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Motivation and Materials

* In this lecture, we will introduce wealth and income distributions and the dynamics that
lead to their shape
» |In addition, we will investigate the role of multiplicative growth in firm dynamics

» This will also let us explore heavy-tailed distributions and get a sense of when they will
influence inequality
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Materials

» Adapted from Quantkcon lectures coauthored with John Stachurski and Thomas J.
Sargent

- Wealth Distribution Dynamics
» Other references in the Python lectures by Stachurski and Sargent

— Heavy-Tailed Distributions

- Kesten Processes

using Distributions, Plots, LaTeXStrings, LinearAlgebra, BenchmarkTools
using Plots.PlotMeasures, StatsPlots

default(; legendfontsize=16, linewidth=2, tickfontsize=12,
bottom_margin=15mm)
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https://julia.quantecon.org/introduction_dynamics/wealth_dynamics.html
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Counter-CDFs

» The counter-CDF is the probability that the value is above a certain value
e |t is the complement of the CDF

P(X>z)=1-P(X <z

» Or, if there is a density f(z), then

| e
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CCDF for the Normal

» The lognormal distribution is often used to model returns

mu = 1.0
sigma = 0.5

dist = Normal(mu, sigma)
X = range(-1.0, 4.0, length = 100)

plot(x, 1

.- cdf(dist, x);

label = "CCDF", size = (600, 400))

plot!(dist;

label = "Density")
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CCDF for the LogNormal

» The lognormal distribution is often used to model returns

mu = -0.001
sigma = 0.3

dist = LogNormal(mu, sigma)
X = range(0.0, 3.0, length = 100)

plot(x, 1

.- cdf(dist, x);

label = "CCDF", size = (600, 400))

plot!(dist;

label = "Density")

1.25}
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The Pareto Distribution

» Those distributions have relatively few large (or small) values
» The Pareto distribution has a heavy tall

It is often used to model wealth, city sizes, and other phenomena where there are
many small values and a few large ones

» The density, given min-value x,, and a shape parameter a

oars

f(z) = e forallz > z,,

. CDFis F(z) =1 — (mi)_ CCDF = (xi)_ forz >z

m m
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CCDF for the Pareto with e = 2.5

» As you can see, the CCDF drops fairly slowly

Xxm=1.0 mean(dist) = 1.6666666666666667
alpha = 2.5 var(dist) = 2.2222222222222223
X = range(0.0, 5.0, length = 100)
dist = Pareto(alpha, x_m) — CCDF
@show mean(dist) 2.0 1 —Density
@show var(dist)
plot(x, 1 .- cdf(dist, x); 1.5+
label = "CCDF", size = (600, 400))

plot!(x, dist; label = "Density") 10l

0.5t

0.0t .

0 1 2 3 4 5

11/89



CCDF for the Paretowith a = 1.0

o With a smaller a it is even heavier tailed, and doesn't have a variance

X_m=1.0
alpha = 1.01
X = range(0.0, 10.0, length = 100)
dist = Pareto(alpha, x_m)
@show mean(dist)
@show var(dist)
plot(x, 1 .- cdf(dist, x);
label = "CCDF", size = (600, 400))
plot!(x, dist; label = "Density")

mean(dist) = 100.99999999999991

var(dist) = Inf
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Log-Log Plots

 The CCDF is often plotted on a log-log scale. i.e. log(x) vs. log(1 — F(x))
» Taking the log of the probability lets us see the speed that the tail drops off
» For the Pareto distribution, the CCDF is

Taking the log of this gives

alog(xy,) — alog(z)

13/89



Log-Log Plot for the Pareto

X_m=1.0

X = range(1.0, exp(1l), length = 100)

plot(log.(x),
log.(1 .- cdf(Pareto(2.0, x_m), X));
label = L"\log(1-F(x;\alpha=2.0))",
xlabel L"\log(x)", size = (600, 400),
legend = :bottomleft)

plot!(log.(x),
log.(1 .- cdf(Pareto(1.0, x_m), X));
label = L"\log(1-F(x;\alpha=1.0))")

_20 C 1 1 1 1
0.00 0.25 0.50 0.75 1.00
log(x)

-y
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Log-Log Plot for LogNormal vs. Pareto

