

Math Review

Honours Intermediate Macro

Jesse Perla

Linear Algebra

Vectors

- Notation: $x \in \mathbb{R}^n$ is a vector of n reals
- Vector $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ (column vector)
- Element: x_i is the i th element of the vector x
- Transpose: $x^\top = [x_1 \ x_2 \ \dots \ x_n]$ (row vector)

Vector Operations

Addition: $(x + y)_i = x_i + y_i$

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \\ 9 \end{bmatrix}$$

Scalar Multiplication: $(\alpha x)_i = \alpha x_i$ for $\alpha \in \mathbb{R}$

- Commutative: $\alpha x = x\alpha$

$$2 \times \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$$

Inner Product (Dot Product)

The dot product of two vectors $x, y \in \mathbb{R}^n$ is defined as

$$x \cdot y = \sum_{i=1}^n x_i y_i$$

Properties:

- Commutative: $x \cdot y = y \cdot x$
- Distributive: $x \cdot (y + z) = x \cdot y + x \cdot z$
- Scalar multiplication: $(\alpha x) \cdot y = x \cdot (\alpha y) = \alpha(x \cdot y)$ for $\alpha \in \mathbb{R}$

Example: $x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and $y = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$, then

$$x \cdot y = (1 \times 4) + (2 \times 5) + (3 \times 6) = 32$$

Euclidean Norm

The Euclidean norm of a vector $x \in \mathbb{R}^n$ is defined as

$$\|x\|_2 = \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{x \cdot x}$$

- Distance from origin
- Vector is of unit length if $\|x\|_2 = 1$
- Reflections and rotations preserve the length

Interpretations of Inner Product

- $x \cdot y$ gives a sense of the “angle” between the vectors
- If $x \cdot y = 0$ then the vectors are **orthogonal** (at right angles)
 - e.g., if $x = [1 \ 0]^\top, y = [0 \ 1]^\top$ then $x \cdot y = 0$
- If x and y are of unit length and $x = y$, then $x \cdot y = 1$ (maximum similarity)

Matrices

$$A = \begin{bmatrix} A_{11} & \dots & A_{1m} \\ \vdots & \ddots & \vdots \\ A_{n1} & \dots & A_{nm} \end{bmatrix} \in \mathbb{R}^{n \times m}$$

- A_{ij} denotes the element in row i and column j

Matrix Transpose

- Definition: $(A^\top)_{ij} = A_{ji}$
- Turns rows into columns and vice versa

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -6 & 7 \end{bmatrix}^\top = \begin{bmatrix} 1 & 0 \\ 2 & -6 \\ 3 & 7 \end{bmatrix}$$

- Note: $(A^\top)^\top = A$

Matrix Addition/Subtraction

- Definition: $(A + B)_{ij} = A_{ij} + B_{ij}$ (elementwise)
- Requires same dimensions

Properties:

- Commutativity: $A + B = B + A$
- Associativity: $(A + B) + C = A + (B + C)$
- $(A + B)^\top = A^\top + B^\top$

Matrix Multiplication

For $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{m \times p}$, the product $C = AB \in \mathbb{R}^{n \times p}$:

- The inner dimensions (m and m) must match
- Each element: $C_{ik} = \sum_{j=1}^m A_{ij}B_{jk}$

Example:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix}$$

Properties:

- $(AB)^\top = B^\top A^\top$
- Associativity: $(AB)C = A(BC)$
- Distributivity: $(A + B)C = AC + BC$ and $C(A + B) = CA + CB$
- Scalar commutativity: $\alpha A = A\alpha$
- **NOT commutative:** $AB \neq BA$ in general

Non-commutativity example:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 3 \end{bmatrix} \quad \text{but} \quad \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 0 & 0 \end{bmatrix}$$

Matrix-Vector Multiplication as Dot Products

Matrix-vector products can be written as stacked dot products:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \left[\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \cdot \begin{bmatrix} 3 & -1 \\ 3 & -1 \end{bmatrix} \right] = \begin{bmatrix} 1 \\ 5 \\ 9 \end{bmatrix}$$

Matrix Inverse and Systems of Equations

Identity Matrix

$$I = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

- Ones on the diagonal, zeros elsewhere
- Property: $IA = AI = A$ (commutes with any conformable matrix)

Matrix Inverse

If A is square and F satisfies $FA = I$, then:

- F is called the **inverse** of A and is denoted A^{-1}
- The matrix A is called **invertible** or **nonsingular**
- $AA^{-1} = A^{-1}A = I$

Warning: Unlike for scalars, A/B or $\frac{A}{B}$ is meaningless—is it $A^{-1}B$ or BA^{-1} ?

