over time (𝛿 > 1). With 𝛽𝑅 = 1, consumption is
still constant, but since income starts low and grows, the agent must borrow early in life to
smooth consumption. Assets become negative initially, then turn positive as the agent pays off
debt and saves for retirement.

Key observations:

• Early life (borrowing phase): Income is below consumption, so 𝑦𝑡 − 𝑐𝑡 < 0. The
agent borrows (𝐹𝑡 < 0).

• Mid-career (debt repayment and saving): Income rises above consumption. The
agent pays off debt, then accumulates savings.

• Retirement (dissaving): Income drops to zero. The agent draws down savings to
maintain consumption.

This illustrates why access to credit markets is valuable: without borrowing, young agents with
growing income profiles would be forced to consume less than optimal early in life.

Appendices

Shooting Method Back

An iterative approach:

1. If we knew 𝑐0, then since we know 𝐹0:

• Use Equation 10 to find 𝑐1
• Use Equation 11 to find 𝐹1

2. Repeat for {𝑐2, 𝐹2}, etc. to 𝑇 − 1
3. Use Equation 11 with 𝑐𝑇, 𝐹𝑇 to get 𝐹𝑇 +1
4. Check Equation 12 satisfied or not.

Convergence of the iterative solution:

1. Guess 𝑐0
2. Find sequence using the above steps to get 𝐹𝑇 +1
3. If 𝐹𝑇 +1 > 0, raise 𝑐0 and try again. If 𝐹𝑇 +1 < 0, lower 𝑐0 and try again.
4. Stop when 𝐹𝑇 +1 ≈ 0

17



Lifetime Budget Constraint Derivation Back

We could use:

𝐹𝑡+1 = 𝑅(𝐹𝑡 + 𝑦𝑡 − 𝑐𝑡), ∀𝑡 = 0, … , 𝑇

𝐹𝑇 +1 = 0

Alternatively, work backwards from 𝑇:

0 = 𝑅(𝐹𝑇 + 𝑦𝑇 − 𝑐𝑇) ⇒ 𝑐𝑇 − 𝑦𝑇 = 𝐹𝑇

Then for 𝑇 − 1:

𝐹𝑇 = 𝑅(𝐹𝑇 −1 + 𝑦𝑇 −1 − 𝑐𝑇 −1)

Using the previous result: 𝑐𝑇 − 𝑦𝑇 = 𝑅(𝐹𝑇 −1 + 𝑦𝑇 −1 − 𝑐𝑇 −1)

⇒ 𝐹𝑇 −1 = 𝑐𝑇 −1 − 𝑦𝑇 −1 + 1
𝑅

(𝑐𝑇 − 𝑦𝑇)

At 𝑡 = 𝑇 − 2:

𝐹𝑇 −1 = 𝑅(𝐹𝑇 −2 + 𝑦𝑇 −2 − 𝑐𝑇 −2)

⇒ 𝑐𝑇 −1 − 𝑦𝑇 −1 + 1
𝑅

(𝑐𝑇 − 𝑦𝑇) = 𝑅(𝐹𝑇 −2 + 𝑦𝑇 −2 − 𝑐𝑇 −2), etc.

Finally, repeat until 𝐹0:

𝐹0 =
𝑇

∑
𝑡=0

( 1
𝑅

)
𝑡
(𝑐𝑡 − 𝑦𝑡)

More generally, starting at any 𝑡:

𝑇 −𝑡
∑
𝑗=0

𝑅−𝑗𝑐𝑡+𝑗
⏟⏟⏟⏟⏟

PDV of
consumption

=
𝑇 −𝑡
∑
𝑗=0

𝑅−𝑗𝑦𝑡+𝑗
⏟⏟⏟⏟⏟

PDV of
labor income

+ 𝐹𝑡⏟
Financial

wealth

Compare to the lifetime budget constraint Equation 1.
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