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Basic Setup

As shown in Figure 1, with growing income and retirement, assets may become negative early
in the lifecycle (borrowing against future income). Note that debt does not bottom out when
𝑦𝑡 = 𝑐𝑡—at that point, interest on existing debt still causes debt to grow. Debt stops increasing
only when savings cover the interest burden: 𝑦𝑡 > 𝑐𝑡 + −𝑟

1+𝑟𝐹𝑡, i.e., when income exceeds
consumption by enough to offset interest payments on existing debt.

What happens if we add a no-borrowing constraint?

Adding Constraints to the PIH

max
{𝑐𝑡,𝐹𝑡+1}

∞
∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡)

subject to:

𝐹𝑡+1 = 𝑅(𝐹𝑡 + 𝑦𝑡 − 𝑐𝑡)
lim

𝑇 →∞
𝛽𝑇 +1𝐹𝑇 +1 ≥ 0 (No Ponzi)

𝐹𝑡+1 ≥ 0 (No borrowing!)
𝑐𝑡 ≥ 0

where 𝐹0 is given, 𝛽 < 1, 𝑅 > 1. Assume lim𝑐→0 𝑢′(𝑐) = ∞ (called an “Inada Condition”).
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Figure 1: Life-cycle with growing income: borrowing when young
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Setting Up the Lagrangian

ℒ =
∞

∑
𝑡=0

𝛽𝑡 (𝑢(𝑐𝑡) + 𝜆𝑡[𝑅(𝐹𝑡 + 𝑦𝑡 − 𝑐𝑡) − 𝐹𝑡+1] + 𝜈𝑡+1 ⋅ 𝐹𝑡+1 + 𝛼𝑡 ⋅ 𝑐𝑡)

where:

• 𝜆𝑡 is the Lagrange multiplier on the intertemporal budget constraint
• 𝜈𝑡+1 is the Lagrange multiplier on 𝐹𝑡+1 ≥ 0
• 𝛼𝑡 is the Lagrange multiplier on 𝑐𝑡 ≥ 0

First Order Necessary Conditions:

[𝑐𝑡] ∶ 𝛽𝑡𝑢′(𝑐𝑡) − 𝛽𝑡𝜆𝑡𝑅 + 𝛽𝑡𝛼𝑡 = 0, ∀𝑡 ≥ 0
[𝐹𝑡+1] ∶ − 𝜆𝑡 + 𝜈𝑡+1 + 𝛽𝜆𝑡+1𝑅 = 0, ∀𝑡 ≥ 0

(1)

Complementary Slackness Conditions:

𝜈𝑡+1 ≥ 0, 𝛼𝑡 ≥ 0
𝜈𝑡+1𝐹𝑡+1 = 0, 𝛼𝑡𝑐𝑡 = 0

Deriving the Euler Equation

Reorganizing the FOC for 𝑐𝑡:

𝑢′(𝑐𝑡) + 𝛼𝑡 = 𝜆𝑡𝑅, with 𝛼𝑡 ≥ 0 ⟹ 𝑢′(𝑐𝑡) ≤ 𝜆𝑡𝑅, with equality if 𝛼𝑡 = 0

From complementary slackness, either 𝛼𝑡 = 0 or 𝑐𝑡 = 0. If 𝑐𝑡 = 0, the Inada condition implies
𝑢′(0) = ∞, which contradicts 𝑢′(𝑐𝑡) ≤ 𝜆𝑡𝑅. Therefore 𝛼𝑡 = 0 and 𝑐𝑡 > 0, giving us:

𝑢′(𝑐𝑡) = 𝜆𝑡 ⋅ 𝑅 (2)

Reorganizing the FOC for 𝐹𝑡+1 and multiplying by 𝑅:

𝛽𝑅2𝜆𝑡+1 − 𝑅𝜆𝑡 + 𝑅𝜈𝑡+1 = 0

Using Equation 2 to substitute:

𝛽𝑅𝑢′(𝑐𝑡+1) + 𝑅𝜈𝑡+1 = 𝑢′(𝑐𝑡)
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Since 𝜈𝑡+1 ≥ 0, with equality when 𝐹𝑡+1 > 0:

𝛽𝑅𝑢′(𝑐𝑡+1) ≤ 𝑢′(𝑐𝑡), with equality if 𝐹𝑡+1 > 0, ∀𝑡 ≥ 0

Note that if 𝐹𝑡+1 = 0 and 𝜈𝑡+1 > 0, then from the budget constraint:

0 = 𝑅(𝐹𝑡 + 𝑦𝑡 − 𝑐𝑡) ⟹ 𝑐𝑡 = 𝐹𝑡 + 𝑦𝑡 (consumes all income and savings)

Summary: Euler Equation with No-Borrowing Constraints

𝑢′(𝑐𝑡) = 𝛽𝑅𝑢′(𝑐𝑡+1); or
𝑢′(𝑐𝑡) > 𝛽𝑅𝑢′(𝑐𝑡+1) and 𝑐𝑡 = 𝐹𝑡 + 𝑦𝑡

Examples with Log Utility

Assume 𝑢(𝑐) = log(𝑐) ⟹ 𝑢′(𝑐) = 1
𝑐 and 𝛽𝑅 = 1.

