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Overview
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Motivation and Materials

In this lecture, we will introduce wealth and income distributions and the dynamics that

lead to their shape

In addition, we will investigate the role of multiplicative growth in �rm dynamics

This will also let us explore heavy-tailed distributions and get a sense of when they will

in�uence inequality

4 / 89



Materials

Adapted from QuantEcon lectures coauthored with John Stachurski and Thomas J.

Sargent

→

Other references in the Python lectures by Stachurski and Sargent

→

→

Wealth Distribution Dynamics

Heavy-Tailed Distributions

Kesten Processes

using Distributions, Plots, LaTeXStrings, LinearAlgebra, BenchmarkTools1
using Plots.PlotMeasures, StatsPlots2
default(;legendfontsize=16, linewidth=2, tickfontsize=12,3
         bottom_margin=15mm)4
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https://julia.quantecon.org/introduction_dynamics/wealth_dynamics.html
https://intro.quantecon.org/heavy_tails.html
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Tails of Distributions
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Counter-CDFs

The counter-CDF is the probability that the value is above a certain value

It is the complement of the CDF

Or, if there is a density , then

P(X > x) = 1 − P(X ≤ x)

f(x)

∫

∞

x

f(x)dx
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CCDF for the Normal

The lognormal distribution is often used to model returns

mu = 1.01
sigma = 0.52
dist = Normal(mu, sigma)3
x = range(-1.0, 4.0, length = 100)4
plot(x, 1 .- cdf(dist, x);5
     label = "CCDF", size = (600, 400))6
plot!(dist; label = "Density")7
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CCDF for the LogNormal

The lognormal distribution is often used to model returns

mu = -0.0011
sigma = 0.32
dist = LogNormal(mu, sigma)3
x = range(0.0, 3.0, length = 100)4
plot(x, 1 .- cdf(dist, x);5
     label = "CCDF", size = (600, 400))6
plot!(dist; label = "Density")7
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The Pareto Distribution

Those distributions have relatively few large (or small) values

The Pareto distribution has a heavy tail

→ It is often used to model wealth, city sizes, and other phenomena where there are

many small values and a few large ones

The density, given min-value  and a shape parameter 

CDF is , CCDF = , for 

x

m

α

f(x) =

αx

α

m

x

α+1

, for all x ≥ x

m

F(x) = 1 − (

x

x

m

)

−α

(

x

x

m

)

−α

x ≥ x

m
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CCDF for the Pareto with 

As you can see, the CCDF drops fairly slowly

α = 2.5

x_m = 1.01
alpha = 2.52
x = range(0.0, 5.0, length = 100)3
dist = Pareto(alpha, x_m)4
@show mean(dist)5
@show var(dist)6
plot(x, 1 .- cdf(dist, x);7
     label = "CCDF", size = (600, 400))8
plot!(x, dist; label = "Density")9

mean(dist) = 1.6666666666666667
var(dist) = 2.2222222222222223
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CCDF for the Pareto with 

With a smaller  it is even heavier tailed, and doesn’t have a variance

α = 1.0

α

x_m = 1.01
alpha = 1.012
x = range(0.0, 10.0, length = 100)3
dist = Pareto(alpha, x_m)4
@show mean(dist)5
@show var(dist)6
plot(x, 1 .- cdf(dist, x);7
     label = "CCDF", size = (600, 400))8
plot!(x, dist; label = "Density")9

mean(dist) = 100.99999999999991
var(dist) = Inf

12 / 89



Log-Log Plots

The CCDF is often plotted on a log-log scale. i.e.   vs. 

