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Linear Algebra

Vectors

• Notation: 𝑥 ∈ ℝ𝑛 is a vector of 𝑛 reals

• Vector 𝑥 =
⎡
⎢
⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥
⎥
⎦

(column vector)

• Element: 𝑥𝑖 is the 𝑖th element of the vector 𝑥
• Transpose: 𝑥⊤ = [𝑥1 𝑥2 … 𝑥𝑛] (row vector)

Vector Operations

Addition: (𝑥 + 𝑦)𝑖 = 𝑥𝑖 + 𝑦𝑖

⎡⎢
⎣

1
2
3
⎤⎥
⎦

+ ⎡⎢
⎣

4
5
6
⎤⎥
⎦

= ⎡⎢
⎣

5
7
9
⎤⎥
⎦

Scalar Multiplication: (𝛼𝑥)𝑖 = 𝛼𝑥𝑖 for 𝛼 ∈ ℝ

• Commutative: 𝛼𝑥 = 𝑥𝛼

2 × ⎡⎢
⎣

1
2
3
⎤⎥
⎦

= ⎡⎢
⎣

2
4
6
⎤⎥
⎦
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Inner Product (Dot Product)

The dot product of two vectors 𝑥, 𝑦 ∈ ℝ𝑛 is defined as

𝑥 ⋅ 𝑦 =
𝑛

∑
𝑖=1

𝑥𝑖𝑦𝑖

Properties:

• Commutative: 𝑥 ⋅ 𝑦 = 𝑦 ⋅ 𝑥
• Distributive: 𝑥 ⋅ (𝑦 + 𝑧) = 𝑥 ⋅ 𝑦 + 𝑥 ⋅ 𝑧
• Scalar multiplication: (𝛼𝑥) ⋅ 𝑦 = 𝑥 ⋅ (𝛼𝑦) = 𝛼(𝑥 ⋅ 𝑦) for 𝛼 ∈ ℝ

Example: 𝑥 = ⎡⎢
⎣

1
2
3
⎤⎥
⎦

and 𝑦 = ⎡⎢
⎣

4
5
6
⎤⎥
⎦

, then

𝑥 ⋅ 𝑦 = (1 × 4) + (2 × 5) + (3 × 6) = 32

Euclidean Norm

The Euclidean norm of a vector 𝑥 ∈ ℝ𝑛 is defined as

‖𝑥‖2 = √
𝑛

∑
𝑖=1

𝑥2
𝑖 =

√
𝑥 ⋅ 𝑥

• Distance from origin
• Vector is of unit length if ‖𝑥‖2 = 1
• Reflections and rotations preserve the length

Interpretations of Inner Product

• 𝑥 ⋅ 𝑦 gives a sense of the “angle” between the vectors
• If 𝑥 ⋅ 𝑦 = 0 then the vectors are orthogonal (at right angles)

– e.g., if 𝑥 = [1 0]⊤ , 𝑦 = [0 1]⊤ then 𝑥 ⋅ 𝑦 = 0

• If 𝑥 and 𝑦 are of unit length and 𝑥 = 𝑦, then 𝑥 ⋅ 𝑦 = 1 (maximum similarity)
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Matrices

𝐴 = ⎡⎢
⎣

𝐴11 … 𝐴1𝑚
⋮ ⋱ ⋮

𝐴𝑛1 … 𝐴𝑛𝑚

⎤⎥
⎦

∈ ℝ𝑛×𝑚

• 𝐴𝑖𝑗 denotes the element in row 𝑖 and column 𝑗

Matrix Transpose

• Definition: (𝐴⊤)𝑖𝑗 = 𝐴𝑗𝑖
• Turns rows into columns and vice versa

[1 2 3
0 −6 7]

⊤

= ⎡⎢
⎣

1 0
2 −6
3 7

⎤⎥
⎦

• Note: (𝐴⊤)⊤ = 𝐴

Matrix Addition/Subtraction

• Definition: (𝐴 + 𝐵)𝑖𝑗 = 𝐴𝑖𝑗 + 𝐵𝑖𝑗 (elementwise)
• Requires same dimensions

Properties:

• Commutativity: 𝐴 + 𝐵 = 𝐵 + 𝐴
• Associativity: (𝐴 + 𝐵) + 𝐶 = 𝐴 + (𝐵 + 𝐶)
• (𝐴 + 𝐵)⊤ = 𝐴⊤ + 𝐵⊤

Matrix Multiplication

For 𝐴 ∈ ℝ𝑛×𝑚 and 𝐵 ∈ ℝ𝑚×𝑝, the product 𝐶 = 𝐴𝐵 ∈ ℝ𝑛×𝑝:

• The inner dimensions (𝑚 and 𝑚) must match
• Each element: 𝐶𝑖𝑘 = ∑𝑚

𝑗=1 𝐴𝑖𝑗𝐵𝑗𝑘
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Example:

[𝑎11 𝑎12
𝑎21 𝑎22

] [𝑏11 𝑏12
𝑏21 𝑏22

] = [𝑎11𝑏11 + 𝑎12𝑏21 𝑎11𝑏12 + 𝑎12𝑏22
𝑎21𝑏11 + 𝑎22𝑏21 𝑎21𝑏12 + 𝑎22𝑏22

]

Properties:

• (𝐴𝐵)⊤ = 𝐵⊤𝐴⊤

• Associativity: (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶)
• Distributivity: (𝐴 + 𝐵)𝐶 = 𝐴𝐶 + 𝐵𝐶 and 𝐶(𝐴 + 𝐵) = 𝐶𝐴 + 𝐶𝐵
• Scalar commutativity: 𝛼𝐴 = 𝐴𝛼
• NOT commutative: 𝐴𝐵 ≠ 𝐵𝐴 in general

Non-commutativity example:

[1 2
3 4] [0 1

0 0] = [0 1
0 3] but [0 1

0 0] [1 2
3 4] = [3 4

0 0]

Matrix-Vector Multiplication as Dot Products

Matrix-vector products can be written as stacked dot products:

⎡⎢
⎣

1 2
3 4
5 6

⎤⎥
⎦

[ 3
−1] = ⎡⎢

⎣

[1 2] ⋅ [3 −1]
[3 4] ⋅ [3 −1]
[5 6] ⋅ [3 −1]

⎤⎥
⎦

= ⎡⎢
⎣

1
5
9
⎤⎥
⎦

Matrix Inverse and Systems of Equations

Identity Matrix

𝐼 =
⎡
⎢
⎢
⎣

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

⎤
⎥
⎥
⎦

• Ones on the diagonal, zeros elsewhere
• Property: 𝐼𝐴 = 𝐴𝐼 = 𝐴 (commutes with any conformable matrix)
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Matrix Inverse

If 𝐴 is square and 𝐹 satisfies 𝐹𝐴 = 𝐼, then:

• 𝐹 is called the inverse of 𝐴 and is denoted 𝐴−1

• The matrix 𝐴 is called invertible or nonsingular
• 𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼

Warning: Unlike for scalars, 𝐴/𝐵 or 𝐴
𝐵 is meaningless—is it 𝐴−1𝐵 or 𝐵𝐴−1?

Trivial inverse example:

[𝑎 0
0 𝑏]

−1

= [𝑎−1 0
0 𝑏−1]

Systems of Equations

For 𝐴𝑥 = 𝑏 where 𝐴 ∈ ℝ𝑛×𝑛, 𝑥 ∈ ℝ𝑛, 𝑏 ∈ ℝ𝑛:

Left multiply both sides by 𝐴−1:

𝐴−1𝐴𝑥 = 𝐴−1𝑏 ⇒ 𝐼𝑥 = 𝐴−1𝑏 ⇒ 𝑥 = 𝐴−1𝑏

Example:

{3𝑥1 + 4𝑥2 = 3
5𝑥1 + 6𝑥2 = 7 ⇒ [3 4

5 6] [𝑥1
𝑥2

] = [3
7] ⇒ [𝑥1

𝑥2
] = [3 4

5 6]
−1

[3
7]

Vector Selection

To extract the second element from 𝑥 = [𝑥1 𝑥2 𝑥3]⊤, use a vector with a single 1:

𝑥2 = [0 1 0] ⎡⎢
⎣

𝑥1
𝑥2
𝑥3

⎤⎥
⎦

This is useful for observations of a vector of states.
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Functional Equations

Equations vs. Functional Equations

Equations define the relationship between one or more variables. We solve to find values that
fulfill the equation.

• Single variable: 𝑥2 − 5𝑥 = 0 (solution is one or more values of 𝑥)
• Multi-variable: 2𝑥 + 7𝑦 = 3 (solution may be a set of 𝑥, 𝑦 pairs)

Functional equations provide an expression where we solve for an entire function, not just
values.

• Example: [𝑓(𝑥)]2 − 𝑥2 = 0
• The goal is to find a function 𝑓(𝑥) that holds for all 𝑥
• In this case, both 𝑓(𝑥) = 𝑥 and 𝑓(𝑥) = −𝑥 are solutions

Undetermined Coefficients

Example 1: Given 𝑓 ′(𝑧) = 𝑧. Guess that 𝑓(𝑧) = 𝐶1𝑧2 + 𝐶2 solves this equation.

𝑓 ′(𝑧) = 2𝐶1𝑧 = 𝑧 ⇒ 𝐶1 = 1
2

So 𝐶1 = 1
2 and 𝐶2 is indeterminate.