Trivial inverse example:

$$\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}^{-1} = \begin{bmatrix} a^{-1} & 0 \\ 0 & b^{-1} \end{bmatrix}$$

Systems of Equations

For $Ax = b$ where $A \in \mathbb{R}^{n \times n}$, $x \in \mathbb{R}^n$, $b \in \mathbb{R}^n$:

Left multiply both sides by A^{-1} :

$$A^{-1}Ax = A^{-1}b \Rightarrow Ix = A^{-1}b \Rightarrow x = A^{-1}b$$

Example:

$$\begin{cases} 3x_1 + 4x_2 = 3 \\ 5x_1 + 6x_2 = 7 \end{cases} \Rightarrow \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \end{bmatrix} \Rightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}^{-1} \begin{bmatrix} 3 \\ 7 \end{bmatrix}$$

Vector Selection

To extract the second element from $x = [x_1 \ x_2 \ x_3]^\top$, use a vector with a single 1:

$$x_2 = [0 \ 1 \ 0] \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

This is useful for *observations* of a vector of states.

Functional Equations

Equations vs. Functional Equations

Equations define the relationship between one or more variables. We solve to find values that fulfill the equation.

- Single variable: $x^2 - 5x = 0$ (solution is one or more values of x)
- Multi-variable: $2x + 7y = 3$ (solution may be a set of x, y pairs)

Functional equations provide an expression where we solve for an entire *function*, not just values.

- Example: $[f(x)]^2 - x^2 = 0$
- The goal is to find a function $f(x)$ that holds for all x
- In this case, both $f(x) = x$ and $f(x) = -x$ are solutions

Undetermined Coefficients

Example 1: Given $f'(z) = z$. Guess that $f(z) = C_1 z^2 + C_2$ solves this equation.

$$f'(z) = 2C_1 z = z \quad \Rightarrow \quad C_1 = \frac{1}{2}$$

So $C_1 = \frac{1}{2}$ and C_2 is indeterminate.

Example 2: Now with a difference equation. Let:

$$z_{t+1} = z_t + 1$$

Guess the solution is of the form $z_t = C_1 t + C_2$. Substituting:

$$C_1(t+1) + C_2 = C_1 t + C_2 + 1$$

Collecting terms:

$$C_1 t + (C_2 + C_1) = C_1 t + (C_2 + 1)$$

Note that $C_2 + C_1 = C_2 + 1$ implies $C_1 = 1$, but C_2 is otherwise indeterminate. What if we add that $z_0 = 1$? This pins down C_2 .

Review of Optimization

Unconstrained Optimization

$$\max_x f(x)$$

First order necessary condition:

$$\partial f(x) = f'(x) = 0$$

where $\partial f(x) = \frac{d}{dx} f(x)$.

Constrained Optimization

The canonical form (can always convert to this):

$$\begin{aligned} \max_x \quad & f(x) \\ \text{s.t.} \quad & g(x) \geq 0 \quad \leftarrow \text{may or may not bind} \\ & h(x) = 0 \quad \leftarrow \text{always binds} \end{aligned}$$

Solution Method: The Lagrangian

Form a Lagrangian:

$$\mathcal{L} = f(x) + \mu g(x) + \lambda h(x)$$

where μ and λ are called **Lagrange multipliers**.

First-Order Necessary Conditions

$$\partial \mathcal{L}(x) = 0$$

This gives:

$$\begin{aligned} \partial f(x) + \mu \partial g(x) + \lambda \partial h(x) &= 0 \\ g(x) \geq 0, \quad h(x) &= 0 \\ \mu \geq 0 \\ \mu \cdot g(x) = 0 \quad \text{i.e.,} \quad \underbrace{\mu = 0}_{\text{constraint doesn't bind}} \quad \text{or } g(x) = 0 \end{aligned}$$

Any $\{x, \mu, \lambda\}$ that fulfills these conditions solves the problem.