X_m=1.0 0r
X = range(1.0, 5, length = 100)
plot(log. (x),

log.(1 .- cdf(Pareto(2.0, x_m), X)); -1t
label = "Pareto",
xlabel = L"\log(x)", size = (600, 400),
legend = :bottomleft) oL
plot!(log.(x),
log.(1 .- cdf(LogNormal(1.0, 0.5), x)); — Pareto
label = "LogNormal'") _3l —LogNormaI
0.0 0.5 1.0 1.5

log(x)
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Heavy Tailed Distributions
» See Heavy-Tailed Distributions by Stachurski and Sargent for more

» We previously looked at the LLN and Monte Carlo methods for calculating functions of a
distribution from samples

» Crucial in these was a question of whether a particular distribution had a particular
moment.

e.g. for the Cauchy distribution, the mean does not even exist
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https://intro.quantecon.org/heavy_tails.html

. 1 J
Power-Law Tails
» The Pareto distribution is a special case of a power-law distribution

» A power-law distribution asymptomatically behaves like a Pareto distribution, with some
o tail parameter. ie. P(X > x) oc ™ for large @

» More formally, there exists some ¢ and some a > 0 such that

lim 2°P(X > z) =c

r— 00
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Fallures of LLNS?

» For power-law tails, you may find that the not all moments exist

* In particular, for a Power-law distribution, there are only moments for k < o
For example, with a« = 1 the mean and variance don't exist
For a = 1.8 the mean exists, but the variance doesn't

» Of course, with finite data you will always be able to find a mean and variance, but with
more data you may see them diverge
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Example with Pareto and o = 3

N = 2000 var(dist) + mean(dist) A 2 = 3.0

dist = Pareto(3.0, 1.0)
@show var(dist) + mean(dist)/2 7L "
X_draws = rand(dist, N) —_— 1 Z 72
f_x_draws = x_draws./2 6 | n i—1 !
f_means = cumsum(f_x_draws)./(1:N)
plot(1:length(f_means), f_means; g;ES-

label=L"\frac{1}{n}\sum_{i=1}~An x_in2", =

xlabel="n", ylabel=L"\bar{f}(X)", 4r

Ssize=(600,400)) 3l

51 IM | | |
0 500 1000 1500 2000
n
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Example with Paretoand ae = 1.0

dist = Pareto(1.0, 1.0) T
X_draws = rand(dist, N) —_—n Z a:%
f_x_draws = x_draws./2 1000 - i=1
f_means = cumsum(f_x_draws)./(1:N)
plot(1:length(f_means), f_means; 8

label=L"\frac{1}{n}\sum_{i=1}~An x_in2", -

xlabel="n", ylabel=L"\bar{f}(X)", 500 r

size=(600,400))

0t ! ! . . .
0 100 200 300 400 500
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Empirical CDFs

» Givena pmf, p, of a discrete-valued random variable with ordered values, we can do the
CDFas F(z;) = > . p(x;)

» We can find an empirical counterpart for an unweighted vector { X, }2V_; of
observations as

A number of observations X,, < x
F(x) = N

A

» With the equivalent CCDF as 1 — F(z).

21/89


https://en.wikipedia.org/wiki/Empirical_distribution_function
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Empirical CDF with Discrete Number of Values

o |f there are a finite number of values, count the observations

X_data = sort(rand(1:6, 30)) 1.0}
X = unique(X_data) —F(X)
counts = [sum(X_data .== x) for x in X] 0.8}

cumulative_counts = cumsum(counts)
F = cumulative_counts / length(X_data)

plot(X, F; xlabel="X", label = "F(X)", 0.6 |
seriestype = :steppre,

size = (600, 400)) 0.4

(12—‘

22 /89



Empirical CDF from Continuous Data

* In cases where the data is continuous counting is just sorting

n = 100

X_data = randn(n)

F=(1:n) / n

plot(sort(X_data), F; xlabel="X",
label = "F(X)", seriestype = :steppre,
size = (600, 400))

1.00 |

0.75 r

0.50 r

0.25

0.00 t

—F(X)

-y
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(Crude) Tail Parameter Estimation

» The tail parameter a is the negative slope of the log-log plot of the CCDF

* Hence, we use a linear regression. Taill parameter ¢ = —a

log(1 — F;) = b+ alog(X;) + ¢;

