Stochastic Dynamics, AR(1) Processes, and Ergodicity

Undergraduate Computational Macro

Jesse Perla

jesse.perla@ubc.ca

University of British Columbia

Table of contents

- Overview
- Random Variables Review
- Stochastic Processes
- AR(1) Processes
- Stationary Distributions
- Nonlinear Stochastic Processes
- Stochastic Growth Model
- Multiplicative Growth Processes

Overview

Motivation and Materials

- In this lecture, we will introduce our stochastic processes and review probability
- Our first example of a stochastic process is the **AR(1)** process (i.e. auto-regressive of order one)
 - → This is a simple, univariate process, but it is directly useful in many cases
- We will also introduce the concept of **ergodicity** to help us understand long-run behavior
- While this section is not directly introducing new economic models, it provides the backbone for our analysis of the wealth and income distribution

Deterministic Processes

• We have seen deterministic processes in previous lectures, e.g. the linear

$$X_{t+1} = aX_t + b$$

- ightarrow These are coupled with an initial condition X_0 , which enables us to see the evolution of a variable
- ightarrow The state variable, X_t , could be a vector
- $_{
 ightarrow}$ The evolution could be non-linear $X_{t+1}=h(X_t)$, etc.
- But many states in the real world involve randomness

Materials

- Adapted from QuantEcon lectures coauthored with John Stachurski and Thomas J. Sargent
 - \rightarrow AR1 Processes
 - \rightarrow LLN and CLT
 - → Continuous State Markov Chains

```
    using LaTeXStrings, LinearAlgebra, Plots, Statistics
    using Random, StatsPlots, Distributions, NLsolve
```

3 using Plots.PlotMeasures

```
4 default(;legendfontsize=16, linewidth=2, tickfontsize=12,
```

5 bottom_margin=15mm)

Random Variables Review

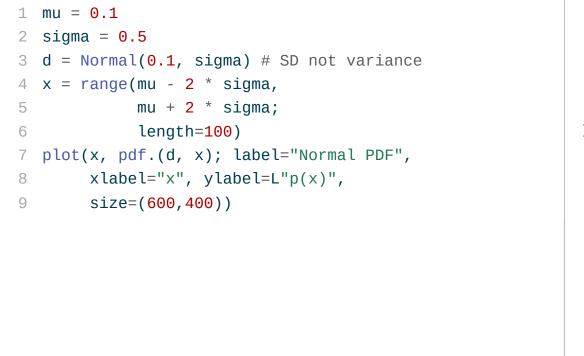
Random Variables

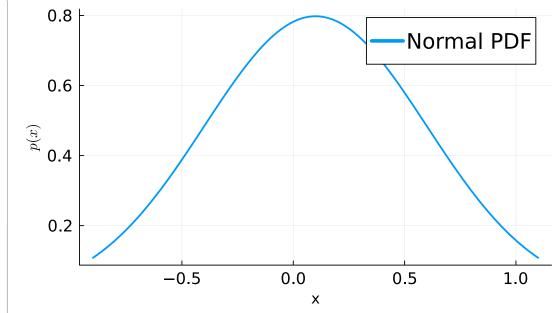
- Random variables are a collection of values with associated probabilities
- For example, a random variable Y could be the outcome of a coin flip
 - $_{
 ightarrow}$ Let Y=1 if heads and Y=0 if tails
 - $_{
 ightarrow}$ Assign probabilities $\mathbb{P}(Y=1)=\mathbb{P}(Y=0)=0.5$
- or a **normal random variable** with mean μ and variance σ^2 , denoted $Y \sim \mathcal{N}(\mu, \sigma^2)$ has density $p(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$

Discrete vs. Continuous Variables

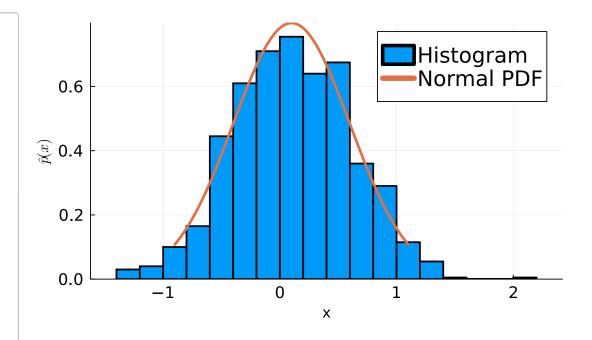
- If discrete (e.g., $X \in \{x_1, \ldots, x_N\}$) , then
 - $_{
 ightarrow}$ The **probability mass function** (pmf) is the probability of each value $p \in \mathbb{R}^N$
 - $_{
 ightarrow}$ Such that $\sum_{i=1}^{N}p_{i}=1$, and $p_{i}\geq 0$
 - $_{
 ightarrow}$ i.e. $p_i = \mathbb{P}(X = x_i)$
- If continuous, then the **probability density function** (pdf) is the probability of each value and can be represented by a function
 - $_{ o} \; \, p: \mathbb{R} o \mathbb{R}$ if X is defined on \mathbb{R}
 - $ightarrow \int_{-\infty}^{\infty} p(x) dx = 1$, and $p(x) \geq 0$
 - $o \mathbb{P}(X=a)=0$ in our examples, and $\mathbb{P}(X\in[a,b])=\int_a^b p(x)dx$

Normal Random Variables





Comparing to a Histogram



Normal Random Variables

- Normal random variables are special for many reasons (e.g., central limit theorems)
- They are the only continuous random variable with finite variance that is closed under linear combinations
 - \rightarrow For independent $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$
 - $_{
 ightarrow} ~~aX+bY\sim \mathcal{N}(a\mu_X+b\mu_Y,a^2\sigma_X^2+b^2\sigma_Y^2)$
 - \rightarrow Also true with multivariate normal distributions
- Common transformation taking out mean and variance
 - $_{
 ightarrow}$ Could draw $Y \sim N(\mu, \sigma^2)$
 - $_{
 ightarrow}$ Or could draw $X \sim N(0,1)$ and then $Y = \mu + \sigma X$

Expectations

• For discrete-valued random variables

$$\mathbb{E}[f(X)] = \sum_{i=1}^N f(x_i) p_i$$

• For continuous valued random variables

$$\mathbb{E}[f(X)] = \int_{-\infty}^\infty f(x) p(x) dx$$

Moments

- The **mean** of a random variable is the first moment, $\mathbb{E}[X]$
- The **variance** of a random variable is the second moment, $\mathbb{E}[(X \mathbb{E}[X])^2]$
 - \to Note the recentering by the mean. Could also calculate as $\mathbb{E}[X^2] \mathbb{E}[X]^2$
- Normal random variables are characterized by their first 2 moments

Law(s) of Large Numbers

• Let X_1, X_2, \ldots be independent and identically distributed (iid) random variables with mean $\mu \equiv \mathbb{E}(X) < \infty$, then let

$$ar{X}_n \equiv rac{1}{n}\sum_{i=1}^n X_i$$

• One version is Kolmogorov's Strong Law of Large Numbers

$$\mathbb{P}\left(\lim_{n o\infty}ar{X}_n=\mu
ight)=1$$

 \rightarrow i.e. the average of the random variables converges to the mean

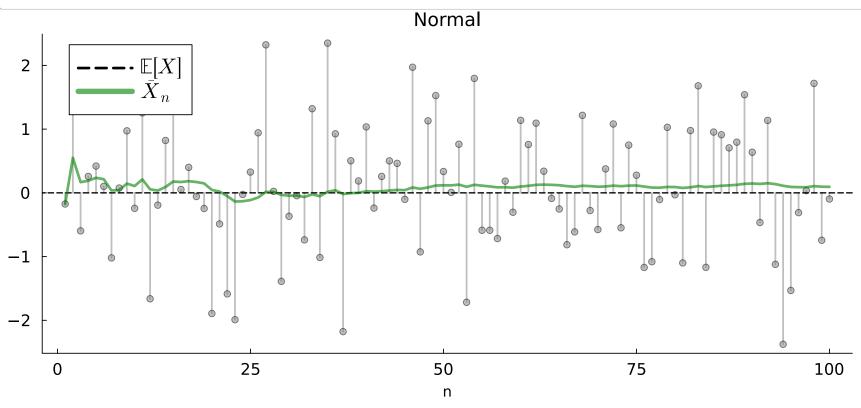
Sampling and Plotting the Mean

```
function ksl(distribution, n = 100)
 1
       title = nameof(typeof(distribution))
 2
 3
       observations = rand(distribution, n)
       sample_means = cumsum(observations) ./ (1:n)
 4
       mu = mean(distribution)
 5
       plot(repeat((1:n)', 2), [zeros(1, n); observations']; title, xlabel="n",
 6
             label = "", color = :qrey, alpha = 0.5)
 7
       plot!(1:n, observations; color = :grey, markershape = :circle,
 8
             alpha = 0.5, label = "", linewidth = 0)
 9
10
       if !isnan(mu)
11
           hline!([mu], color = :black, linewidth = 1.5, linestyle = :dash,
                  grid = false, label = L"\mathbb{E}[X]")
12
13
       end
       return plot!(1:n, sample_means, linewidth = 3, alpha = 0.6, color = :green, label = L"\bar{X}_n")
14
15 end
```

ksl (generic function with 2 methods)