Example 2: Now with a difference equation. Let:

𝑧𝑡+1 = 𝑧𝑡 + 1

Guess the solution is of the form 𝑧𝑡 = 𝐶1𝑡 + 𝐶2. Substituting:

𝐶1(𝑡 + 1) + 𝐶2 = 𝐶1𝑡 + 𝐶2 + 1

Collecting terms:

𝐶1𝑡 + (𝐶2 + 𝐶1) = 𝐶1𝑡 + (𝐶2 + 1)

Note that 𝐶2 + 𝐶1 = 𝐶2 + 1 implies 𝐶1 = 1, but 𝐶2 is otherwise indeterminate. What if we
add that 𝑧0 = 1? This pins down 𝐶2.
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Review of Optimization

Unconstrained Optimization

max
𝑥

𝑓(𝑥)

First order necessary condition:

𝜕𝑓(𝑥) = 𝑓 ′(𝑥) = 0

where 𝜕𝑓(𝑥) = 𝑑
𝑑𝑥𝑓(𝑥).

Constrained Optimization

The canonical form (can always convert to this):

max
𝑥

𝑓(𝑥)

s.t. 𝑔(𝑥) ≥ 0 ← may or may not bind
ℎ(𝑥) = 0 ← always binds

Solution Method: The Lagrangian

Form a Lagrangian:

ℒ = 𝑓(𝑥) + 𝜇𝑔(𝑥) + 𝜆ℎ(𝑥)

where 𝜇 and 𝜆 are called Lagrange multipliers.
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First-Order Necessary Conditions

𝜕ℒ(𝑥) = 0

This gives:

𝜕𝑓(𝑥) + 𝜇𝜕𝑔(𝑥) + 𝜆𝜕ℎ(𝑥) = 0
𝑔(𝑥) ≥ 0, ℎ(𝑥) = 0
𝜇 ≥ 0
𝜇 ⋅ 𝑔(𝑥) = 0 i.e., 𝜇 = 0⏟

constraint doesn’t bind

or 𝑔(𝑥) = 0

Any {𝑥, 𝜇, 𝜆} that fulfills these conditions solves the problem.

Example 1

max −1
2

(𝑥 + 1)2

s.t. 𝑥 ≥ 0

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25

f(x
)

Unconstrained max
x * = 1 (infeasible)

Constrained max
x * = 0 (binding)

Constrained Optimization with Binding Constraint
f(x) = 1

2 (x + 1)2

Infeasible region (x < 0)
Constraint boundary (x = 0)

Figure 1: Binding constraint: the unconstrained maximum at 𝑥 = −1 is infeasible, so the
solution is at the boundary 𝑥 = 0
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The Lagrangian is:

ℒ = −1
2

(𝑥 + 1)2 + 𝜇𝑥

FONC:

[𝑥] ∶ −(𝑥 + 1) + 𝜇 = 0, 𝜇 ≥ 0

So (𝑥 + 1) = 𝜇 and 𝜇𝑥 = 0 (either 𝑥 = 0 or 𝜇 = 0).

Solution:

• If 𝜇 = 0 ⇒ 𝑥 = −1, contradicting the constraint 𝑥 ≥ 0
• Therefore 𝜇 > 0 and 𝑥 = 0
• Thus 𝜇 = 0 + 1 = 1

Shorthand: −(𝑥 + 1) ≤ 0, = 0 if 𝑥 > 0

Example 2

max 𝑓(𝑥)
s.t. 𝑥 ≤ 𝑚

First, reorder the constraint: 𝑥 − 𝑚 ≤ 0 ⇒ 𝑚 − 𝑥 ≥ 0.

The Lagrangian is:

ℒ = 𝑓(𝑥) + 𝜆(𝑚 − 𝑥)

FONC:

[𝑥] ∶ 𝑓 ′(𝑥) − 𝜆 = 0
𝜆(𝑚 − 𝑥) = 0, 𝜆 ≥ 0

The Kuhn-Tucker conditions are:

• If 𝜆 > 0 ⇒ 𝑚 − 𝑥 = 0 ⇒ 𝑥 = 𝑚 (binding)
• If 𝜆 = 0 ⇒ 𝑓 ′(𝑥) = 0 (nonbinding)
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Linear Objectives Hit Corners

Consider for some 𝑎 ∈ ℝ:

min 𝑎𝑥
s.t. 𝑥 ≥ 1

0 1 2 3 4
x

1

0

1

2

3

4

f(x
)=

ax

Min at x = 1

Infeasible

a > 0: min at corner

0 1 2 3 4
x

1

0

1

2

3

4

f(x
)=

ax
Any x 1 is optimal

Infeasible

a = 0: indeterminate

0 1 2 3 4
x

4

3

2

1

0

1

f(x
)=

ax

Min at x
(unbounded)