J/

TV TV
=Yi =T

Run regression with package (e.g. GLM.jl) or manually

 Discrete data: CCDF of last point is zero, cannot take a log

One solution is just to drop that last point in the regression

See Rank — 1/2: A Simple Way to Improve the OLS Estimation of Tail Exponents by Gabaix and Ibragimov for a more sophisticated
approach
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https://juliastats.org/GLM.jl/stable/
https://www.jstor.org/stable/25800776

miy
Calculation of Coefficients

» Given the least squares problem

n

mibn (y; — (ax; + b))2
@0 =1

=~ _ 1\ . —_ 1 n .
» Calculate the means, & = - Zizl x; and y = Zizl Yi

n

e Then the coefficients are

> i1 (®i — T)(yi — 7) .

a = : =Yy —ax

>im1 (@i — T)?
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Example with Paretoand a = 1.1

function simple_regression(x, Yy)
X_bar = mean(x)
y_bar = mean(y)

a = sum((x .- x_bar).*(y .- y_bar)) / sum((x .- x_bar).n2)

b =y_bar - a * x_bar
return (;a, b)

end

N = 1000

alpha = 1.1

X = sort(rand(Pareto(alpha, 1.0), N))
F = (1:N) / N

y = log.(1 .- F)

x = log.(X)

(;a, b) = simple_regression(x[1:end-1], y[1:end-1])
plot(x, y; label = L"\log(1-F(X))", xlabel=L"\log(X)")

plot!(x, a*x .+ b; label = L"a=%$(round(a, digits = 2)), \alpha = %$alpha", style

:dash)

-y

26 /89



Example with Paretoand a = 1.1

log(1 — F(X))
—_——-g= — 113, a=11

0

1 2

-y
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Empirical Evidence of Tails

* |tis sometimes difficult, with finite data, to distinguish between a heavy-tailed distribution

and a then-tailed one
» Theissue is that in either case there are typically not that many observations with large
values, even if there are more for power-laws.

» Some classic examples of power-law tails in the data
All from Heavy-Tailed Distributions by Stachurski and Sargent
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https://intro.quantecon.org/heavy_tails.html

i
Largest 500 firms in 2020 taken from Forbes Global 2000
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City Sizes in the US and Brazi

=3 7 Us =5 - Brazil
—— slope = -1.39 —— slope =-1.13
_5 - _5 -
I I I I | I I I I I I
12 13 14 15 16 11 12 13 14 15 16
log value log value
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Wealth Distribution Across Countries

o
o
o -3+
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GDP Across Countries

0 1 ® 010 &
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Multiplicative Dynamics and Gibrat's Law

» Gibrat's Law is a simple model of firm dynamics which proposes that the growth rate of
a firm is independent of its size

Note, thisis a "law” on the stochastic process, not the stationary distribution that
comes out of it

Can show that a proportional growth process will lead to a lognormal distribution of
firm sizes over time

e Does it hold in the data?
» Not exactly, even if a good starting point (e.g.,Gibrat’s Legacy by John Sutton)

Small firms tend to grow faster than large firms
Volatility is higher for small firms

Rather than lognormal, seems closer to Zipfs law
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https://en.wikipedia.org/wiki/Gibrat%27s_law
https://www.jstor.org/stable/2729692

Zipf Distribution? o« = 1.059

1071 |

104

Frequency
o
4

10-10}

10-13 - - - - - '
1 10 102 108 104 105 108
Firm size (employees)

See https://www.science.org/doi/10.1126/science. 10620817 by Axtell

REPORTS

Fig. 1. Histogram of U.S. firm sizes,
by employees. Data are for 1997
from the U.S. Census Bureau, tab-
ulated in bins having width in-
creasing in powers of three (30).
The solid line is the OLS regression
line through the data, and it has a
slope of 2.059 (SE = 0.054; adjust-
ed R? = 0.992), meaning that a =
1.059; maximum likelihood and
nonparametric methods yield sim-
ilar results. The data are slightly
concave to the origin in log-log
coordinates, reflecting finite size
cutoffs at the limits of very small
and very large firms.

-y
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Which of Stochastic Processes Lead to Power Laws?