Then:

1
𝑐𝑡

= 1
𝑐𝑡+1

⟹ 𝑐𝑡+1 = 𝑐𝑡; or

1
𝑐𝑡

> 1
𝑐𝑡+1

⟹ 𝑐𝑡+1 > 𝑐𝑡 and 𝑐𝑡 = 𝐹𝑡 + 𝑦𝑡

Example 1: Growing Income (Always Constrained)

Let 𝑦𝑡+1 = 𝛿𝑦𝑡 ⟹ 𝑦𝑡 = 𝛿𝑡𝑦0 with 𝛿 > 1 and 𝐹0 = 0.

Solution: Guess always constrained, then verify.

𝑐𝑡 = 𝑦𝑡, 𝐹𝑡 = 0, ∀𝑡

So the person is always borrowing constrained.

Verification: 𝑦𝑡 > 𝑦𝑡−1 ⟹ 𝑐𝑡 > 𝑐𝑡−1, ∀𝑡; and 𝐹𝑡 = 0 ⟹ 𝑐𝑡 = 𝑦𝑡.
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Example 2: Decreasing Income (Never Constrained)

Let 0 < 𝛿 < 1, 𝑦𝑡 = 𝛿𝑡𝑦0, 𝐹0 = 0.

Solution: Guess unconstrained, then verify.

Guess 𝑐𝑡 = ̄𝑐, using the unconstrained formula with 𝐹0 = 0:

̄𝑐 = (1 − 𝛽)𝑦0

∞
∑
𝑡=0

𝛿𝑡𝛽𝑡 = (1 − 𝛽) 𝑦0
1 − 𝛽𝛿

̄𝑐 = (1 − 𝛽) 𝑦0
1 − 𝛽𝛿

Assets evolve according to:

𝐹𝑡+1 = 𝑅(𝐹𝑡 + 𝑦𝑡 − ̄𝑐)

Note: 𝑐0 = 1−𝛽
1−𝛽𝛿𝑦0 < 1−𝛽

1−𝛽𝑦0 = 𝑦0 ⟹ 𝑦0 − 𝑐0 > 0, so the agent saves, not borrows.

In the limit as 𝑡 → ∞, 𝑦𝑡 → 0 but 𝑐𝑡 = ̄𝑐. Looking for a steady state in the budget:

̄𝐹 = 𝑅( ̄𝐹 + 0 − ̄𝑐) ⟹ 𝑅 ̄𝑐 = (𝑅 − 1) ̄𝐹

Since 𝑅 = 1 + 𝑟:

̄𝑐 = 𝑅 − 1
𝑅

̄𝐹 = 𝑟
1 + 𝑟⏟

annuity value

̄𝐹

So the agent eventually lives off the annuity value of savings. (Also 𝑟
1+𝑟 = 1 − 𝛽 if 𝛽 ≡ 1

1+𝑟 .)

See Figure 2 for the asymptotic behavior with decreasing income.
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Figure 2: Asymptotic Behavior with Decreasing Income
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Welfare Cost of No-Borrowing

We now analyze the welfare cost of borrowing constraints more generally. This analysis follows
Ljungqvist and Sargent (2018).

Setup:

• Given a feasible {𝑐𝑡}, the lifetime utility of an agent is 𝑈 = ∑∞
𝑡=0 𝛽𝑡𝑢(𝑐𝑡). This is their

welfare, their objective function.
• In general, adding constraints to the set of feasible {𝑐𝑡} weakly decreases welfare, as

shown in Figure 3.
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same welfare

Figure 3: Constrained and First-Best Welfare

Unconstrained Solution (𝑇 = ∞)

Now consider a case where the agent wants to borrow: income grows faster than the optimal
consumption path. Assume 1 ≤ 𝛽𝑅 ≤ 𝛿 (so income growth 𝛿 exceeds or equals consumption
growth 𝛽𝑅), 𝑢(𝑐) = log(𝑐), 𝐹0 = 0, subject to lim𝑇 →∞ 𝐹𝑇 +1𝛽𝑇 ≥ 0 (no Ponzi scheme).