Infeasible
a < 0: no minimum

Figure 2: Linear objectives always hit corners (boundaries) of the feasible region

The cases:

• 𝑎 > 0: min is at 𝑥 = 1 (constraint binds)
• 𝑎 = 0: min is indeterminate (any 𝑥 ≥ 1 works)
• 𝑎 < 0: min is at 𝑥 = ∞ (doesn’t exist, problem is unbounded)

Probability

Discrete Random Variables

A random variable is a number whose value depends upon the outcome of a random
experiment. Mathematically, a random variable 𝑋 is a real-valued function on 𝑆, the space of
outcomes:

𝑋 ∶ 𝑆 → ℝ

A discrete random variable 𝑋 has finite or countably many values 𝑥𝑠 for 𝑠 = 1, 2, …
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The probabilities ℙ (𝑋 = 𝑥𝑠) for 𝑠 = 1, 2, … are called the probability mass function of 𝑋,
with properties:

• For all 𝑠: ℙ (𝑋 = 𝑥𝑠) ≥ 0
• For any 𝐵 ⊆ 𝑆: ℙ (𝑋 ∈ 𝐵) = ∑𝑥𝑠∈𝐵 ℙ (𝑋 = 𝑥𝑠)
• ∑𝑠 ℙ (𝑋 = 𝑥𝑠) = 1

The expectation of 𝑋 is:

𝔼 [𝑋] = ∑
𝑠

𝑥𝑠ℙ (𝑋 = 𝑥𝑠)

Expectations and Vectors

Assume there are 𝑛 states 𝑥1, … , 𝑥𝑛. Define the values vector:

𝑥 ≡
⎡
⎢
⎢
⎣

𝑥1
𝑥2
⋮

𝑥𝑛

⎤
⎥
⎥
⎦

And the probability vector 𝜙 ∈ ℝ𝑛:

𝜙 ≡
⎡
⎢
⎢
⎣

ℙ (𝑋 = 𝑥1)
ℙ (𝑋 = 𝑥2)

⋮
ℙ (𝑋 = 𝑥𝑛)

⎤
⎥
⎥
⎦

Then the expectation can be written as a dot product:

𝔼 [𝑋] =
𝑛

∑
𝑖=1

𝜙𝑖𝑥𝑖 = 𝜙 ⋅ 𝑥

Example: Probability of unemployment is 𝜙1 = 0.1 with income 𝑥1 = $15,000; probability of
employment is 𝜙2 = 0.9 with income 𝑥2 = $40,000. Expected income:

𝔼 [𝑋] = (0.1 × 15,000) + (0.9 × 40,000) = $37,500

More generally, this extends to functions of random variables: 𝔼 [𝑋2] = 𝜙 ⋅ 𝑥2.
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Joint Distributions

For discrete random variables 𝑋 and 𝑌, the joint probability distribution is:

ℙ (𝑋 = 𝑥𝑖 and 𝑌 = 𝑦𝑗)

such that ∑𝑖 ∑𝑗 ℙ (𝑋 = 𝑥𝑖 and 𝑌 = 𝑦𝑗) = 1.

Marginal Probability

The distribution of one random variable, ignoring the other:

ℙ (𝑋 = 𝑥𝑖) = ∑
𝑗

ℙ (𝑋 = 𝑥𝑖 and 𝑌 = 𝑦𝑗)

Conditional Probability

The distribution of one random variable given the other has occurred:

ℙ (𝑋 = 𝑥𝑖 ∣𝑌 = 𝑦𝑗 ) =
ℙ (𝑋 = 𝑥𝑖 and 𝑌 = 𝑦𝑗)

ℙ (𝑌 = 𝑦𝑗)
=

ℙ (𝑋 = 𝑥𝑖 and 𝑌 = 𝑦𝑗)
∑𝑘 ℙ (𝑋 = 𝑥𝑘 and 𝑌 = 𝑦𝑗)

Conditional Expectation

When one event is known, the expectation over the other:

𝔼 [𝑋 ∣ 𝑌 = 𝑦𝑗] = ∑
𝑖

𝑥𝑖ℙ (𝑋 = 𝑥𝑖 ∣𝑌 = 𝑦𝑗 )

This is especially useful for agents making forecasts of the future given knowledge of events
today.

Statistical Independence

Events 𝑋 and 𝑌 are statistically independent if:

ℙ (𝑋 = 𝑥𝑖 and 𝑌 = 𝑦𝑗) = ℙ (𝑋 = 𝑥𝑖)ℙ (𝑌 = 𝑦𝑗)

If ℙ (𝑌 = 𝑦𝑗) > 0, independence implies ℙ (𝑋 = 𝑥𝑖 ∣𝑌 = 𝑦𝑗 ) = ℙ (𝑋 = 𝑥𝑖).
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