LLN with the Normal Distribution

- 1 dist = Normal(0.0, 1.0) # unit normal
- 2 ksl(dist)

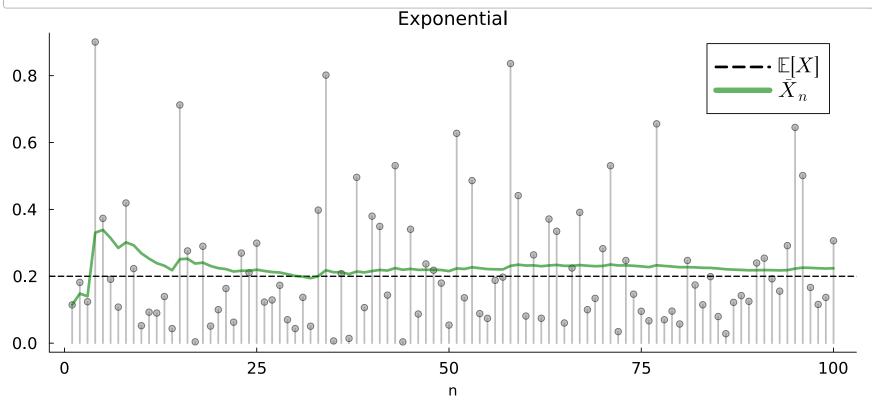


LLN with the Exponential

•
$$f(x) = rac{1}{lpha} \exp(-x/lpha)$$
 for $x \geq 0$ with mean $lpha$

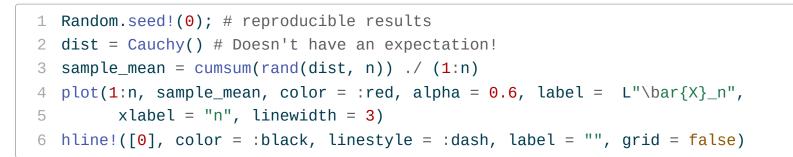
```
1 dist = Exponential(0.2)
```

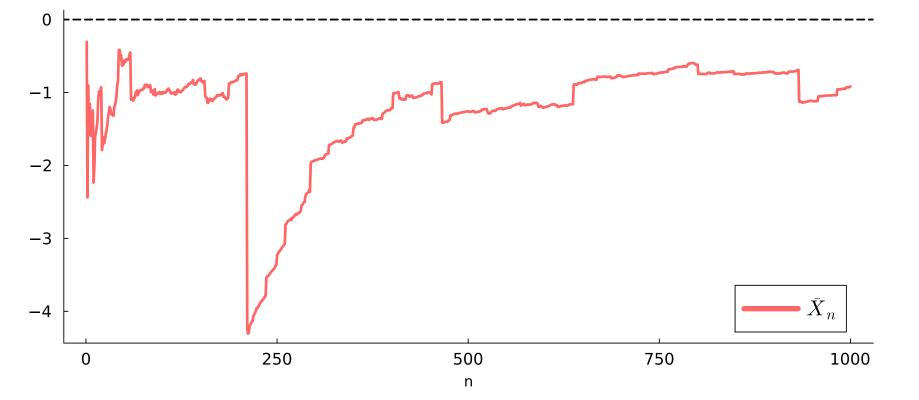
```
2 ksl(dist)
```



LLN with the Cauchy?

• $f(x)=1/(\pi(1+x^2))$, with median =0 and $\mathbb{E}(X)$ undefined





Monte-Carlo Calculation of Expectations

- One application of this is the numerical calculation of expectations
- Let X be a random variable with density p(x), and hence $\mathbb{E}[f(X)] = \int_{-\infty}^{\infty} f(x)p(x)dx$ (or $\sum_{i=1}^{N} f(x_i)p_i$ if discrete)
- These integrals are often difficult to calculate analytically, but if we can draw $X\sim p$, then we can approximate the expectation by

$$\mathbb{E}[f(X)] pprox rac{1}{n} \sum_{i=1}^n f(x_i)$$

- Then by the LLN this converges to the true expectation as $n
ightarrow\infty$

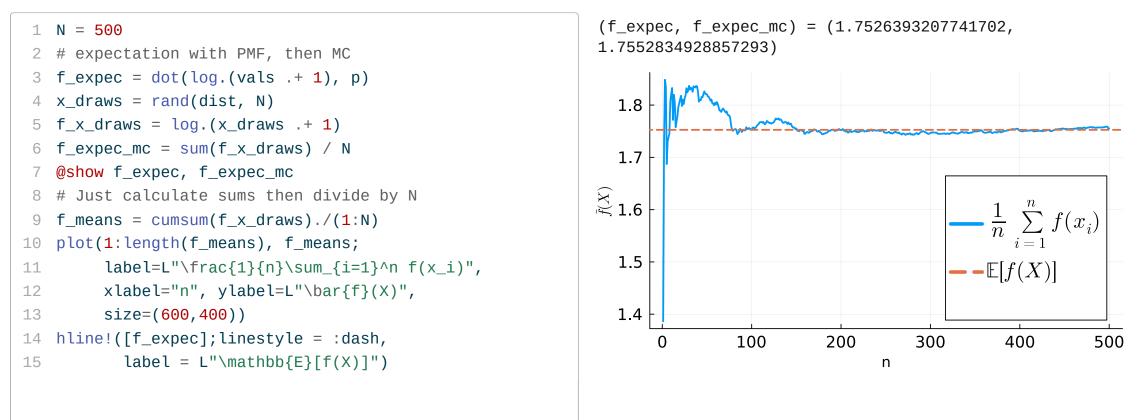
Discrete Example

- Let X be a discrete random variable with N states and probabilities p_i
- Then $\mathbb{E}[f(X)] = \sum_{i=1}^N f(x_i) p_i$
- For example, the Binomial distribution and $f(x) = \log(x+1)$

```
1 # number of trials and probability of success
2 dist = Binomial(10, 0.5)
3 plot(dist;label="Binomial PMF",
4 size=(600,400))
5 vals = support(dist) # i.e. 0:10
6 p = pdf.(dist, vals)
7 # Calulate the expectation manually
8 @show mean(dist), dot(vals, p);
```

(mean(dist), dot(vals, p)) = (5.0, 5.00000000000000)

Using Monte-Carlo



Stochastic Processes

Stochastic Processes

- A **stochastic process** is a sequence of random variables
 - ightarrow We will focus on **discrete time** stochastic processes, where the sequence is indexed by $t=0,1,2,\ldots$
 - → Could be discrete or continuous random variables
- Skipping through some formality, assume that they share the same values but probabilities may change
- Denote then as a sequence $\{X_t\}_{t=0}^\infty$

Joint, Marginal, and Conditional Distributions

- Can ask questions on the probability distributions of the process
- The joint distribution of $\{X_t\}_{t=0}^\infty$ or a subset
 - \rightarrow In many cases things will be correlated over time or else no need to be a process
- The **marginal distribution** of X_t for any t
 - \rightarrow This is a proper PDF, marginalized from the joint distribution of all values
- Conditional distributions, fixing some values
 - $_{
 ightarrow}$ e.g. X_{t+1} given X_t, X_{t-1} , etc. are known