» Zipf's Law is a type of distribution: The size of the nth largest is inversely proportional to
n

Equivalent to a discrete version of a Pareto distribution with e = 1

» Power Laws in Economics and Finance by Xavier Gabaix is a good reference on Power
laws and where they come from

» The key: multiplicative growth processes + some distortion at the bottom of the
distribution

bankruptcy
exit and entry

additive shocks which distort the bottom disproportionately
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https://en.wikipedia.org/wiki/Zipf%27s_law
https://pages.stern.nyu.edu/~xgabaix/papers/pl-ar.pdf

i
Reminder on Kesten Processes

» Recall the Kesten Process, which generalizes this by adding in the y¢1 term

Xir1 = a1 Xt + Y

a;+1 1S an 11D growth rate, y¢11 is an 11D additive shock
» Another example of a related process

Xiy1 = max{sg, a;1X:}

38/89



Simulation of a Process for Growth

o Let firm size X1 = max{sg, a;,1X;}, wherelogas 1 ~ N (i, 0?)

function iterate_map_iid_ensemble(f, dist, xO, T, num_samples)
X = zeros(num_samples, T + 1)
x[:, 1] .= x0
for t in 2: (T + 1)
x[:, t] .= f.(x[:, t - 1], rand(dist, num_samples))
end
return x
end
num_samples = 100000
T = 500
S0 =1.0 # exit/entry at X = 1.0
X0 =1.0
a_dist = LogNormal(-0.01, 0.1)
h(X, a) = max(s_0, a * X)
X = iterate_map_iid_ensemble(h, a_dist, X_0, T, num_samples)

histogram(log.(X[:, end]); label = L"Histogram", xlabel = L"\log X_t",

normalized=true)

-y
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Simulation of a Process for Growth

[ Histogram

log X,
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Log-Log Plot

X_T = sort(X[:, end]) 0.0
X_T = log.(X_T)
F_T = (1:length(X_T)) / length(X_T) —25¢t
y_T = log.(1 .- F_T)
(;a, b) = simple_regression(x_T[1:end-1], _50l
y_T[1l:end-1])

plot(x_T, y_T; label = L"\log(1-F(X))",

xlabel=L"\1log(X)", size = (600, 400)) —757¢
a_r = round(a, digits = 2)

plot!(x_T, a*x_T .+ b; —-10.0
label = L"a=%%$a_r", style = :dash)
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Visualizing Inequality

» Tails are helpful for seeing how inequality is distributed at the top-end (e.g., the top 1% or
0.1%)
They can also help us understand processes which might generate inequality

For example, Kesten processes, which we will come back to, are a class of
processes which generate power-law tails

This can influence tax policy/etc.

» However, the tail behavior is not very useful to understand inequality in the lower parts of
the distribution
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L orenz Curves

» One popular graphical measure of inequality is the Lorenz curve.
For a continuous distribution with pdf f(z), odf F(x), and quantile z = F~!(p) = Q(p)

Lo [P 2 f(z)da
U e ()
» Which can be rewritten as L(p) = ﬁgisijs

Intuition: the proportion of the population with less than p of the total income has L(p) of
the total income

441 89


https://en.wikipedia.org/wiki/Lorenz_curve
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L orenz Curve Given Data

 In the case of unweighted discrete data we have a simple empirical version of the Lorenz
curve. Weighted versions are useful if you bin data (e.g. quintiles)

» Given sorted vy, . . . v,, we find the empirical CDF (previous slides) is F(v;) = F; = %

e The Lorenz curveis

1 i
j=1
S
L; = —
Sn
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https://en.wikipedia.org/wiki/Lorenz_curve#Definition_and_calculation
https://en.wikipedia.org/wiki/Lorenz_curve#Definition_and_calculation
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Implementation

function lorenz(v) # assumed sorted vector

S = cumsum(v) # cumulative sums: [v[1], Vv[1] + v[2], ... ]
F = (1:1length(v)) / length(v) # empirical CDF since everyone has the same weight!
L =S ./ S[end]
return (; F, L) # returns named tuple
end
n = 10_000
w = sort(exp.(randn(n))); # lognormal draws

(; F, L) = lorenz(w)
plot(F, L, label = "Lorenz curve, lognormal sample", legend = :topleft)
plot!(F, F, label = "Lorenz curve, equality")
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Implementation

1.00 |

0.75 1

0.50 r

0.25 r

0.00

Lorenz curve, lognormal sample
Lorenz curve, equality
0.00 0.25 0.50 0.75 1.00

-y

47189



i
With Cruder Samples Still Fairly Smooth

n = 200

w = sort(exp.(randn(n))); # lognormal draws

(; F, L) = lorenz(w)

plot(F, L, label = "Lorenz curve Samples #1", legend = :topleft)
w = sort(exp.(randn(n))); # lognormal draws

(; F, L) = lorenz(w)

plot!(F, L, label = "Lorenz curve Samples #2")

plot!(F, F, label = "Lorenz curve, equality")
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With Cruder Samples Still Fairly Smooth

1.00 |
Lorenz curve Samples #1
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Interpretation

» if point (x, y) lies on the curve, it means that, collectively, the bottom (100x) % of the
population holds (100y) % of the wealth.