Euler Equation:
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𝑢′(𝑐𝑡) = 𝛽𝑅𝑢′(𝑐𝑡+1) ⟹ 𝑐𝑡+1 = 𝛽𝑅𝑐𝑡 ⟹ 𝑐𝑡 = (𝛽𝑅)𝑡𝑐0

Lifetime Budget:

0 =
∞

∑
𝑗=0

𝑅−𝑗(𝑐𝑡+𝑗 − 𝑦𝑡+𝑗)

∞
∑
𝑡=0

𝑅−𝑡𝛽𝑡𝑅𝑡𝑐0 =
∞

∑
𝑡=0

𝑅−𝑡𝛿𝑡𝑦0 ⟹ 𝑐0
1 − 𝛽⏟

PV of consumption

= 𝑦0
1 − 𝛿/𝑅⏟

PV of income

⟹ 𝑐0 = (1 − 𝛽) 𝑦0
1 − 𝛿/𝑅

Consumer’s Lifetime Utility:

𝑈 =
∞

∑
𝑡=0

𝛽𝑡 log(𝑐𝑡) =
∞

∑
𝑡=0

𝛽𝑡 log ((𝛽𝑅)𝑡 ⋅ 1 − 𝛽
1 − 𝛿/𝑅

𝑦0)

=
∞

∑
𝑡=0

𝛽𝑡 [log(𝑦0) + log ( 1 − 𝛽
1 − 𝛿/𝑅

) + 𝑡 log(𝛽𝑅)]

= log 𝑦0 + log(1 − 𝛽) − log(1 − 𝛿/𝑅)
1 − 𝛽

+ log(𝛽𝑅)
∞

∑
𝑡=0

𝑡𝛽𝑡

Using ∑∞
𝑡=0 𝑡𝛽𝑡 = 𝛽

(1−𝛽)2 :

𝑈 = 1
1 − 𝛽

[log(𝑦0) + log(1 − 𝛽) − log(1 − 𝛿/𝑅)] + log(𝛽𝑅) 𝛽
(1 − 𝛽)2

No-Borrowing Solution (𝑇 = ∞)

Same assumptions but with 𝐹𝑡+1 ≥ 0.

Since the agent wants to borrow but cannot, they are always constrained (as in Example 1).
The agent consumes all income each period: 𝑐𝑡 = 𝑦𝑡 = 𝑦0𝛿𝑡.
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𝑈𝑁𝐵 =
∞

∑
𝑡=0

𝛽𝑡 log(𝑦0𝛿𝑡) =
∞

∑
𝑡=0

𝛽𝑡 [log(𝑦0) + 𝑡 log(𝛿)]

= log(𝑦0)
1 − 𝛽

+ log(𝛿)
∞

∑
𝑡=0

𝑡𝛽𝑡

= log(𝑦0)
1 − 𝛽

+ log(𝛿) 𝛽
(1 − 𝛽)2 ≠ 𝑈

The welfare loss from the no-borrowing constraint is 𝑈 − 𝑈𝑁𝐵.

Dynamic Programming Approach

Suppose 𝑐𝑡 = 𝑐0𝛿𝑡 for 𝑡 ≥ 0. We want to evaluate:

𝑉 (𝑐0) =
∞

∑
𝑡=0

𝛽𝑡 log(𝑐𝑡)

Note:

𝑉 (𝑐0) = log(𝑐0) + 𝛽
∞

∑
𝑗=0

𝛽𝑗 log(𝑐1+𝑗) = log(𝑐0) + 𝛽𝑉 (𝑐1)

where 𝑐1 = 𝛿𝑐0. This is Markov!

Bellman Equation:

𝑉 (𝑐) = log(𝑐) + 𝛽𝑉 (𝛿𝑐)

We want to find the 𝑉 (𝑐) function, then evaluate at 𝑐0.

Solving by Undetermined Coefficients

Guess: 𝑉 (𝑐) = 𝑘0 + 𝑘1 log(𝑐), where 𝑘0, 𝑘1 are undetermined coefficients.

Plug in:

𝑘0 + 𝑘1 log(𝑐) = log(𝑐) + 𝛽[𝑘0 + 𝑘1 log(𝛿𝑐)]
= log(𝑐) + 𝛽𝑘0 + 𝛽𝑘1 log(𝛿) + 𝛽𝑘1 log(𝑐)
= [1 + 𝛽𝑘1]⏟

=𝑘1

log(𝑐) + [𝛽𝑘0 + 𝛽𝑘1 log(𝛿)]⏟⏟⏟⏟⏟⏟⏟
=𝑘0
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Matching coefficients:

𝑘1 = 1 + 𝛽𝑘1 ⟹ 𝑘1 = 1
1 − 𝛽

𝑘0 = 𝛽𝑘0 + 𝛽𝑘1 log(𝛿) = 𝛽𝑘0 + 𝛽 log(𝛿)
1 − 𝛽

⟹ 𝑘0 = 𝛽
(1 − 𝛽)2 log(𝛿)

Therefore:

𝑉 (𝑐) = 1
1 − 𝛽

log(𝑐) + 𝛽
(1 − 𝛽)2 log(𝛿)

This agrees with our earlier solution for welfare.
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