Taking the log of the probability lets us see the speed that the tail drops off

For the Pareto distribution, the CCDF is

→ Taking the log of this gives

log(x) log(1 − F(x))

(

x

x

m

)

−α

α log(x

m

) − α log(x)
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Log-Log Plot for the Pareto
x_m = 1.01
x = range(1.0, exp(1), length = 100)2
plot(log.(x),3
     log.(1 .- cdf(Pareto(2.0, x_m), x));4
     label = L"\log(1-F(x;\alpha=2.0))",5
     xlabel = L"\log(x)", size = (600, 400),6
     legend = :bottomleft)7
plot!(log.(x),8
     log.(1 .- cdf(Pareto(1.0, x_m), x));9
     label = L"\log(1-F(x;\alpha=1.0))")10
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Log-Log Plot for LogNormal vs. Pareto
x_m = 1.01
x = range(1.0, 5, length = 100)2
plot(log.(x),3
     log.(1 .- cdf(Pareto(2.0, x_m), x));4
     label = "Pareto",5
     xlabel = L"\log(x)", size = (600, 400),6
     legend = :bottomleft)7
plot!(log.(x),8
     log.(1 .- cdf(LogNormal(1.0, 0.5), x));9
     label = "LogNormal")10
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Heavy Tailed Distributions

See  by Stachurski and Sargent for more

We previously looked at the LLN and Monte Carlo methods for calculating functions of a

distribution from samples

Crucial in these was a question of whether a particular distribution had a particular

moment.

→ e.g. for the Cauchy distribution, the mean does not even exist

Heavy-Tailed Distributions
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https://intro.quantecon.org/heavy_tails.html


Power-Law Tails

The Pareto distribution is a special case of a power-law distribution

A power-law distribution asymptomatically behaves like a Pareto distribution, with some

 tail parameter. i.e.   for large 

More formally, there exists some  and some  such that

α P(X > x) ∝ x

−α

x

c α > 0

lim

x→∞

x

α

P(X > x) = c
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Failures of LLNs?

For power-law tails, you may �nd that the not all moments exist

In particular, for a Power-law distribution, there are only moments for 

→ For example, with  the mean and variance don’t exist

→ For  the mean exists, but the variance doesn’t

Of course, with �nite data you will always be able to �nd a mean and variance, but with

more data you may see them diverge

k < α

α = 1

α = 1.8
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Example with Pareto and α = 3

N = 20001
dist = Pareto(3.0, 1.0)2
@show var(dist) + mean(dist)^23
x_draws = rand(dist, N)4
f_x_draws = x_draws.^25
f_means = cumsum(f_x_draws)./(1:N)6
plot(1:length(f_means), f_means;7
     label=L"\frac{1}{n}\sum_{i=1}^n x_i^2",8
     xlabel="n", ylabel=L"\bar{f}(X)",9
     size=(600,400))10

var(dist) + mean(dist) ^ 2 = 3.0
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Example with Pareto and α = 1.0

N = 5001
dist = Pareto(1.0, 1.0)2
x_draws = rand(dist, N)3
f_x_draws = x_draws.^24
f_means = cumsum(f_x_draws)./(1:N)5
plot(1:length(f_means), f_means;6
     label=L"\frac{1}{n}\sum_{i=1}^n x_i^2",7
     xlabel="n", ylabel=L"\bar{f}(X)",8
     size=(600,400))9
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Empirical CDFs

Given a pmf, , of a discrete-valued random variable with ordered values, we can do the

CDF as 

We can �nd an  for an unweighted vector  of

observations as

With the equivalent CCDF as .

p

F(x

i

) = ∑

i

j=1

p(x

j

)

empirical counterpart {X

n

}

N

n=1

^

F(x) =

number of observations X

n

≤ x

N

1 −

^

F(x)
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https://en.wikipedia.org/wiki/Empirical_distribution_function


Empirical CDF with Discrete Number of Values

If there are a �nite number of values, count the observations

X_data = sort(rand(1:6, 30))1
X = unique(X_data)2
counts = [sum(X_data .== x) for x in X]3
cumulative_counts = cumsum(counts)4
F = cumulative_counts / length(X_data)5
plot(X, F; xlabel="X", label = "F(X)",6
     seriestype = :steppre,7
     size = (600, 400))8
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Empirical CDF from Continuous Data