Markov Process

- Before we go further, lets discuss a broader class of these processes useful in economics
- A **Markov process** is a stochastic process where the conditional distribution of X_{t+1} given X_t, X_{t-1}, \ldots is the same as the conditional distribution of X_{t+1} given X_t
 - \rightarrow i.e. the future is independent of the past given the present
- Note that with the AR(1) model, if I know X_t then I can calculate the PDF of X_{t+1} directly without knowing the past
- This is "first-order" since only one lag is required, but could be higher order
 - → A finite number of lags can always be added to the state vector to make it first-order

AR(1) Processes

A Simple Auto-Regressive Process with One Lag

 $X_{t+1} = aX_t + b + cW_{t+1}$

- Just added randomness to the deterministic process from time t to t+1
- $W_{t+1} \sim \mathcal{N}(0,1)$ is IID "shocks" or "noise"
- Could have an initial condition for X_0 Or could have an initial distribution
 - $\rightarrow X_t$ is a random variable, and so can X_0
 - \rightarrow "Degenerate random variable" if $P(X_0=x)=1$ for some x
 - $_{
 ightarrow}$ Assume $X_0\sim\mathcal{N}(\mu_0,v_0)$, and $v_0
 ightarrow 0$ is the degenerate case

Evolution of the AR(1) Process

- Both W_{t+1} and X_0 are assumed to be normally distributed
- As we discussed, linear combinations of normal random variables are normal
 - $_{
 ightarrow}$ So X_t is normal for all t by induction
- Furthermore, we have a formula for the recursion

 $_{ o}$ If $X_t \sim \mathcal{N}(\mu_t, v_t)$, then $X_{t+1} \sim \mathcal{N}(a\mu_t + b, a^2v_t + c^2)$

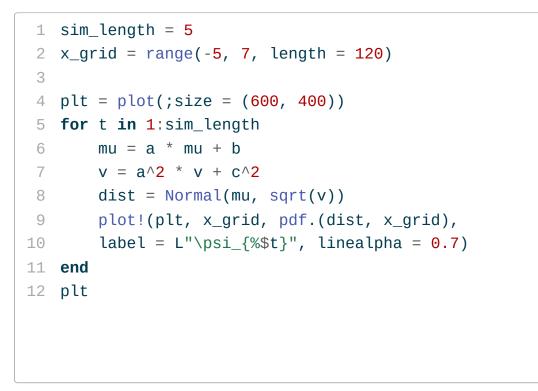
 $_{
ightarrow}$ Hence, the evolution of the mean and variance follow a simple difference equation $\mu_{t+1}=a\mu_t+b$ and $v_{t+1}=a^2v_t+c^2$

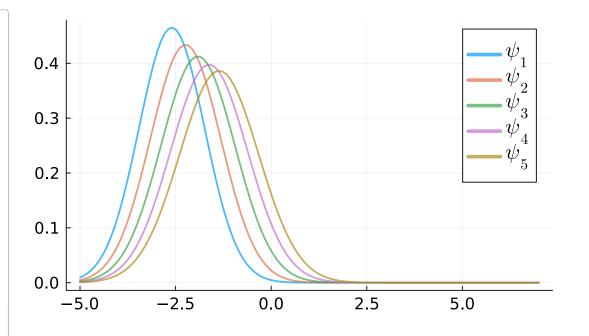
$$_{
ightarrow}$$
 Let $X_t \sim \psi_t \equiv \mathcal{N}(\mu_t, v_t)$

Visualizing the AR(1) Process

```
1 a = 0.9
2 b = 0.1
3 c = 0.5
4
5 # initial conditions mu_0, v_0
6 mu = -3.0
7 v = 0.6
```

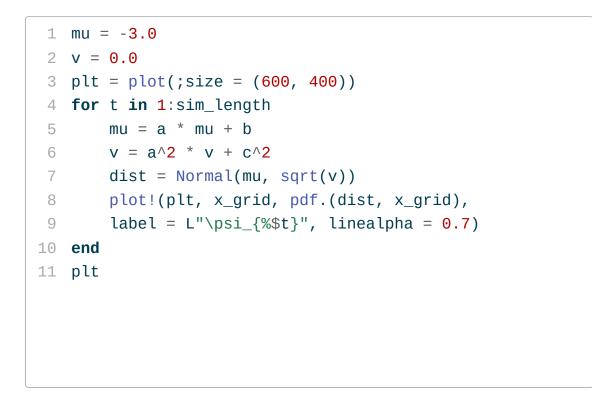
Visualizing the AR(1) Process

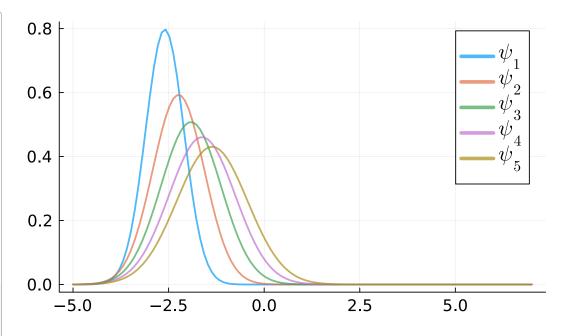




From a Degenerate Initial condition

• Cannot plot ψ_0 since it is a point mass at μ_0





Practice with Iteration

- Let us practice creating a map and iterating it
- We will need to modify our **iterate_map** function to work with vectors
- Let $x \equiv [\mu \quad v]^ op$,

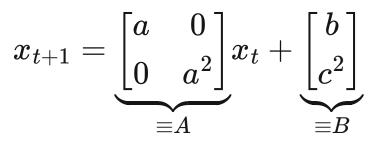
iterate_map (generic function with 1 method)

Implementation of the Recurrence for the AR(1)

```
1 function f(x;a, b, c)
2 mu = x[1]
3 v = x[2]
4 return [a * mu + b, a^2 * v + c^2]
5 end
6 x_0 = [-3.0, 0.6]
7 T = 5
8 x = iterate_map(x -> f(x; a, b, c), x_0, T)
2×6 Matrix{Float64}:
```

-3.0 -2.6 -2.24 -1.916 -1.6244 -1.36196 0.6 0.736 0.84616 0.93539 1.00767 1.06621

Using Matrices



 $1 A = [a 0; 0 a^2]$

- 2 B = [b; c^2]
- 3 $x = iterate_map(x \rightarrow A * x + B, x_0, T)$

2×6 Matrix{Float64}:

-3.0	-2.6	-2.24	-1.916	-1.6244	-1.36196
0.6	0.736	0.84616	0.93539	1.00767	1.06621

Fixed Point?

- Whenever you have maps, you can ask whether a fixed point exists
- This is especially easy to check here. Solve,

$$\rightarrow \mu = a\mu + b \implies \mu = rac{b}{1-a}$$

$$_{
ightarrow} v = a^2 v + c^2 \implies v = rac{c^2}{1-a^2}$$

• Lets check for a fixed point numerically

```
1 sol = fixedpoint(x -> A * x + B, x_0)
```

- 2 @show sol.zero
- 3 @show b/(1-a), c^2/(1-a^2);

sol.zero = [1.0000000000000266, 1.3157894736842035] (b / (1 - a), c ^ 2 / (1 - a ^ 2)) = (1.0000000000000002, 1.3157894736842108)

Existence of a Fixed Point

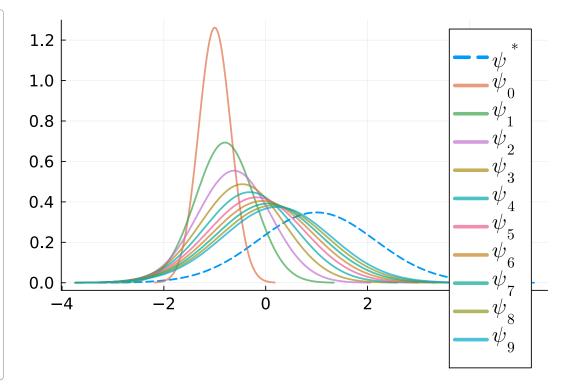
- The important of a is also clear when we look at the A matrix
- We know the eigenvalues of a diagonal matrix are the diagonal elements

$$_{
ightarrow}$$
 i.e., $\lambda_1=a$ and $\lambda_2=a^2$

- If |a| < 1, then $a^2 < |a| < 1$ and hence the maxim absolute value of the eigenvalues below 1
- As we saw in the univariate case, conditions of this sort were crucial to determine whether the systems would converge
- We will see more complicated versions of the A matrix as we move into richer "state space models"

