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Linear Algebra

Vectors

« Notation: z € R" is a vector of n reals

Ty
e Vector z = |2 (column vector)
'/I:TL
o Element: z; is the ith element of the vector
o Transpose: #' = [¥; x, .. w,| (row vector)

Vector Operations

Addition: (z+vy), =z, +y;

-l -(

Scalar Multiplication: (ax), = az; for o € R

¢ Commutative: axr = zo



Inner Product (Dot Product)

The dot product of two vectors x,y € R™ is defined as

Ty = Zfﬁi%
i=1

Properties:
e Commutative: z-y=vy-

o Distributive: z-(y+2)=z-y+z-2
e Scalar multiplication: (ax) -y = (ay) = a(z-y) for « € R

1 4
Example: © = [2] and y = [5} , then
3 6

z-y=(1x4)+(2x5)+(3x6)=32

Euclidean Norm

The Euclidean norm of a vector x € R™ is defined as

n
el = /> a?=vaz
i=1

o Distance from origin
o Vector is of unit length if |z[, =1
¢ Reflections and rotations preserve the length

Interpretations of Inner Product

e x -y gives a sense of the “angle” between the vectors
o If -y =0 then the vectors are orthogonal (at right angles)

—eg.,ifz= [1 O]T,y: [O 1]Tthenx-y:O

o If x and y are of unit length and x = y, then z - y = 1 (maximum similarity)



Matrices

Ay . A
A= : -

A

nl - nm

e A;; denotes the element in row i and column j

Matrix Transpose

e T _
o Definition: (A"),; = A,
e Turns rows into columns and vice versa

e Note: (A1) =4

Matrix Addition/Subtraction

o Definition: (A + B);; = A;; + B;; (elementwise)
¢ Requires same dimensions

Properties:

e Commutativity: A+ B=B+ A
o Associativity: (A+B)+C=A+(B+C)
e (A+B)"=A" +B'

Matrix Multiplication

For A € R™*™ and B € R™*P, the product C = AB € R™*P:

o The inner dimensions (m and m) must match
o Each element: C;;, = Z;"Zl A;;Bjy,



Example:

[an a12:| [bn b12]:[
Qg1 Qoo [byy Doy

Properties:

(]

(]

(AB)T =BTAT
Associativity: (AB)C = A(BC)

ay1byy + aj9by
Ag1b11 + ag9byy

ay1by9 + aj9byy
Ag1b19 + ag9byy

Distributivity: (A+ B)C = AC + BC and C(A+ B) =CA+CB

Scalar commutativity: aA = A«

NOT commutative: AB # BA in general

Non-commutativity example:

53l o] =[o 5

| o ool

Matrix-Vector Multiplication as Dot Products

s 416 9

Matrix-vector products can be written as stacked dot products:

L

Matrix Inverse and Systems of Equations

Identity Matrix

10 -0
01 -0
00 1

e Ones on the diagonal, zeros elsewhere
o Property: IA = AI = A (commutes with any conformable matrix)



Matrix Inverse

If A is square and F satisfies FFA = I, then:

e Fis called the inverse of A and is denoted A~!
e The matrix A is called invertible or nonsingular
o AAT'=A"1A=1T

Warning: Unlike for scalars, A/B or % is meaningless—is it A~'B or BA™1?

Trivial inverse example:

Systems of Equations

For Az = b where A € R™*" z € R", b € R™:

Left multiply both sides by A~

AT Az =A% = Iz=A"% = |z=A1%

Example:

8z, +4wy =3 _ [3 4 x1_3:>x1_34’13
5:E1 + 6$2 == 7 5 6 .'L’2 o 7 $2 B 5 6 7
Vector Selection

To extract the second element from z = [acl Ty xS] T, use a vector with a single 1:
1

=10 1 0] |,
L3

This is useful for observations of a vector of states.



Functional Equations

Equations vs. Functional Equations

Equations define the relationship between one or more variables. We solve to find values that
fulfill the equation.

o Single variable: 22 — 5z = 0 (solution is one or more values of x)
o Multi-variable: 2x 4+ 7Ty = 3 (solution may be a set of x,y pairs)

Functional equations provide an expression where we solve for an entire function, not just
values.

o Example: [f(z)]? — 22 =0
o The goal is to find a function f(x) that holds for all =
e In this case, both f(x) =z and f(x) = —z are solutions

Undetermined Coefficients

Example 1: Given f’(z) = z. Guess that f(z) = C,22 + Cy solves this equation.

1
fl(z)=2Cz=2 = () =3

So C; = 1 and C, is indeterminate.

Example 2: Now with a difference equation. Let:

Zpr = 2+ 1
Guess the solution is of the form z, = Ct + C,. Substituting:
Collecting terms:

Clt "‘ (C2 + Cl) - Clt "‘ (02 + 1)

Note that Cy, + C| = C, + 1 implies C| = 1, but (), is otherwise indeterminate. What if we
add that z, = 17 This pins down C,.



Review of Optimization
Unconstrained Optimization
max f(x)

First order necessary condition:

where 9f(z) = L f(z).