In cases where the data is continuous counting is just sorting

n = 1001
X_data = randn(n)2
F = (1:n) / n3
plot(sort(X_data), F; xlabel="X",4
     label = "F(X)", seriestype = :steppre,5
     size = (600, 400))6
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(Crude) Tail Parameter Estimation

The tail parameter  is the negative slope of the log-log plot of the CCDF

Hence, we use a linear regression. Tail parameter 

→ Run regression with package (e.g.  ) or manually

Discrete data: CCDF of last point is zero, cannot take a log

→ One solution is just to drop that last point in the regression

α

α = −a

log(1 − F

i

)

≡y

i

= b+ alog(X

i

)

≡x

i

+ ϵ

i

 

GLM.jl

See  by Gabaix and Ibragimov for a more sophisticated

approach

Rank — 1/2: A Simple Way to Improve the OLS Estimation of Tail Exponents
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https://juliastats.org/GLM.jl/stable/
https://www.jstor.org/stable/25800776


Calculation of Coe�cients

Given the least squares problem

Calculate the means,  and 

Then the coe�cients are

min

a,b

n

∑

i=1

(y

i

− (ax

i

+ b))

2

x̄ =

1

n

∑

n

i=1

x

i

ȳ =

1

n

∑

n

i=1

y

i

a =

∑

n

i=1

(x

i

− x̄)(y

i

− ȳ)

∑

n

i=1

(x

i

− x̄)

2

, b = ȳ− ax̄
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Example with Pareto and α = 1.1

function simple_regression(x, y)1
  x_bar = mean(x)2
  y_bar = mean(y)3
  a = sum((x .- x_bar).*(y .- y_bar)) / sum((x .- x_bar).^2)4
  b = y_bar - a * x_bar5
  return (;a, b)6
end7
N = 10008
alpha = 1.19
X = sort(rand(Pareto(alpha, 1.0), N))10
F = (1:N) / N11
y = log.(1 .- F)12
x = log.(X)13
(;a, b) = simple_regression(x[1:end-1], y[1:end-1])14
plot(x, y; label = L"\log(1-F(X))", xlabel=L"\log(X)")15
plot!(x, a*x .+ b; label = L"a=%$(round(a, digits = 2)), \alpha = %$alpha", style = :dash)16
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Example with Pareto and α = 1.1
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Empirical Tails
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Empirical Evidence of Tails

It is sometimes di�cult, with �nite data, to distinguish between a heavy-tailed distribution

and a then-tailed one

The issue is that in either case there are typically not that many observations with large

values, even if there are more for power-laws.

Some classic examples of power-law tails in the data

→ All from  by Stachurski and SargentHeavy-Tailed Distributions
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https://intro.quantecon.org/heavy_tails.html


Largest 500 �rms in 2020 taken from Forbes Global 2000
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City Sizes in the US and Brazil
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Wealth Distribution Across Countries
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GDP Across Countries
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Firm Dynamics
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Multiplicative Dynamics and Gibrat’s Law

 is a simple model of �rm dynamics which proposes that the growth rate of

a �rm is independent of its size

→ Note, this is a “law” on the stochastic process, not the stationary distribution that

comes out of it

→ Can show that a proportional growth process will lead to a lognormal distribution of

�rm sizes over time

Does it hold in the data?

Not exactly, even if a good starting point (e.g.,  by John Sutton)

→ Small �rms tend to grow faster than large �rms

→ Volatility is higher for small �rms

→ Rather than lognormal, seems closer to Zipfs law

Gibrat’s Law

Gibrat’s Legacy
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https://en.wikipedia.org/wiki/Gibrat%27s_law
https://www.jstor.org/stable/2729692


Zipf Distribution? 