Evolution of the Probability Distributions

```
1 \times 0 = [-1.0, 0.1] \# tight
 2 T = 10
 3 f(x) = A * x + B
 4 x = iterate_map(f, x_0, T)
 5 x_star = fixedpoint(f, x_0).zero
   plt = plot(Normal(x_star[1], sqrt(x_star[2]));
 6
               label = L'' \setminus psi^*'',
 7
               style = :dash,
 8
               size = (600, 400))
 9
10 for t in 1:T
       dist = Normal(x[1, t], sqrt(x[2, t]))
11
       plot!(plt, dist, label = L"\psi_{%$(t-1)}",
12
             linealpha = 0.7)
13
14
   end
15 plt
```



Stationary Distributions

Fixed Points and Steady States

• Recall in the lecture on deterministic dynamics that we discussed fixed point and steady states $x_{t+1} = f(x_t)$ has a **fixed point** x^* if $x^* = f(x^*)$

$$_{ o}\;$$
 e.g. $x_{t+1} = a x_t + b$ has $x^* = rac{b}{1-a}$ if $|a| < 1$

- We can also interpret as a **steady state** x^* as $\lim_{t o\infty} x_t = x^*$ for some x_0
 - ightarrow Stability looked at stability which told us about which x^* the process would approach from points x_0 near x^*
- The key: for x^* if we apply $f(x^*)$ evolution equation and remain at that point

Stationary Distributions

- Analogously, with stochastic processes we can think about applying the evolution equation to random variables
 - ightarrow Instead of a point, we have a distribution ψ^*
 - $_{\rightarrow}~$ Then rather than checking $x^*=f(x^*)$, we check $\psi^*\sim f(\psi^*)$, where that notation is loosely taking into account the distribution of shocks
- Similar to stability, we can consider if repeatedly applying $f(\cdot)$ repeatedly to various ψ_0 converges to ψ^*

AR(1) Example

- Take $X_{t+1} = a X_t + b + c W_{t+1}$ if |a| < 1 for $W_{t+1} \sim \mathcal{N}(0,1)$
- Recall If $X_t \sim \mathcal{N}(\mu_t, v_t) \equiv \psi_t$, then using properties of Normals

$$_{\scriptscriptstyle
ightarrow} X_{t+1} \sim \mathcal{N}(a\mu_t+b,a^2v_t+c^2) \equiv \psi_{t+1}$$

→ We derived the fixed point of the mean and variance iteration as
$$\psi^* \sim \mathcal{N}(\mu^*, v^*) = \mathcal{N}\left(\frac{b}{1-a}, \frac{c^2}{1-a^2}\right)$$

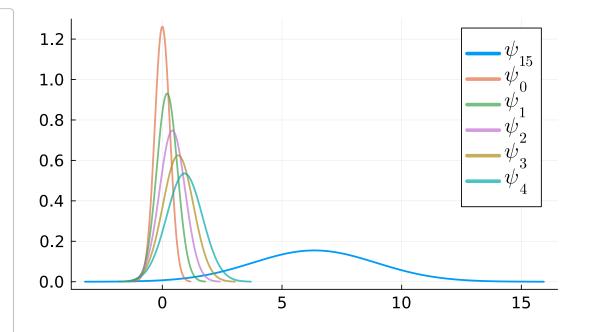
- Apply the evolution equation to ψ^* we demonstrate that $\psi^* \sim f(\psi^*)$

$$\mathcal{N}\left(arac{b}{1-a}+b,a^2rac{c^2}{1-a^2}+c^2
ight) = \mathcal{N}\left(rac{b}{1-a},rac{c^2}{1-a^2}
ight)$$

 $_{
ightarrow}$ i.e., from any initial condition, the distribution of X_t converges to ψ^*

What if a > 1?

```
1 a,b,c = 1.1, 0.2, 0.25
 2 A = [a 0; 0 a^2]
 3 B = [b; c^2]
 4 f(x) = A * x + B
 5 T = 15
 6 x = iterate_map(f, [0.0, 0.1], T)
7 plt = plot(Normal(x[1, end], sqrt(x[2, end]));
              label = L"\psi_{%$T}",
 8
              size = (600, 400))
 9
10 for t in 1:5
       dist = Normal(x[1, t], sqrt(x[2, t]))
11
     plot!(plt, dist, label=L"\psi_{%$(t-1)}",
12
            linealpha = 0.7)
13
14 end
15 plt
```

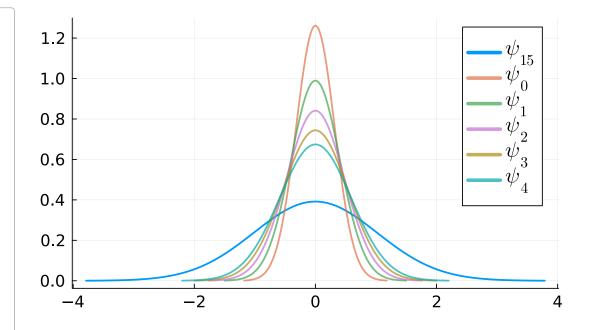


Analyzing the Failure of Convergence

- If it exists, the stationary distribution would need to be $\psi^* \equiv \mathcal{N}\left(rac{b}{1-a},rac{c^2}{1-a^2}
 ight)$
- Note that if b>0 we get the drift of the process forward
 - → But, just as in the case of the deterministic process, this just acts as a force to move the distribution, not spread it out
- In fact, with b=0 the mean of ψ_t is always 0, but the variance grows without bound if c>0
- Lets plot the a=1,b=0 case

What if a = 1, b = 0?

```
1 a,b,c = 1.0, 0.0, 0.25
 2 A = [a 0; 0 a^2]
 3 B = [b; c^2]
 4 f(x) = A * x + B
 5 T = 15
 6 x = iterate_map(f, [0.0, 0.1], T)
7 plt = plot(Normal(x[1, end], sqrt(x[2, end]));
              label = L'' \in {\%T}'',
 8
              size = (600, 400))
 9
10 for t in 1:5
       dist = Normal(x[1, t], sqrt(x[2, t]))
11
      plot!(plt, dist, label=L"\psi_{%$(t-1)}",
12
            linealpha = 0.7)
13
14 end
15 plt
```



Ergodicity

- There are many different variations and definitions of ergodicity
- Among other things, this rules out are cases where the process is "trapped" in a subset of the state space and can't swith out
- Also ensures that the distribution doesn't spread or drift asymptotically
- Ergodicity lets us apply LLNs to the stochastic process, even though they are not independent

Ergodicity

- We will consider a process $\{X_t\}_{t=0}^\infty$ with a stationary distribution ψ^*
- The process is $\operatorname{ergodic}$ if for any $f:\mathbb{R} o \mathbb{R}$ (with regularity conditions)

$$\lim_{T o\infty}rac{1}{T}\sum_{t=1}^T f(X_t) = \int f(x)\psi^*(x)dx$$

 $\rightarrow\,$ i.e. the time average of the function converges to the expectation of the function. Mean ergodic if only require this to work for f(x)=x

Iteration with IID Noise

• Adapt scalar iteration for iid noise

```
function iterate_map_iid(f, dist, x0, T)
 1
 2
       x = zeros(T + 1)
       x[1] = x0
 3
       for t in 2:(T + 1)
 4
           x[t] = f(x[t - 1], rand(dist))
 5
 6
       end
       return x
 7
 8
   end
 9 a,b,c = 0.9, 0.1, 0.05
10 \times 0 = 0.5
11 T = 5
12 h(x, W) = a * x + b + c * W # iterate given random shock
13 x = iterate_map_iid(h, Normal(), x_0, T)
```

```
6-element Vector{Float64}:
```