» The "equality’ line is the 45 degree line, i.e. the Lorenz curve under perfect equality.
 In this example, the bottom 80% of the population holds around 40% of total wealth.
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L orenz Curve for Pareto

« Can verify analytically that L(p) = 1 — (1 — p)!~1/® for the Pareto distribution

a_vals = (1, 2, 5)
n = 10_000
plt plot(F, F, label = "equality", legend = :topleft)
for in a_vals
rand(n)
y sort(rand(Pareto(a, 1.0), n))
(; F, L) = lorenz(y)
plot!(plt, F, L, label = L"\alpha = %%a")
end
plt

c o
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L orenz Curve for Pareto
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Gini Coefficients

» The Gini Coefficient is a summary measure of the Lorenz curve
Integral between the Lorenz curve and the line of equality

Giniis zero with no inequality, and one if concentrated in single individual

» With sorted, unweighted discrete set {vy, . .. v, } there is a simplification

2 ?_ 1V; 1
G — D e - n+t

N n 2?21 V; n
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https://en.wikipedia.org/wiki/Gini_coefficient
https://en.wikipedia.org/wiki/Gini_coefficient#Alternative_expressions
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Calculation and Comparison to Theoretical

« The Weibull distribution, f(z) = az® *e™®", has a Gini coefficient of 1 — 2/@

function gini(v)
return (2 * sum(i * y for (i, y) in enumerate(v)) / sum(v)
- (length(v) + 1)) / length(v)
end

a_vals = 1:19

n = 100

ginis = [gini(sort(rand(Weibull(a), n))) for a in a_vals]
ginis_theoretical = [1 - 2A(-1 / a) for a in a_vals]

plot(a_vals, ginis, label = "estimated gini coefficient",
xlabel = L"wWeibull parameter $a$", ylabel = "Gini coefficient")
plot!(a_vals, ginis_theoretical, label = "theoretical gini coefficient")
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https://en.wikipedia.org/wiki/Weibull_distribution
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Calculation and Comparison to Theoretical

0.5
estimated gini coefficient
theoretical gini coefficient
0.4
D
2 0.3+
b
;
5 02 |
0.1

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Weibull parameter a
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Income and Wealth

» The degree of inequality in income and wealth can be very different
— Income is a flow variable, wealth is a stock variable
— Income is taxed progressively

— Wealth is taxed proportionally in order to avoid double taxation (i.e., in principle,
income was already taxed before purchasing assets)

— Different rates of return for different types of assets

— Inheritance of wealth vs. human capital

e Some data sources: World Inequality Database, Our World in Data, Stone Foundation
and many OECD/Fed sources

e Theory Survey: Skewed Wealth Distributions: Theory and Empirics by Benhabib and
Bisin
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https://wid.world/
https://ourworldindata.org/
https://www.stonefdn.org/about
https://www.aeaweb.org/articles?id=10.1257/jel.20161390
https://www.aeaweb.org/articles?id=10.1257/jel.20161390

s
Vieasurement Issues

» Measurement and interpretation is tricky for both

» Panel data used by economists (e.g. PSID and Survey of Consumer Finances), but have
difficulty sampling the rich

« Administrative data (e.qg., social security records) help for income but not so much for
wealth

* In many economies, a significant portion of wealth is in social security promises for
many people.

e.q., If we taxed everyone at 90% and used all of that for public pensions, then only
calculating wealth from assets would be misleading

How to handle the "zeros™ Maybe gini isn't ideal for wealth

» Mapping from wealth/income to consumption (and ultimately welfare)?
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https://psidonline.isr.umich.edu/
https://www.federalreserve.gov/econres/scfindex.htm