See https://www.science.org/doi/10.1126/science.1062081 by Axtell

α = 1.059
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Which of Stochastic Processes Lead to Power Laws?

 is a type of distribution: The size of the th largest is inversely proportional to

→ Equivalent to a discrete version of a Pareto distribution with 

 by Xavier Gabaix is a good reference on Power

laws and where they come from

The key: multiplicative growth processes + some distortion at the bottom of the

distribution

→ bankruptcy

→ exit and entry

→ additive shocks which distort the bottom disproportionately

Zipf’s Law n

n

α = 1

Power Laws in Economics and Finance
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https://en.wikipedia.org/wiki/Zipf%27s_law
https://pages.stern.nyu.edu/~xgabaix/papers/pl-ar.pdf


Reminder on Kesten Processes

Recall the Kesten Process, which generalizes this by adding in the  term

→  is an IID growth rate,  is an IID additive shock

Another example of a related process

y

t+1

X

t+1

= a

t+1

X

t

+ y

t+1

a

t+1

y

t+1

X

t+1

= max{s

0

, a

t+1

X

t

}
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Simulation of a Process for Growth

Let �rm size , where X

t+1

= max{s

0

, a

t+1

X

t

} log a

t+1

∼ N (μ,σ

2

)

function iterate_map_iid_ensemble(f, dist, x0, T, num_samples)1
    x = zeros(num_samples, T + 1)2
    x[:, 1] .= x03
    for t in 2:(T + 1)4
        x[:, t] .= f.(x[:, t - 1], rand(dist, num_samples))5
    end6
    return x7
end8
num_samples = 1000009
T = 50010
s_0 = 1.0 # exit/entry at X = 1.011
X_0 = 1.012
a_dist = LogNormal(-0.01, 0.1)13
h(X, a) = max(s_0, a * X)14
X = iterate_map_iid_ensemble(h, a_dist, X_0, T, num_samples)15
histogram(log.(X[:, end]); label = L"Histogram", xlabel = L"\log X_t", normalized=true)16
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Simulation of a Process for Growth
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Log-Log Plot
X_T = sort(X[:, end])1
x_T = log.(X_T)2
F_T = (1:length(X_T)) / length(X_T)3
y_T = log.(1 .- F_T)4
(;a, b) = simple_regression(x_T[1:end-1],5
                            y_T[1:end-1])6
plot(x_T, y_T; label = L"\log(1-F(X))",7
     xlabel=L"\log(X)", size = (600, 400))8
a_r = round(a, digits = 2)     9
plot!(x_T, a*x_T .+ b;10
      label = L"a=%$a_r", style = :dash)11
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Lorenz Curves and Gini Coe�cients
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Visualizing Inequality

Tails are helpful for seeing how inequality is distributed at the top-end (e.g., the top 1% or

0.1%)

→ They can also help us understand processes which might generate inequality

→ For example, Kesten processes, which we will come back to, are a class of

processes which generate power-law tails

→ This can in�uence tax policy/etc.

However, the tail behavior is not very useful to understand inequality in the lower parts of

the distribution

43 / 89



Lorenz Curves

One popular graphical measure of inequality is the .

For a continuous distribution with pdf , cdf , and quantile 

Which can be rewritten as 

Intuition: the proportion of the population with less than  of the total income has  of

the total income

Lorenz curve

f(x) F(x) x = F

−1

(p) ≡ Q(p)

L(p) =

∫

Q(p)

−∞

xf(x)dx

∫

∞

−∞

xf(x)dx

L(p) =

∫

p

0

Q(s)ds

∫

1

0

Q(s)ds

p L(p)
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https://en.wikipedia.org/wiki/Lorenz_curve


Lorenz Curve Given Data

In the case of  we have a simple empirical version of the Lorenz

curve.  versions are useful if you bin data (e.g. quintiles)

Given sorted , we �nd the empirical CDF (previous slides) is 

The Lorenz curve is

unweighted discrete data

Weighted

v

1

,… v

n

F(v

i

) ≡ F

i

≡

i

n

S

i

=

1

n

i

∑

j=1

v

j

L

i

=

S

i

S

n
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https://en.wikipedia.org/wiki/Lorenz_curve#Definition_and_calculation
https://en.wikipedia.org/wiki/Lorenz_curve#Definition_and_calculation