0.5

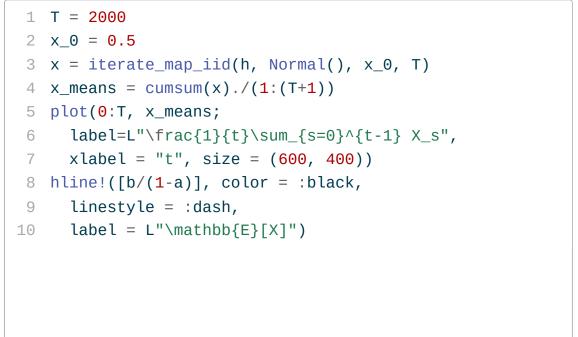
- 0.5252717486805177
- 0.5306225876900339

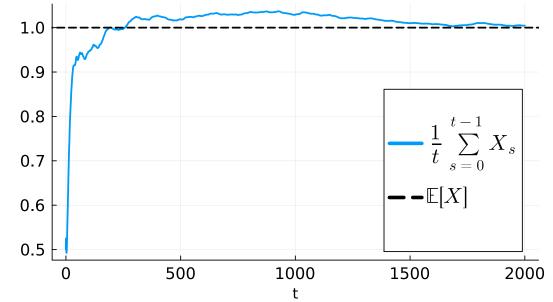
0.46819901566492783

0.532032538532688

0.583020976850554

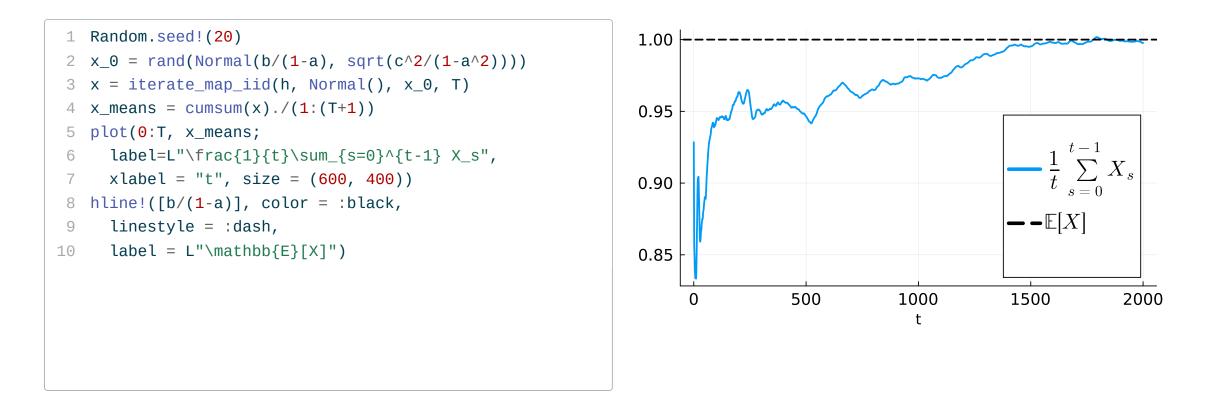
Demonstration of Ergodicity with Mean





Starting at the Stationary Distribution

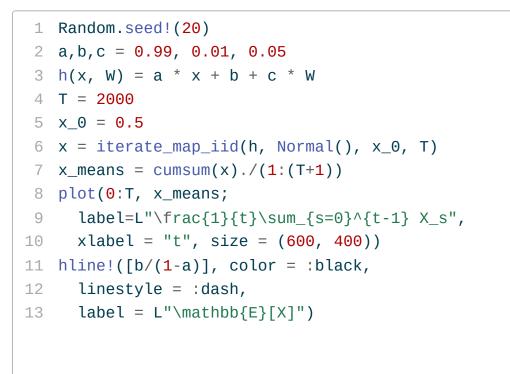
• A reasonable place to start many simulations is a draw from the stationary distribution

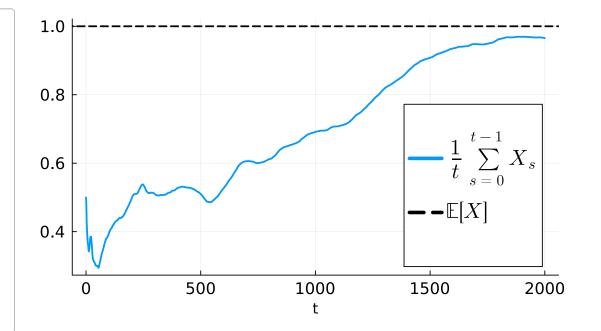


The Speed of Convergence

- The speed with which the process converges towards its stationary distribution is important
- Key things which govern this transition will be
 - $\rightarrow\,$ Autocorrelation: As a goes closer to 0, the faster it converges back towards the mean as with deterministic processes
 - $_{
 ightarrow}$ Variances: Wth large c the noise may dominate and the ψ^* becomes broader

Close to a Random Walk





Dependence on Initial Condition

- Intuition: ergodicity is that the initial conditions "wear off" over time
- However, even if a process is ergodic and has a well-defined stationary distribution, it may take a long time to converge to it
- This is very important in many quantitative models:
 - \rightarrow How much does your initial wealth matter for your long-run?
 - → If your wages start low due to discrimination, migration, or just bad luck, how long does it converge?
 - → If we provide subsidies to new firms, how long would it take for that to affect the distribution of firms?

Example of a Non-Ergodic Stochastic Process

- Between t=0 and t=1 a coin is flipped (e.g., result of key exam)
 - $_{
 ightarrow}$ If heads: income follows $X_{t+1} = a X_t + b + c W_{t+1}$ with b = 0.1 for $t \geq 1$
 - $_{
 ightarrow}$ If tails: income follows $X_{t+1} = a X_t + b + c W_{t+1}$ with b = 1.0 for $t \geq 1$
- The initial condition and early sequence cannot be forgotten
- If there is ANY probability of switching between careers, then it is ergodic because it "mixes"

Moving Average Representation, MA(∞), for AR(1)

• From $X_t = a X_{t-1} + b + c W_t$, iterate backwards to X_0 and W_1

$$egin{aligned} X_t &= a \left(a X_{t-2} + b + c W_{t-1}
ight) + b + c W_t \ &= a^2 X_{t-2} + b (1+a) + c (W_t + a W_{t-1}) \ &= a^2 \left(a X_{t-3} + b + c W_{t-2}
ight) + b (1+a) + c (W_t + a W_{t-1}) \ &= a^t X_0 + b \sum_{j=0}^{t-1} a^j + c \sum_{j=0}^{t-1} a^j W_{t-j} \ &= a^t X_0 + b rac{1-a^t}{1-a} + c \sum_{j=0}^{t-1} a^j W_{t-j} \end{aligned}$$

Interpreting the Auto-Regressive Parameter

- The distribution of X_t then depends on the distribution of X_0 and the distribution of the sum of t-1 iid random variables
- If X_0 and W_t are normal, then X_t is normal since it is a linear combination

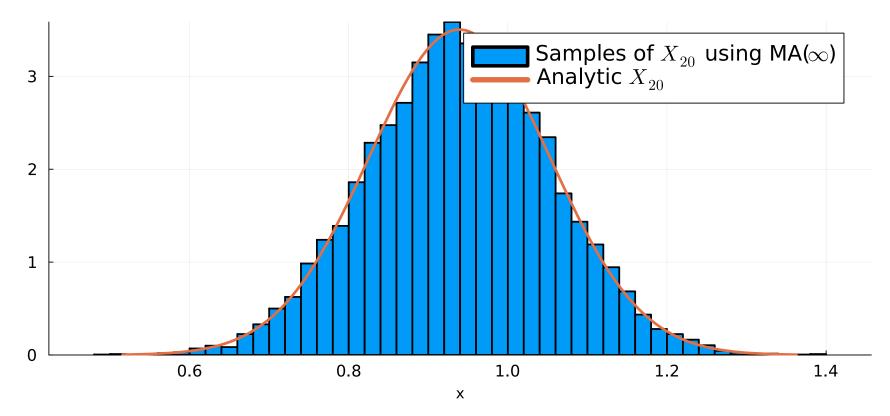
$$X_t = a^t X_0 + b rac{1-a^t}{1-a} + c \sum_{j=0}^{t-1} a^j W_{t-j}$$

- \rightarrow If a=1 then the initial condition is never "forgotten"
- ightarrow If a=1, W_{t-j} shocks are just as important determining the distribution of X_t because the a^j doesn't "decay" over time