X

Constrained Optimization

The canonical form (can always convert to this):

max f(z)
s.t. g(x) >0 < may or may not bind
h(z) =0 < always binds

Solution Method: The Lagrangian

Form a Lagrangian:

L= f(x) + pg(x) + Ah(z)

where p and A are called Lagrange multipliers.



First-Order Necessary Conditions

This gives:

Of(x) + pdg(x) + X\oh(z) =0

g(z) >0, h(zx)=0

u=>0

w-g(x) =0 ie., unw=0 or g(x) =0

—_——
constraint doesn’t bind

Any {x, p, A} that fulfills these conditions solves the problem.

Example 1
1 2
max —5(56 +1)
st. >0
Constrained Optimization with Binding Constraint
0.25 A 1
—_— fix) = —3(x+ 1)
0.00 Infeasible region (x < 0) .
= = Constraint boundary (x =0)
—0.25 A i
—0.50 A1
= 1
X _ _
= ~0.75 Ugfconstrained max : Constrained max
—~1.00 - = —1 (infeasible) : x* =0 (binding)
I
-1.25 - :
1
—1.50 A1 :
—1.75 1 T T T T ; T T T
-25 -20 -15 -10 -05 0.0 0.5 1.0 15 2.0
X
Figure 1: Binding constraint: the unconstrained maximum at x = —1 is infeasible, so the

solution is at the boundary = = 0



The Lagrangian is:

1
£:—§(x+1)2+ux

FONC:

[z]: —(@+1)+p=0, p=0
So (x4 1) = p and px = 0 (either z =0 or p = 0).
Solution:

e If u=0= x = —1, contradicting the constraint x > 0
e Therefore 4 >0and x =0
e Thuspu=0+1=1

Shorthand: —(z+1) <0, =0ifz >0

Example 2

max f(x)

st. z<m

First, reorder the constraint: x —m <0=m —x > 0.

The Lagrangian is:

L= f(z)+ AX(m—z)
FONC:
[z]: f(z)—=A=0
A(m—x)=0, A>0
The Kuhn-Tucker conditions are:

e IfA>0=m—2=0= 2 =m (binding)
e If A\=0= f'(z) =0 (nonbinding)



Linear Objectives Hit Corners

Consider for some a € R:

min az
st. x>1
a > 0: min at corner a = 0: indeterminate a < 0: no minimum
4 ] 4 ] 1 mfeasiDig
Im‘easibla% nfeasibl% :
3 ! 3 ! 0 !
! 1 | Minatx—w
X 2 : X 24 : X -1+ | (unbounded)
I 1 Il | Any x =1 is optimal 1l 1
=< =< 1 =< 1
S 14 s 1 I = 21 |
Min atx=1 ] !
I 1 I
0 l 0 T -39
I I I
I I I
-1 f . . -1 f . . -4 f . .
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
X X X
Figure 2: Linear objectives always hit corners (boundaries) of the feasible region
The cases:
e a>0: min is at = 1 (constraint binds)
e a = 0: min is indeterminate (any x > 1 works)
e a < 0: min is at = oo (doesn’t exist, problem is unbounded)
Probability

Discrete Random Variables

A random variable is a number whose value depends upon the outcome of a random
experiment. Mathematically, a random variable X is a real-valued function on S, the space of
outcomes:

X:5—=R

A discrete random variable X has finite or countably many values x, for s = 1,2, ...

10



The probabilities P (X = z,) for s = 1,2, ... are called the probability mass function of X,
with properties:

e Foralls: P(X =z, >0
e Forany BCS: P(XeB)=)>
CYL (X =) =1

P(X==x,

r ., eB
The expectation of X is:

E[X]=) «P(X=g,)

Expectations and Vectors

Assume there are n states z,,...,z,. Define the values vector:
1
x
r= |2
x

And the probability vector ¢ € R™:

P(X =ux)
6= IP(XE— xq)
P(X==x,)

Then the expectation can be written as a dot product:
n
E[X] :quixi =¢-x

=1

Example: Probability of unemployment is ¢; = 0.1 with income z; = $15,000; probability of
employment is ¢, = 0.9 with income z, = $40,000. Expected income:

E[X] = (0.1 x 15,000) + (0.9 x 40,000) = $37,500

More generally, this extends to functions of random variables: E [X?] = ¢ - 22.

11



Joint Distributions
For discrete random variables X and Y, the joint probability distribution is:

P(X =, andY:yj)

such that > Zj P(X=2,andY =y;) =1

Marginal Probability

The distribution of one random variable, ignoring the other:

P(X=a2)=> P(X=gandY =y,
J

Conditional Probability

The distribution of one random variable given the other has occurred:

B B _[P(X:xiandY:yj)_ [P(X:xiandY:yj)
[P(X—xi‘Y—yj>— IP(YZyj) _ZkIP(X::vkandY:yj)

Conditional Expectation

When one event is known, the expectation over the other:
EX|Y=y]=) P (X=uz=y,)
i

This is especially useful for agents making forecasts of the future given knowledge of events
today.

Statistical Independence

Events X and Y are statistically independent if:

[P(X:xi andY:yj)ZUD(XZSEi)[F'(Y:yj)

If P (Y =y;) >0, independence implies P (X =z, |Y =y, ) =P (X = ;).

12
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