Implementation
function lorenz(v)  # assumed sorted vector1
    S = cumsum(v)  # cumulative sums: [v[1], v[1] + v[2], ... ]2
    F = (1:length(v)) / length(v) # empirical CDF since everyone has the same weight!3
    L = S ./ S[end]4
    return (; F, L) # returns named tuple5
end6
n = 10_0007
w = sort(exp.(randn(n)));  # lognormal draws8
(; F, L) = lorenz(w)9
plot(F, L, label = "Lorenz curve, lognormal sample", legend = :topleft)10
plot!(F, F, label = "Lorenz curve, equality")11
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Implementation
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With Cruder Samples Still Fairly Smooth
n = 2001
w = sort(exp.(randn(n)));  # lognormal draws2
(; F, L) = lorenz(w)3
plot(F, L, label = "Lorenz curve Samples #1", legend = :topleft)4
w = sort(exp.(randn(n)));  # lognormal draws5
(; F, L) = lorenz(w)6
plot!(F, L, label = "Lorenz curve Samples #2")7
plot!(F, F, label = "Lorenz curve, equality")8
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With Cruder Samples Still Fairly Smooth
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Interpretation

if point  lies on the curve, it means that, collectively, the bottom  of the

population holds  of the wealth.

The “equality” line is the 45 degree line, i.e. the Lorenz curve under perfect equality.

In this example, the bottom 80% of the population holds around 40% of total wealth.

(x, y) (100x)%

(100y)%
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Lorenz Curve for Pareto

Can verify analytically that  for the Pareto distributionL(p) = 1 − (1 − p)

1−1/α

a_vals = (1, 2, 5)1
n = 10_0002
plt = plot(F, F, label = "equality", legend = :topleft)3
for a in a_vals4
    u = rand(n)5
    y = sort(rand(Pareto(a, 1.0), n))6
    (; F, L) = lorenz(y)7
    plot!(plt, F, L, label = L"\alpha = %$a")8
end9
plt10
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Lorenz Curve for Pareto
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Gini Coe�cients

The  is a summary measure of the Lorenz curve

→ Integral between the Lorenz curve and the line of equality

→ Gini is zero with no inequality, and one if concentrated in single individual

With sorted, unweighted discrete set  there is a 

Gini Coe�cient

{v

1

,… v

n

} simpli�cation

G =

2∑

n

i=1

iv

i

n ∑

n

i=1

v

i

−

n + 1

n
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https://en.wikipedia.org/wiki/Gini_coefficient
https://en.wikipedia.org/wiki/Gini_coefficient#Alternative_expressions


Calculation and Comparison to Theoretical

The , , has a Gini coe�cient of Weibull distribution f(x) = ax

a−1

e

−x

a

1 − 2

1/a

function gini(v)1
    return (2 * sum(i * y for (i, y) in enumerate(v)) / sum(v)2
           - (length(v) + 1)) / length(v)3
end4

5
a_vals = 1:196
n = 1007
ginis = [gini(sort(rand(Weibull(a), n))) for a in a_vals]8
ginis_theoretical = [1 - 2^(-1 / a) for a in a_vals]9

10
plot(a_vals, ginis, label = "estimated gini coefficient",11
     xlabel = L"Weibull parameter $a$", ylabel = "Gini coefficient")12
plot!(a_vals, ginis_theoretical, label = "theoretical gini coefficient")13
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Calculation and Comparison to Theoretical
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Wealth and Income Distribution
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Income and Wealth

The degree of inequality in income and wealth can be very different

→ Income is a �ow variable, wealth is a stock variable

→ Income is taxed progressively

→ Wealth is taxed proportionally in order to avoid double taxation (i.e., in principle,

income was already taxed before purchasing assets)

→ Different rates of return for different types of assets

→ Inheritance of wealth vs. human capital

Some data sources: , , 

and many OECD/Fed sources

Theory Survey: 

World Inequality Database Our World in Data Stone Foundation

Skewed Wealth Distributions: Theory and Empirics by Benhabib and

Bisin

57 / 89

https://wid.world/
https://ourworldindata.org/
https://www.stonefdn.org/about
https://www.aeaweb.org/articles?id=10.1257/jel.20161390
https://www.aeaweb.org/articles?id=10.1257/jel.20161390


Measurement Issues

Measurement and interpretation is tricky for both

Panel data used by economists (e.g.   and ), but have

di�culty sampling the rich

Administrative data (e.g., social security records) help for income but not so much for

wealth

In many economies, a signi�cant portion of wealth is in social security promises for

many people.