Simulation of Moving Average Representation

```
1 X_0 = 0.5 \# degenerate prior
 2 a, b, c = 0.9, 0.1, 0.05
 3 A = [a 0; 0 a^2]
 4 B = [b; c^2]
 5 T = 20
 6 \text{ num}_{samples} = 10000
7 Xs = iterate_map(x -> A * x + B, [X_0, 0], T)
8 X_T = Normal(Xs[1, end], sqrt(Xs[2, end]))
9 W = randn(num_samples, T)
10 # Comprehensions and generators example, looks like math
11 X_T_samples = [a^T * X_0 + b * (1-a^T)/(1-a) + c * sum(a^j * W[i, T-j] for j in 0:T-1)
           for i in 1:num_samples]
12
13 histogram(X_T_samples; xlabel="x", normalize=true,
             label=L"Samples of $X_{%$T}$ using MA($\infty$)")
14
15 plot!(X_T; label=L"Analytic $X_{%$T}$", lw=3)
```

Simulation of Moving Average Representation



Nonlinear Stochastic Processes

Nonlinearity with Additive Shocks

• A useful class involves nonlinear functions for the drift and variance

 $X_{t+1}=\mu(X_t)+\sigma(X_t)W_{t+1}$

 $_{ o}$ IID W_{t+1} with $\mathbb{E}[W_{t+1}]=0$ and frequently $\mathbb{E}[W_{t+1}^2]=1$

• Nests our AR(1) process

 $\
ightarrow \ \mu(x) = ax + b$ and $\sigma(x) = c$

Auto-Regressive Conditional Heteroskedasticity (ARCH)

• For example, we may find that time-series data has time-varying volatility and depends on 1 lags

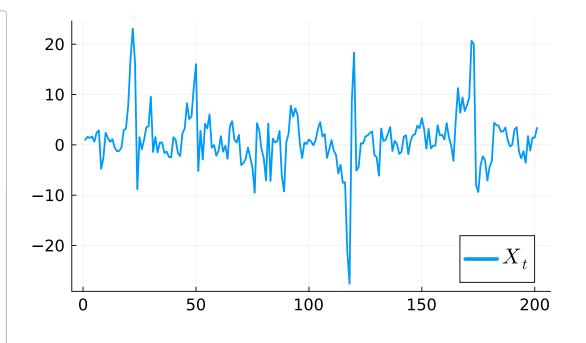
$$X_{t+1} = a X_t + \sigma_t W_{t+1}$$

- $_{\rightarrow}~$ And that the variance increases as we move away from the mean of the stationary distribution $\sigma_t^2=\beta+\gamma X_t^2$
- Hence the process becomes an ARCH(1)

$$X_{t+1} = aX_t + \left(eta + \gamma X_t^2
ight)^{1/2}W_{t+1}$$

Simulation of ARCH(1)

```
1 a = 0.7
2 beta, gamma = 5, 0.5
3 X_0 = 1.0
4 T = 200
5 h(x, W) = a * x + sqrt(beta + gamma * x^2) * W
6 x = iterate_map_iid(h, Normal(), X_0, T)
7 plot(x; label = L"X_t", size = (600, 400))
```



AR(1) with a Barrier

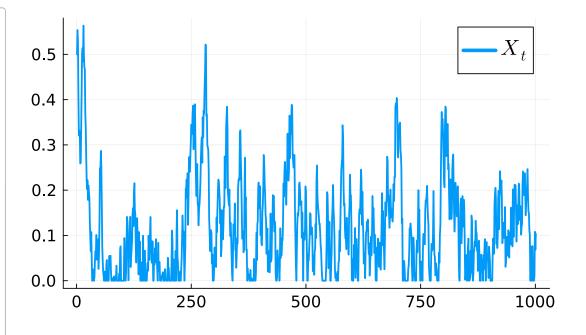
- Nonlinearity in economics often comes in various forms of barriers, e.g. borrowing constraints
- Consider our AR(1) except that the process can never go below ${f 0}$

$$X_{t+1} = \max\{aX_t + b + cW_{t+1}, 0.0\}$$

• We could **stop** the process at this point, but instead we will continue to iterate

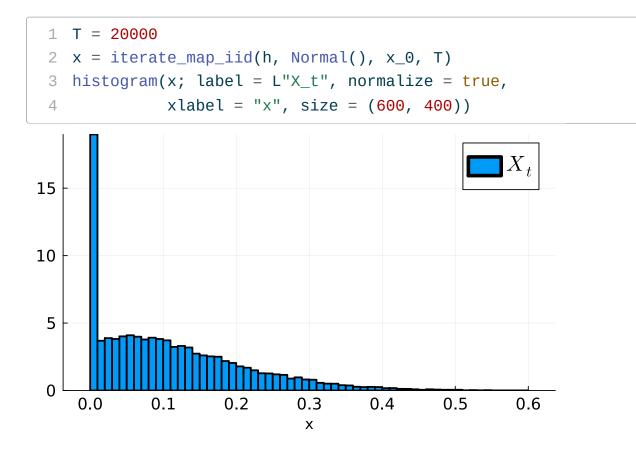
Simulation of AR(1) with a Barrier

```
1 a,b,c = 0.95, 0.00, 0.05
2 X_min = 0.0
3 h(x, W) = max(a * x + b + c * W, X_min)
4 T = 1000
5 x_0 = 0.5
6 x = iterate_map_iid(h, Normal(), x_0, T)
7 plot(x; label = L"X_t", size = (600, 400))
```



Histogram of the AR(1) with a Barrier

• There isn't a true density of ψ^* due to the point mass at 0



Stochastic Growth Model

Simple Growth Model with Stochastic Productivity

• Turning off population growth, for $f(k)=k^lpha$, and s,δ constants

 $k_{t+1} = (1-\delta)k_t + sZ_tf(k_t), \quad ext{given } k_0$

• Let log productivity, $z_t \equiv \log Z_t$, follow an AR(1) process (why logs?)

 $\log Z_{t+1} = a \log Z_t + b + c W_{t+1}$

Stationary Distribution of Productivity

- Recall that the stationary distribution of $\log Z_t$ is $\mathcal{N}\left(rac{b}{1-a},rac{c^2}{1-a^2}
 ight)$
- Given the stationary distribution of Z_t is lognormal, we can check ergodicity

```
1 a, b, c = 0.9, 0.1, 0.05
                                                              1.2
 2 Z_0 = 1.0
 3 T = 20000
                                                              1.0
 4 h(z, W) = a * z + b + c * W
5 z = iterate_map_iid(h, Normal(), log(Z_0), T)
                                                              0.8
6 Z = exp.(z)
                                                              0.6
7 histogram(Z; label = L"Z_t", normalize = true,
             xlabel = "Z", size = (600, 400))
 8
                                                              0.4
   plot!(LogNormal(b/(1-a), sqrt(c^2/(1-a^2))),
 9
                                                              0.2
10
        lw = 3, label = L"\psi^*")
                                                              0.0
                                                                                         2
                                                                   0
                                                                              1
                                                                                           Ζ
```

 Z_t

4

3

Quantiles

- Reminder: A quantile q is the x such that $\mathbb{P}(X \leq x) = q$
- Or, given a density f(x) the quantile is the x such that $\int_{-\infty}^x f(x) dx = q$
- With data we can calculate an empirical quantile by first sorting the data, then finding the value of the observations below a certain count which is the proportion of the elements
 - \rightarrow e.g. with 100 observations, the 5th percentile is the 5th smallest observation
- The 0.5 quantile (i.e., the 50th percentile) is the median
- For heavily skewed distributions, the median is often a better measure of central tendency than the mean

Practice with Iteration and Multivariate Functions

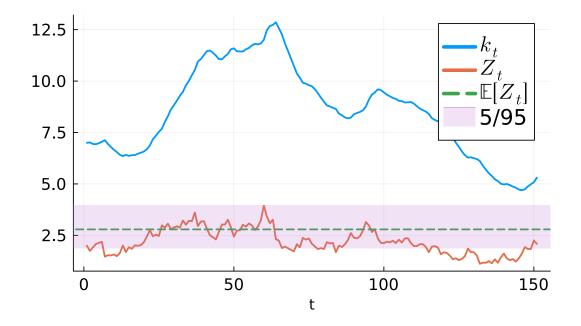
```
1 function iterate_map_iid_vec(h, dist, x0, T)
      x = zeros(length(x0), T + 1)
2
      x[:, 1] = x0
3
      for t in 2:(T + 1)
4
          # accepts whatever type rand(dist) returns
5
          x[:, t] = h(x[:, t - 1], rand(dist))
6
7
      end
      return x
8
9
  end
```

iterate_map_iid_vec (generic function with 1 method)