Example 1

$$\begin{aligned} \max \quad & -\frac{1}{2}(x+1)^2 \\ \text{s.t.} \quad & x \geq 0 \end{aligned}$$

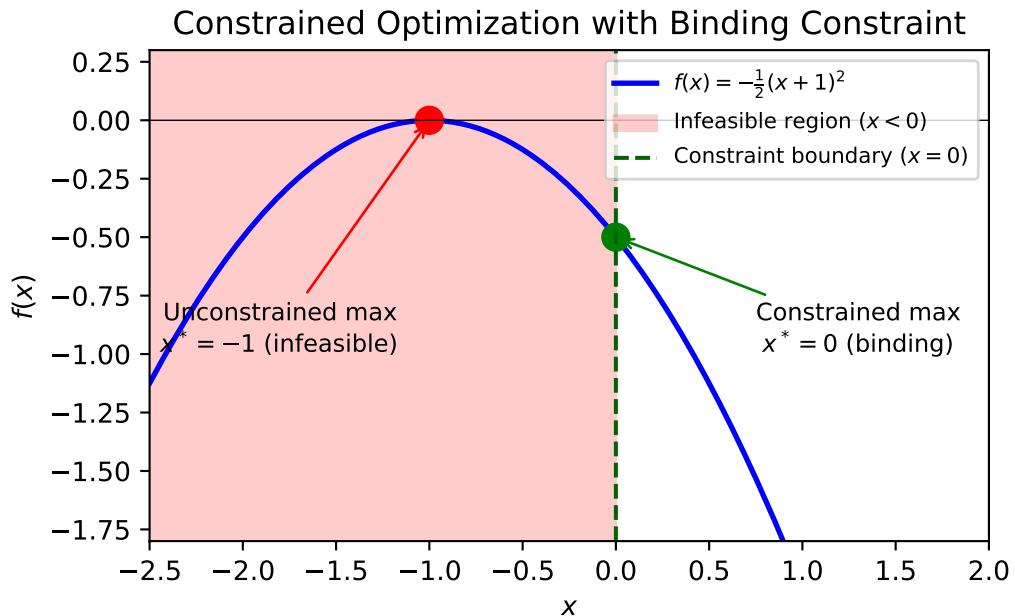


Figure 1: Binding constraint: the unconstrained maximum at $x = -1$ is infeasible, so the solution is at the boundary $x = 0$

The Lagrangian is:

$$\mathcal{L} = -\frac{1}{2}(x+1)^2 + \mu x$$

FONC:

$$[x] : -(x+1) + \mu = 0, \quad \mu \geq 0$$

So $(x+1) = \mu$ and $\mu x = 0$ (either $x = 0$ or $\mu = 0$).

Solution:

- If $\mu = 0 \Rightarrow x = -1$, contradicting the constraint $x \geq 0$
- Therefore $\mu > 0$ and $x = 0$
- Thus $\mu = 0 + 1 = 1$

Shorthand: $-(x+1) \leq 0, = 0$ if $x > 0$

Example 2

$$\begin{aligned} \max \quad & f(x) \\ \text{s.t.} \quad & x \leq m \end{aligned}$$

First, reorder the constraint: $x - m \leq 0 \Rightarrow m - x \geq 0$.

The Lagrangian is:

$$\mathcal{L} = f(x) + \lambda(m - x)$$

FONC:

$$\begin{aligned} [x] : \quad & f'(x) - \lambda = 0 \\ & \lambda(m - x) = 0, \quad \lambda \geq 0 \end{aligned}$$

The **Kuhn-Tucker conditions** are:

- If $\lambda > 0 \Rightarrow m - x = 0 \Rightarrow x = m$ (binding)
- If $\lambda = 0 \Rightarrow f'(x) = 0$ (nonbinding)

Linear Objectives Hit Corners

Consider for some $a \in \mathbb{R}$:

$$\begin{aligned} \min \quad & ax \\ \text{s.t.} \quad & x \geq 1 \end{aligned}$$