→ e.g., if we taxed everyone at 90% and used all of that for public pensions, then only

calculating wealth from assets would be misleading

→ How to handle the “zeros”? Maybe gini isn’t ideal for wealth

Mapping from wealth/income to consumption (and ultimately welfare)?

PSID Survey of Consumer Finances
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https://psidonline.isr.umich.edu/
https://www.federalreserve.gov/econres/scfindex.htm
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From From Benhabib, Bisin, Luo
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https://pubs.aeaweb.org/doi/pdfplus/10.1257/aer.p20171005


Cross-Country Comparisons

Useful to compare and pool across countries, but can be misleading in interpretation

Income/wealth/etc. comes out of various stochastic processes, government

interventions, and individual choices

Hypotheticals can be helpful to think things through

→ If we made Canadians 5x more productive proportionality, preserving Canada’s gini

how would it change these global measures?

→ If we magically made India have the same income distribution as the US, how much

would that change the global Gini?
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Wealth Dynamics
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Wealth Dynamics

Theory tells us that Kesten processes will lead to power-law tails and hence typically high

degrees of inequality

Income inequality itself can also be skewed

→ It is sometimes a power-law but unlikely to be due to Kesten-style dynamics

because human capital doesn’t seem multiplicative

→ However, complementarities in production can take small differences in talent and

amplify them

→ e.g., see 

Here we will explore additive income + Kesten-style dynamics of wealth

Why has CEO Pay Increased So Much by Gabaix and Landier
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https://scholar.harvard.edu/sites/scholar.harvard.edu/files/xgabaix/files/why_has_ceo_pay_increased.pdf


Key Components of Wealth Dynamics

Income will follow simple auto-regressive style

Returns on wealth will have an IID component and be multiplicative

Savings will be a a portion of wealth, as in previous models

→ Assume they only save if the wealth is above a certain level

→ This is a simple way to model that many people do not save

Our prediction is that this distortion at the bottom of the distribution leads to power-law

tails
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Savings and Wealth Process

 is wealth

Stochastic variables, which may have an underlying state

→  is income, which will be stochastic

→  is the gross return on wealth, which will be stochastic

The total income saved is an exogenous . Consumption implied

Wealth net of consumption, , is a simple threshold

w
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t
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t
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Income and Returns Processes

We will introduce a correlation between income and returns based on an underlying state

Given this latent state the returns have IID shocks

And income has a similar IID component

Where  are IID and standard normal

z
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= az
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Creation of Model Parameters