Simulation of the Stochastic Growth Model

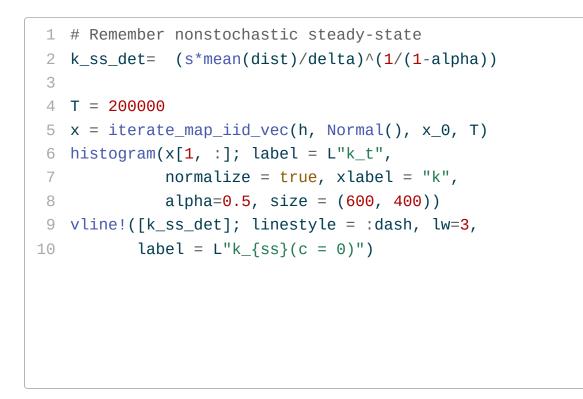
```
1 alpha, delta, s = 0.3, 0.1, 0.2
 2 a, b, c = 0.9, 0.1, 0.1
 3 function h(x, W)
       k = x[1]
 4
     z = x[2]
 5
      return [(1-delta) * k + s * exp(z) * k^alpha,
 6
               a * z + b + c * W]
 7
8 end
9 x_0 = [7.0, log(2.0)] \# k_0, z_0
10 T = 150
11 x = iterate_map_iid_vec(h, Normal(), x_0, T)
12 plot(x[1, :]; label = L"k_t", xlabel = "t", size = (600, 400), legend=:topright)
13 plot!(exp.(x[2, :]), label = L"Z_t")
14 dist = LogNormal(b/(1-a), sqrt(c^2/(1-a^2)))
15 hline!([mean(dist)]; linestyle = :dash, label = L"\mathbb{E}[Z_t]")
16 hline!([quantile(dist, 0.05)]; lw=0, fillrange = [quantile(dist, 0.95)], fillalpha=0.2, label = "5/95")
```

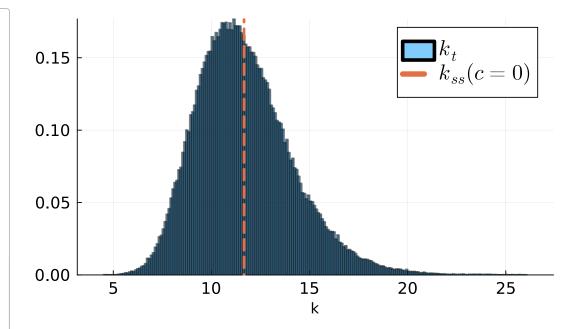
Simulation of the Stochastic Growth Model



Ergodicity and Capital Accumulation

• Evaluate the closed-form steady-state capital k^{st} for the deterministic model





Multiplicative Growth Processes

Proportional Growth

- Many values grow or shrink proportional to their current size
 - \rightarrow e.g. population, firms, wealth, etc.
- The growth rates are themselves often random
 - \rightarrow e.g. population growth rates, firm growth rates, returns on wealth
 - \rightarrow Random good or bad luck can compound, which changes the distribution
- See here for more

Kesten Process

• The simplest Kesten Process is a process of the form

$$X_{t+1} = a_{t+1}X_t + y_{t+1}$$

- $\rightarrow X_t$ is a state variable
- $\rightarrow a_{t+1}$ is an IID random growth rate
- $\rightarrow y_{t+1}$ is an IID random shock
- Examples: if population is N_t and growth rate between t and t+1 is g_{t+1}
 - $_{
 ightarrow}$ Then $N_{t+1}/N_t = 1 + g_{t+1}$
 - $_{
 ightarrow}$ If we had migration y_{t+1} , then $N_{t+1} = (1+g_{t+1})N_t + y_{t+1}$
- Key questions will be about whether stationary distributions exist, how they depend on parameters, and how fast they are approached

Conditions for a Stationary Distribution

- A stationary distribution may not exist.
- Important conditions for stationary are that
 - $_{
 ightarrow} ~ \mathbb{E}[\log a_t] < 0$, intuition: $a_t < 1$ most of the time
 - $_{\scriptscriptstyle
 ightarrow} ~ \mathbb{E}[y_t] < \infty$
- See Kesten Processes for more

Example with Random Growth on a Asset

- Let R_t be the gross returns on a asset, and W_t be value of it

$W_{t+1} = R_{t+1}W_t$

- $\rightarrow~$ i.e. no additional savings or consumption
- Let $\log R_t \sim \mathcal{N}(\mu, \sigma^2)$, i.e. lognormally distributed
 - $_{
 ightarrow}$ The support of R_t is $(0,\infty)$ and $\mathbb{E}(R_t)=\exp(\mu+\sigma^2/2)$

100

75

Simulation

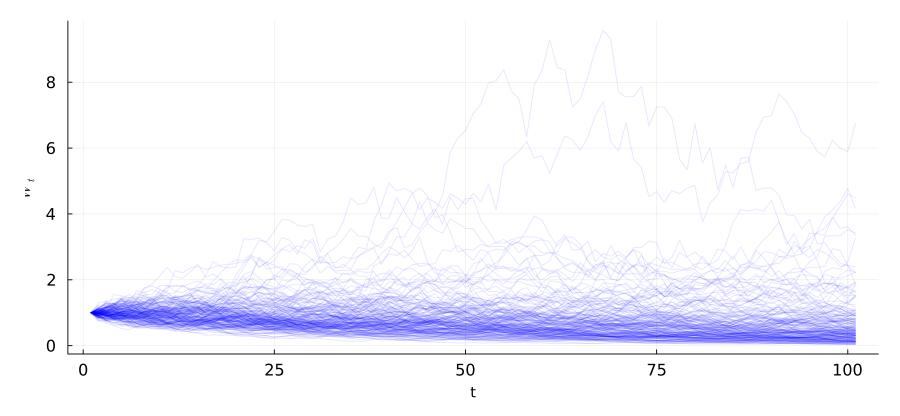
```
mean(R_dist) = 0.9950124791926823
 1 \text{ mu} = -0.01
                                                               exp(mu + sigma ^ 2 / 2) = 0.9950124791926823
 2 sigma = 0.1
                                                                                     Simulations of Value
 3 R_dist = LogNormal(mu, sigma)
                                                                 2.0
 4 T = 100
   W_0 = 1.0
 5
   @show mean(R_dist)
 6
                                                                 1.5
   (a) (mu + sigma^2/2)
 7
   plot(iterate_map_iid((W, R) -> W * R, R_dist,
 8
                                                               \boldsymbol{W}_{t}
                         W_0, T);
 9
                                                                 1.0
10
        ylabel = L"W_t", xlabel = "t",
        size = (600, 400), legend=nothing,
11
                                                                 0.5
        title = "Simulations of Value")
12
   plot!(iterate_map_iid((W, R) -> W * R, R_dist,
13
14
         W_0, T))
                                                                                 25
                                                                      0
                                                                                              50
   plot!(iterate_map_iid((W, R) -> W * R, R_dist,
15
16
          W_0, T))
```

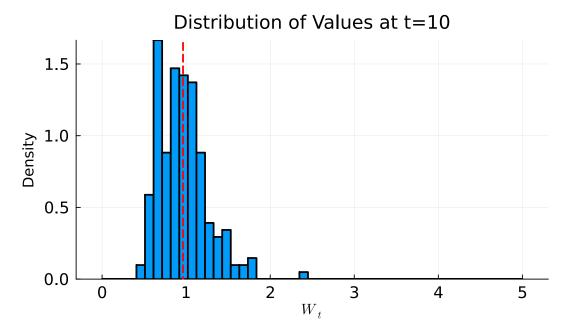
Simulating an Ensemble

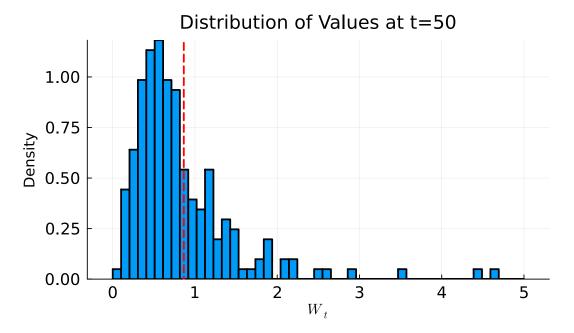
• Frequently we will want to simulate a large number of paths