0/

Income inequality: Gini coefficient, 2019

The Gini coefficient® measures inequality on a scale from O to 1. Higher values indicate higher inequality.
Depending on the country and year, the data relates to income measured after taxes and benefits, or to
consumption, per capita®

No data 0.3 0.35 0.4 0.45 0.5 0.55
| | | L D
Data source: World Bank Poverty and Inequality Platform (2023) OurWorldInData.org/economic-inequality | CC BY

Note: Income and consumption estimates are available separately in this Data Explorer.
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Income inequality: Gini coefficient before and after tax, 2019

Inequality is measured here in terms of the Gini coefficient! of income before taxes on the x-axis, and after taxes
on the y-axis.

@ M Africa
0.6 South Africa B Asia
O M Europe
XN .
0.55 60(4 B North ,.Amenca
O@ B Oceania
Ay M South America
0.5 Brazil
. 300M
.Chile 100M
0.45 . ;
X \({\(e} Circles SIZG._‘d by
z United States NS Population
9] Av (historical
£ 04 N . o estimates)
< United Kingdc()’m'
0.35 s
* &V & «
2
® Canadaw, S _Germany ed\)‘i‘(\
0.3 O ® Redv©
e Poland . .
o Belgium
0.25 Jceland ‘.Cz.echla ®
Slovakia
L)
0.2
0.2 0.3 04 0.5 0.6 0.7
Before tax
Data source: OECD Income Distribution Database (2023) OurWorldInData.org/economic-inequality | CC BY

Note: Income has been equivalized®.
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From From Benhabib, Bisin, Luo
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FIGURE 1. EARNINGS AND WEALTH GINI

Sources: Wealth: Davies et al. (2011). Earnings: (Krueger
et al. 2010).
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https://pubs.aeaweb.org/doi/pdfplus/10.1257/aer.p20171005

iy
Cross-Country Comparisons

» Useful to compare and pool across countries, but can be misleading in interpretation

» Income/wealth/etc. comes out of various stochastic processes, government
interventions, and individual choices

» Hypotheticals can be helpful to think things through

'f we made Canadians 5x more productive proportionality, preserving Canada’s gini
how would it change these global measures?

If we magically made India have the same income distribution as the US, how much
would that change the global Gini?
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Global income and wealth inequality, 2021

70%
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50% | - :
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Interpretation: The global bottom 50% captures 8.5% of total income measured at Purchasing Power Parity (PPP). The global bottom
50% owns 2% of wealth (at Purchasing Power Parity). The global top 10% owns 76% of total Household wealth and captures 52% of total
income in 2021. Note that top wealth holders are not necessarily top income holders. Incomes are measured after the operation of pension
and unemployment systems and before taxes and transfers. Sources and series: wir2022.wid.world/methodology.
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Geographic Breakdown of global income groups in 2021
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Interpretation: The graph shows the geographical breakdown of global income groups. In 2021, 18% of the population of the world’s
top 0.001% income group were residents of China. Income measured after pension and unemployment benefits are received by
individuals, and before income and wealth taxes. Sources and series: wir?022.wid.world/methodology.
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Wealth Dynamics

» Theory tells us that Kesten processes will lead to power-law tails and hence typically high
degrees of inequality
» Income inequality itself can also be skewed

't is sometimes a power-law but unlikely to be due to Kesten-style dynamics
because human capital doesn't seem multiplicative

However, complementarities in production can take small differences in talent and
amplify them

e.g., see Why has CEO Pay Increased So Much by Gabaix and Landier

» Here we will explore additive income + Kesten-style dynamics of wealth
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H 7
Key Components of Wealth Dynamics

» Income will follow simple auto-regressive style

* Returns on wealth will have an 11D component and be multiplicative

» Savings will be a a portion of wealth, as in previous models
Assume they only save if the wealth is above a certain level
This is a simple way to model that many people do not save

» Our prediction is that this distortion at the bottom of the distribution leads to power-law
tails
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Savings and Wealth Process

o wy IS wealth
» Stochastic variables, which may have an underlying state
Y 1S iIncome, which will be stochastic
R, 1 is the gross return on wealth, which will be stochastic

» The total income saved is an exogenous s(w;). Consumption implied

W41 = Rt+13(’wt) + Yt+1

» Wealth net of consumption, s(wy), is a simple threshold

) sowy ifw >w
s(we) = {0 otherwise
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Income and Returns Processes