function wealth_dynamics_model(; # all named arguments1
                               w_hat = 1.0, s_0 = 0.75, # savings2
                               c_y = 1.0, mu_y = 1.0, sigma_y = 0.2, # labor income3
                               c_r = 0.05, mu_r = 0.1, sigma_r = 0.5, # rate of return4
                               a = 0.5, b = 0.0, sigma_z = 0.1)5
    z_mean = b / (1 - a)6
    z_var = sigma_z^2 / (1 - a^2)7
    exp_z_mean = exp(z_mean + z_var / 2)8
    R_mean = c_r * exp_z_mean + exp(mu_r + sigma_r^2 / 2)9
    y_mean = c_y * exp_z_mean + exp(mu_y + sigma_y^2 / 2)10
    alpha = R_mean * s_011
    z_stationary_dist = Normal(z_mean, sqrt(z_var))12
    @assert alpha <= 1 # check stability condition that wealth does not diverge13
    return (; w_hat, s_0, c_y, mu_y, sigma_y, c_r, mu_r, sigma_r, a, b, sigma_z,14
            z_mean, z_var, z_stationary_dist, exp_z_mean, R_mean, y_mean, alpha)15
end16
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Simulation of an Agent
function simulate_wealth_dynamics(w_0, z_0, T, params)1
    (; w_hat, s_0, c_y, mu_y, sigma_y, c_r, mu_r, sigma_r, a, b, sigma_z) = params # unpack2
    w = zeros(T + 1)3
    z = zeros(T + 1)4
    w[1] = w_05
    z[1] = z_06
    for t in 2:(T + 1)7
        z[t] = a * z[t - 1] + b + sigma_z * randn()8
        y = c_y * exp(z[t]) + exp(mu_y + sigma_y * randn())9
        w[t] = y # income goes to next periods wealth10
        if w[t - 1] >= w_hat # if above minimum wealth level, add savings11
            R = c_r * exp(z[t]) + exp(mu_r + sigma_r * randn())12
            w[t] += R * s_0 * w[t - 1]13
        end14
    end15
    return w, z16
end17
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Example Simulation
p = wealth_dynamics_model() # defaults1
y_0 = p.y_mean2
z_0 = rand(p.z_stationary_dist)3
T = 2004
w, z = simulate_wealth_dynamics(y_0, z_0, T, p)5
plot(w, caption = "Wealth simulation",6
        xlabel = "t", label = L"w(t)",7
        size = (600, 400))8
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Ternary Operator
function f1(x)1
    val = 2.02
    if x >= 0.03
        val += x4
    else5
        val -= x6
    end7
    return val8
end9
function f2(x)10
    temp = (x >= 0.0) ? x : -x11
    return 2.0 + temp12
end13
f3(x) = 2.0 + ((x >= 0.0) ? x : -x)14
@show f1(0.8), f2(0.8), f3(0.8)15
@show f1(1.8), f2(1.8), f3(1.8);16

(f1(0.8), f2(0.8), f3(0.8)) = (2.8, 2.8, 2.8)
(f1(1.8), f2(1.8), f3(1.8)) = (3.8, 3.8, 3.8)
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Simulate Panel with Ensemble

function simulate_panel(N, T, p)1
    (; w_hat, s_0, c_y, mu_y, sigma_y, c_r, mu_r, sigma_r, a, b, sigma_z) = p2
    w = p.y_mean * ones(N) # start at the mean of y3
    z = rand(p.z_stationary_dist, N)4
    zp = similar(z)5
    wp = similar(w)6
    R = similar(w)7
    for t in 1:T8
        z_shock = randn(N)9
        R_shock = randn(N)10
        w_shock = randn(N)11
        @inbounds for i in 1:N12
            zp[i] = a * z[i] + b + sigma_z * z_shock[i]13
            R[i] = (w[i] >= w_hat) ? c_r * exp(zp[i]) + exp(mu_r + sigma_r * R_shock[i]) : 0.014
            wp[i] = c_y * exp(zp[i]) + exp(mu_y + sigma_y * w_shock[i]) + R[i] * s_0 * w[i]15
        end16
        w .= wp17
        z .= zp18
    end19
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Gini and median Wealth

p = wealth_dynamics_model()1
N = 10_0002
T = 5003
res = simulate_panel(N, T, p)4
@show median(res.w)5
@show res.gini;6

median(res.w) = 38.865197453275826
res.gini = 0.7411006654233162
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Lorenz Curves and Returns on Wealth

mu_r_vals = range(0.0, 0.075, 5)1
results = map(mu_r -> simulate_panel(N, T, wealth_dynamics_model(; mu_r)),2
              mu_r_vals);3
plt = plot(results[1].F, results[1].F, label = "equality", legend = :topleft)4
[plot!(plt, res.F, res.L, label = L"\mu_r = %$mu_r")5
 for (mu_r, res) in zip(mu_r_vals, results)]6
plt7
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Lorenz Curves and Returns on Wealth
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Gini Coe�cients