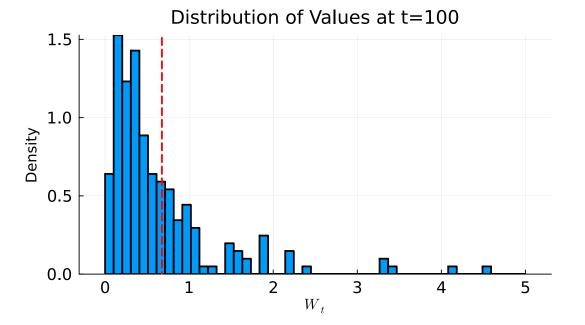
```
function iterate_map_iid_ensemble(f, dist, x0, T, num_samples)
 1
       x = zeros(num_samples, T + 1)
 2
       x[:, 1] .= x0
 3
       for t in 2:(T + 1)
 4
           # or could do a loop over samples
 5
           x[:, t] = f.(x[:, t - 1], rand(dist, num_samples))
 6
 7
       end
       return x
 8
9
   end
   num_samples = 200
10
   W = iterate_map_iid_ensemble((W, R) -> W * R, R_dist, W_0, T, num_samples)
11
   plot(W'; ylabel = L"W_t", xlabel = "t", legend = nothing, alpha = 0.1,
12
13
        color=:blue, lw = 1)
```

Simulating an Ensemble





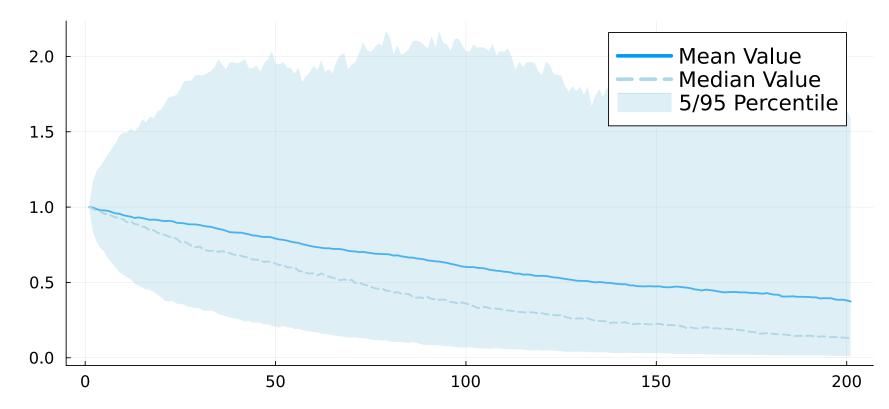




Displaying the Distribution Dynamics

```
1 num_samples = 1000
2 T = 200
3 W = iterate_map_iid_ensemble((W, R) -> W * R, R_dist, W_0, T, num_samples)
4 q_50 = [quantile(W[:,i], 0.5) for i in 1:T+1]
5 q_05 = [quantile(W[:,i], 0.05) for i in 1:T+1]
6 q_95 = [quantile(W[:,i], 0.95) for i in 1:T+1]
7 mean_W = mean(W, dims=1)'
8 plot(mean_W; label = "Mean Value")
9 plot!(q_50; label = "Median Value", style = :dash, color = :lightblue)
10 plot!(g 05; label = "5/95 Percentile", lw=0, fillrange = g 95, fillalpha=0.4, color = :lightblue)
```

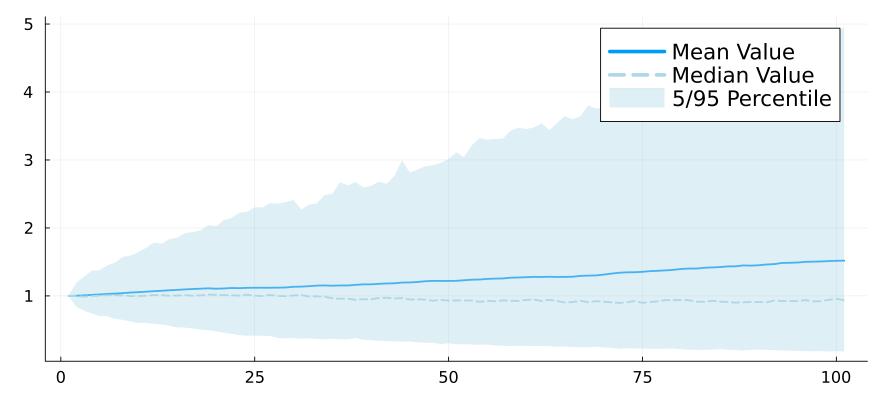
Displaying the Distribution Dynamics

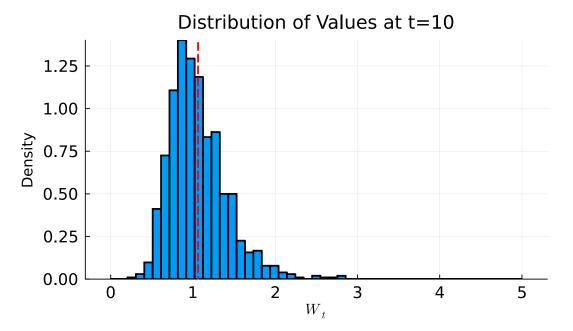


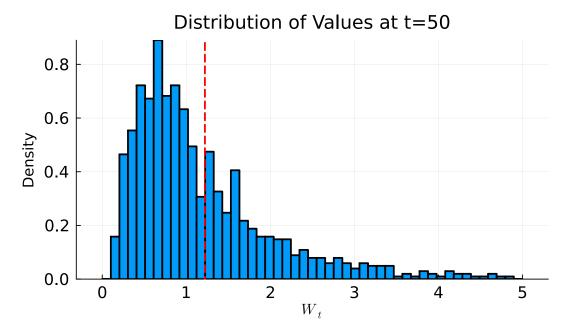
Larger Returns

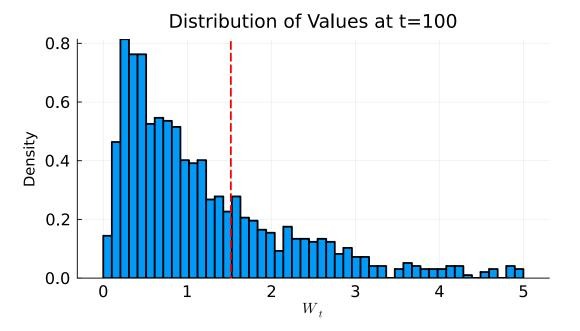
```
1 \text{ mu} = -0.001
 2 sigma = 0.1
 3 R_dist = LogNormal(mu, sigma)
 4 T = 100
 5 W 0 = 1.0
 6 @show mean(R_dist)
 7 num_samples = 1000
8 W = iterate_map_iid_ensemble((W, R) -> W * R, R_dist, W_0, T, num_samples)
9 q_50 = [quantile(W[:,i], 0.5) for i in 1:T+1]
10 q_05 = [quantile(W[:,i], 0.05) for i in 1:T+1]
11 q_95 = [quantile(W[:,i], 0.95) for i in 1:T+1]
12 mean_W = mean(W, dims=1)'
   plot(mean_W; label = "Mean Value")
13
14 plot!(q_50; label = "Median Value", style = :dash, color = :lightblue)
   plot!(q_05; label = "5/95 Percentile", lw=0, fillrange = q_95, fillalpha=0.4, color = :lightblue)
15
```

Larger Returns









Divergence and Tails of Distributions

- These examples show that for multiplicative processes the distributions will often fan out, and potentially diverge
- This is a common feature of many economic and financial time series
- In particular, theory will show that for Kesten Processes, the tails of the distribution will be heavy even if it converges to a stationary distribution
 - → i.e. the probability of large deviations from the mean will be higher than for a normal distribution
- These will have what we call Power Law tails in the next section