» We will introduce a correlation between income and returns based on an underlying state
241 = azy + b+ 06141
» Given this latent state the returns have 11D shocks
R; =1+ 1y = crexp(z:) + exp(ur + 0,&¢)
» And income has a similar 11D component

Yt = Cy exp(2¢) + eXP(Ny + Uth)

» Where €, &, (¢ are IID and standard normal
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Creation of Model Parameters

function wealth_dynamics_model(; # all named arguments
w_hat
cy=11.0, muy = 1.0,
cC_r =0.05, mu_r = 0.1,

sigma_y =

sigma_r

a=20.5 b=0.0, sigma_z = 0.1)

z_mean = b / (1 - a)
z_var = sigma_z"2 / (1 - an2)
exp_z_mean = exp(z_mean + z_var / 2)

R_mean = c_r * exp_z_mean + exp(mu_r + sigma_r/2 / 2)
y_mean = c_y * exp_z_mean + exp(mu_y + sigma_y/2 / 2)

alpha = R_mean * s_0
z_stationary_dist = Normal(z_mean, sqrt(z_var))

1.0, s_0 = 0.75, # savings

0.2, # labor income
= 0.5, # rate of return

@assert alpha <= 1 # check stability condition that wealth does not diverge

return (; w_hat, s_0, c_y, mu_y, sigma_y, c_r, mu_

r, sigma_

r, a, b, sigma_z,

z_mean, z_var, z_stationary_dist, exp_z_mean, R_mean, y_mean, alpha)

end

-y
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Simulation of an Agent

function simulate_wealth_dynamics(w_0, z_0, T, params)

end

(; w_hat, s_0, c_y, mu_y, sigma_y, c_r, mu_r, sigma_r, a, b, sigma_z) = params # unpack

w = zeros(T + 1)
z = zeros(T + 1)
w[l] = w_0
z[1] = z_0
for t in 2: (T + 1)
z[t] = a * z[t - 1] + b + sigma_z * randn()
y = c_y * exp(z[t]) + exp(mu_y + sigma_y * randn())
w[t] = y # income goes to next periods wealth
if w[t - 1] >= w_hat # if above minimum wealth level, add savings
R =oc_r * exp(z[t]) + exp(mu_r + sigma_r * randn())
wlt] += R * s_ 0 * w[t - 1]
end
end
return w, z

-y
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Example Simulation

p = wealth_dynamics_model() # defaults
y_0 = p.y_mean
z_0 = rand(p.z_stationary_dist)

T = 200
w, z = simulate_wealth_dynamics(y_0, z_0, T, p)
plot(w, caption = "Wealth simulation",

xlabel = "t", label = L"w(t)",
size = (600, 400))
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Ternary Operator

function f1(x) (f1(0.8), f2(0.8), f3(0.8)) = (2.8, 2.8, 2.8)
val = 2.0 (f1(1.8), f2(1.8), f3(1.8)) = (3.8, 3.8, 3.8)
if x >= 0.0
val += X
else
val -= X
end

return val

end

function f2(x)
temp = (x >= 0.0) ? X : -X
return 2.0 + temp

end

f3(x) = 2.0 + ((x >=0.0) ? X : -X)
@show f1(0.8), f2(0.8), f3(0.8)
@show f1(1.8), f2(1.8), f3(1.8);
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Simulate Panel with Ensemble

function simulate_panel(N, T, p)
(; w_hat, s_0, c_y, mu_y, sigma_y, c_r, mu_r, sigma_r, a, b, sigma_z) = p
w = p.y_mean * ones(N) # start at the mean of vy
z = rand(p.z_stationary_dist, N)
zp similar(z)
wp similar(w)
R = similar(w)
for t in 1:T

z_shock = randn(N)
R_shock = randn(N)
w_shock = randn(N)