ginis = [res.gini for res in results]1
plot(mu_r_vals, ginis;2
    label = "Gini", xlabel = L"\mu_r",3
    size = (600, 400))4
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Lorenz Curves and Volatility
sigma_r_vals = range(0.35, 0.53, 5)1
results = map(sigma_r -> simulate_panel(N, T, wealth_dynamics_model(; sigma_r)),2
              sigma_r_vals);3
plt = plot(results[1].F, results[1].F, label = "equality", legend = :topleft)4
[plot!(plt, res.F, res.L, label = L"\sigma_r = %$sigma_r")5
 for (sigma_r, res) in zip(sigma_r_vals, results)]6
plt7
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Lorenz Curves and Volatility
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Gini Coe�cients

ginis = [res.gini for res in results]1
plot(sigma_r_vals, ginis;2
    label = "Gini", xlabel = L"\sigma_r",3
    size = (600, 400))4
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(Optional) Benchmarking Examples
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In-place Functions, Preallocation, and Performance

One performance advantage of Julia is its ability to manage allocations and perform in-

place operations.

Don’t prematurely optimize your code - but in cases where the datastructures are large

and the code is of equivalent complexity, don’t be afraid to use in-place operations.

The convention in Julia is to use ! to denote a function which mutates its arguments and

to put any arguments that will be modi�ed �rst.
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Use Benchmarking when Performance Matters

The  is a good package for benchmarking and performance

Suggestions (after the “never prematurely optimize” rule)

→ Always put the code in a function, especially loops

→ Use the $ to interpolate the variables into the function, avoiding global scope and

global variables

→ Only benchmark when you need speed, otherwise go for clarity

→ Careful not to change types of variables (e.g. start as an integer, change to �oat)

BenchmarkTools.jl
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Example of Benchmarking
f(x) = x.^2 .+ 51
x = rand(1_000)2
@btime f($x)3
# For more details4
@benchmark f($x)5
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Example of Benchmarking
  474.510 ns (3 allocations: 7.88 KiB)
BenchmarkTools.Trial: 10000 samples with 280 evaluations.
 Range (min … max):  501.936 ns … 49.274 μs  ┊ GC (min … max):  0.00% … 18.56%
 Time  (median):     587.811 ns              ┊ GC (median):     0.00%
 Time  (mean ± σ):   903.527 ns ±  1.499 μs  ┊ GC (mean ± σ):  23.17% ± 15.47%
  █▇▄▂                           ▁                       ▁▁    ▁
  █████▆▅▁▁▃▁▃▁▃▁▃▁▁▁▃▁▁▁▁▁▃▁▁▃▁▁█▇▅▁▄▁▁▁▁▁▁▁▁▁▃▄▃▄▅▇▆██████▇▆ █
  502 ns        Histogram: log(frequency) by time      6.07 μs <
 Memory estimate: 7.88 KiB, allocs estimate: 3.
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In-place Lorenz
function lorenz!(L, v)1
    cumsum!(L, v)2
    L ./= L[end]3
    F = (1:length(v))/length(v)4
    # inplace can still return5
    return F, L6
end7
n = 1_000_0008
v = sort(rand(n) .^ (-1 / 2))9
@btime lorenz($v)10
L = similar(v)11
@btime lorenz!($L, $v);12

  1.397 ms (6 allocations: 15.26 MiB)
  1.352 ms (0 allocations: 0 bytes)
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Performance Advantage?

Depends on the system

Memory allocations will be smaller regardless

In-place operations can be faster, but not always, especially for small data.
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Worth the Trouble? Another Inplace Example
mul_test!(Z, X, Y) = mul!(Z, X, Y)1
mul_test(X, Y) = X * Y2
n = 5003
X = randn(n, n)4
Y = randn(n, n)5
Z = similar(Y)6
# out-of-place multiplication7
@btime mul_test($X, $Y)8
 # in-place multiplication9
@btime mul_test!($Z, $X, $Y);10

  5.402 ms (3 allocations: 1.91 MiB)
  5.396 ms (0 allocations: 0 bytes)
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