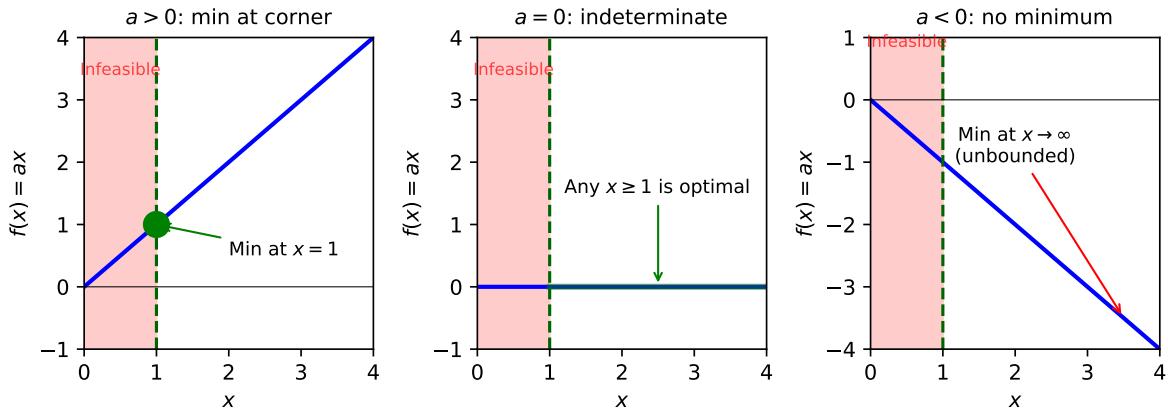


Figure 2: Linear objectives always hit corners (boundaries) of the feasible region

The cases:

- $a > 0$: min is at $x = 1$ (constraint binds)
- $a = 0$: min is indeterminate (any $x \geq 1$ works)
- $a < 0$: min is at $x = \infty$ (doesn't exist, problem is unbounded)

Probability

Discrete Random Variables

A **random variable** is a number whose value depends upon the outcome of a random experiment. Mathematically, a random variable X is a real-valued function on S , the space of outcomes:

$$X : S \rightarrow \mathbb{R}$$

A **discrete random variable** X has finite or countably many values x_s for $s = 1, 2, \dots$

The probabilities $\mathbb{P}(X = x_s)$ for $s = 1, 2, \dots$ are called the **probability mass function** of X , with properties:

- For all s : $\mathbb{P}(X = x_s) \geq 0$
- For any $B \subseteq S$: $\mathbb{P}(X \in B) = \sum_{x_s \in B} \mathbb{P}(X = x_s)$
- $\sum_s \mathbb{P}(X = x_s) = 1$

The **expectation** of X is:

$$\mathbb{E}[X] = \sum_s x_s \mathbb{P}(X = x_s)$$

Expectations and Vectors

Assume there are n states x_1, \dots, x_n . Define the values vector:

$$x \equiv \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

And the probability vector $\phi \in \mathbb{R}^n$:

$$\phi \equiv \begin{bmatrix} \mathbb{P}(X = x_1) \\ \mathbb{P}(X = x_2) \\ \vdots \\ \mathbb{P}(X = x_n) \end{bmatrix}$$

Then the expectation can be written as a dot product:

$$\mathbb{E}[X] = \sum_{i=1}^n \phi_i x_i = \phi \cdot x$$

Example: Probability of unemployment is $\phi_1 = 0.1$ with income $x_1 = \$15,000$; probability of employment is $\phi_2 = 0.9$ with income $x_2 = \$40,000$. Expected income:

$$\mathbb{E}[X] = (0.1 \times 15,000) + (0.9 \times 40,000) = \$37,500$$

More generally, this extends to functions of random variables: $\mathbb{E}[X^2] = \phi \cdot x^2$.

Joint Distributions

For discrete random variables X and Y , the **joint probability distribution** is:

$$\mathbb{P}(X = x_i \text{ and } Y = y_j)$$

such that $\sum_i \sum_j \mathbb{P}(X = x_i \text{ and } Y = y_j) = 1$.

Marginal Probability

The distribution of one random variable, ignoring the other:

$$\mathbb{P}(X = x_i) = \sum_j \mathbb{P}(X = x_i \text{ and } Y = y_j)$$

Conditional Probability

The distribution of one random variable given the other has occurred:

$$\mathbb{P}(X = x_i | Y = y_j) = \frac{\mathbb{P}(X = x_i \text{ and } Y = y_j)}{\mathbb{P}(Y = y_j)} = \frac{\mathbb{P}(X = x_i \text{ and } Y = y_j)}{\sum_k \mathbb{P}(X = x_k \text{ and } Y = y_j)}$$

Conditional Expectation

When one event is known, the expectation over the other:

$$\mathbb{E}[X | Y = y_j] = \sum_i x_i \mathbb{P}(X = x_i | Y = y_j)$$

This is especially useful for agents making forecasts of the future given knowledge of events today.

Statistical Independence

Events X and Y are **statistically independent** if:

$$\mathbb{P}(X = x_i \text{ and } Y = y_j) = \mathbb{P}(X = x_i) \mathbb{P}(Y = y_j)$$

If $\mathbb{P}(Y = y_j) > 0$, independence implies $\mathbb{P}(X = x_i | Y = y_j) = \mathbb{P}(X = x_i)$.