@inbounds for i in 1:N
zp[i] = a * z[1i] + b + sigma_z * z_shock[1i]
R[1i] = (w[i] >= w_hat) ? c_r * exp(zp[i]) + exp(mu_r + sigma_r * R_shock[i]) : 0.0
wp[i] = c_y * exp(zp[i]) + exp(mu_y + sigma_y * w_shock[i]) + R[1i] * s_0 * w[i]

end

W .= wp

z .= zp
end
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Ginl and median Wealth

p = wealth_dynamics_model() median(res.w) = 38.865197453275826
N = 10 000 res.gini = 0.7411006654233162
T = 500

res = simulate_panel(N, T, p)
@show median(res.w)
@show res.gini;
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Lorenz Curves and Returns on Wealth

mu_r_vals = range(0.0, 0.075, 5)

results = map(mu_r -> simulate_panel(N, T, wealth_dynamics_model(; mu_r)),
mu_r_vals);

plt = plot(results[1].F, results[1].F, label = "equality", legend = :topleft)

[plot!(plt, res.F, res.L, label = L"\mu_r = %$mu_r")

for (mu_r, res) in zip(mu_r_vals, results)]
plt
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Lorenz Curves and Returns on Wealth
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Gini Coefficients

ginis = [res.gini for res in results]
plot(mu_r_vals, ginis;
label = "Gini", xlabel = L"\mu_r",
size = (600, 400))
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Lorenz Curves and Volatility

sigma_r_vals = range(0.35, 0.53, 5)

results = map(sigma_r -> simulate_panel(N, T, wealth_dynamics_model(; sigma_r)),
sigma_r_vals);

plt = plot(results[1].F, results[1].F, label "equality", legend = :topleft)

[plot!(plt, res.F, res.L, label = L"\sigma_r = %$sigma_r")

for (sigma_r, res) in zip(sigma_r_vals, results)]

plt
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Lorenz Curves and Volatility
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Gini Coefficients

ginis = [res.gini for res in results]
plot(sigma_r_vals, ginis;
label = "Gini", xlabel = L"\sigma_r",
size = (600, 400))
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(Optional)

Benchmarking

-xamples
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INn-place Functions, Preallocation, and Performance

» One performance advantage of Julia is its ability to manage allocations and perform in-
place operations.

» Don't prematurely optimize your code - but in cases where the datastructures are large
and the code is of equivalent complexity, don't be afraid to use in-place operations.

» The convention in Julia is to use ! to denote a function which mutates its arguments and
to put any arguments that will be modified first.
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Jse Benchmarking when Performance Matters

» The BenchmarkTools.jl is a good package for benchmarking and performance
» Suggestions (after the “never prematurely optimize” rule)
Always put the code in a function, especially loops

Use the $ to interpolate the variables into the function, avoiding global scope and
global variables

Only benchmark when you need speed, otherwise go for clarity

Careful not to change types of variables (e.qg. start as an integer, change to float)
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https://github.com/JuliaCI/BenchmarkTools.jl

i
Example of Benchmarking

f(x) = x."2 .+ 5

X = rand(1_000)
@btime f($x)

# For more details
@benchmark f($x)
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Example of Benchmarking

474.510 ns (3 allocations: 7.88 KiB)
BenchmarkTools.Trial: 10000 samples with 280 evaluations.

Range ( . Mmax): v 49.274 ps 1 GC (min .. max): 0.00% .. 18.56%

Time (median): 587.811 ns i GC (median): 0.00%

Time (mean * 0): 903.527 ns + 1.499 us | GC (mean = o): 23.17% * 15.47%
502 ns Histogram: log(frequency) by time 6.07 ps <

Memory estimate: , allocs estimate:

-y
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In-place Lorenz

function lorenz!(L, V) 1.397 ms (6 allocations: 15.26 MiB)

cumsum! (L, V) 1.352 ms (0 allocations: O bytes)

L ./= L[end]
F = (1:1length(v))/length(v)
# inplace can still return
return F, L

end
n =1_000_000
v = sort(rand(n) .A (-1 / 2))

@btime lorenz($v)
L = similar(v)
@btime lorenz!($L, $V);
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Performance Advantage?

» Depends on the system
* Memory allocations will be smaller regardless
* In-place operations can be faster, but not always, especially for small data.
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Worth the Trouble? Another Inplace Example

mul_test!(Z, X, Y) = mul!(Z, X, Y) 5.402 ms (3 allocations: 1.91 MiB)
mul_test(X, Y) = X * Y 5.396 ms (0 allocations: 0 bytes)
500

randn(n, n)

randn(n, n)

similar(Y)

out-of-place multiplication

@btime mul_test($X, $Y)

# in-place multiplication

@btime mul_test!($Z, $X, $Y);

n
X
Y
Z
#
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