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Overview

3 / 94



Motivation and Materials

In this lecture, we will introduce our stochastic processes and review probability

Our first example of a stochastic process is the AR(1) process (i.e. auto-regressive of

order one)

→ This is a simple, univariate process, but it is directly useful in many cases

We will also introduce the concept of ergodicity to help us understand long-run behavior

While this section is not directly introducing new economic models, it provides the

backbone for our analysis of the wealth and income distribution

4 / 94



Deterministic Processes

We have seen deterministic processes in previous lectures, e.g. the linear

→ These are coupled with an initial condition , which enables us to see the

evolution of a variable

→ The state variable, , could be a vector

→ The evolution could be non-linear , etc.

But many states in the real world involve randomness
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Materials

Adapted from QuantEcon lectures coauthored with John Stachurski and Thomas J.

Sargent

→

→

→

AR1 Processes

LLN and CLT

Continuous State Markov Chains

using LaTeXStrings, LinearAlgebra, Plots, Statistics1
using Random, StatsPlots, Distributions, NLsolve2
using Plots.PlotMeasures3
default(;legendfontsize=16, linewidth=2, tickfontsize=12,4
         bottom_margin=15mm)5

6 / 94

https://julia.quantecon.org/introduction_dynamics/ar1_processes.html
https://julia.quantecon.org/tools_and_techniques/lln_clt.html
https://julia.quantecon.org/tools_and_techniques/stationary_densities.html
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Random Variables

Random variables are a collection of values with associated probabilities

For example, a random variable  could be the outcome of a coin flip

→ Let  if heads and  if tails

→ Assign probabilities 

or a normal random variable with mean  and variance , denoted  has

density 

Y
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Discrete vs. Continuous Variables

If discrete (e.g., ) , then

→ The probability mass function (pmf) is the probability of each value 

→ Such that , and 

→ i.e. 

If continuous, then the probability density function (pdf) is the probability of each value

and can be represented by a function

→  if  is defined on 

→ , and 

→  in our examples, and 
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Normal Random Variables

mu = 0.11
sigma = 0.52
d = Normal(0.1, sigma) # SD not variance3
x = range(mu - 2 * sigma,4
          mu + 2 * sigma;5
          length=100)6
plot(x, pdf.(d, x); label="Normal PDF",7
     xlabel="x", ylabel=L"p(x)",8
     size=(600,400))9
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Comparing to a Histogram
n = 10001
x_draws = rand(d, n) # gets n samples2
histogram(x_draws; label="Histogram",3
          xlabel="x", ylabel=L"\hat{p}(x)",4
          normalize=true, size=(600,400))5
plot!(x, pdf.(d, x); label="Normal PDF",6
      lw=3)          7
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Normal Random Variables

Normal random variables are special for many reasons (e.g., central limit theorems)

They are the only continuous random variable with finite variance that is closed under

linear combinations

→ For independent  and 

→

→ Also true with multivariate normal distributions

Common transformation taking out mean and variance

→ Could draw 

→ Or could draw  and then 
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Expectations

For discrete-valued random variables

For continuous valued random variables

E[f(X)] =

N

∑

i=1

f(x

i

)p

i
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−∞

f(x)p(x)dx
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Moments

The mean of a random variable is the first moment, 

The variance of a random variable is the second moment, 

→ Note the recentering by the mean. Could also calculate as 

Normal random variables are characterized by their first 2 moments
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Law(s) of Large Numbers

Let  be independent and identically distributed (iid) random variables with

mean , then let

One version is Kolmogorov’s Strong Law of Large Numbers

→ i.e. the average of the random variables converges to the mean
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Sampling and Plotting the Mean
function ksl(distribution, n = 100)1
    title = nameof(typeof(distribution))2
    observations = rand(distribution, n)3
    sample_means = cumsum(observations) ./ (1:n)4
    mu = mean(distribution)5
    plot(repeat((1:n)', 2), [zeros(1, n); observations']; title,  xlabel="n",6
         label = "", color = :grey, alpha = 0.5)7
    plot!(1:n, observations; color = :grey, markershape = :circle,8
          alpha = 0.5, label = "", linewidth = 0)9
    if !isnan(mu)10
        hline!([mu], color = :black, linewidth = 1.5, linestyle = :dash,11
               grid = false, label = L"\mathbb{E}[X]")12
    end13
    return plot!(1:n, sample_means, linewidth = 3, alpha = 0.6, color = :green, label = L"\bar{X}_n")14
end15

ksl (generic function with 2 methods)
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LLN with the Normal Distribution

dist = Normal(0.0, 1.0) # unit normal1
ksl(dist)2
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LLN with the Exponential

 for  with mean f(x) =

1

α

exp(−x/α) x ≥ 0 α

dist = Exponential(0.2)1
ksl(dist)2

18 / 94



LLN with the Cauchy?

, with median  and  undefinedf(x) = 1/(π(1 + x

2

)) = 0 E(X)

Random.seed!(0); # reproducible results1
dist = Cauchy() # Doesn't have an expectation!2
sample_mean = cumsum(rand(dist, n)) ./ (1:n)3
plot(1:n, sample_mean, color = :red, alpha = 0.6, label =  L"\bar{X}_n",4
      xlabel = "n", linewidth = 3)5
hline!([0], color = :black, linestyle = :dash, label = "", grid = false)6
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Monte-Carlo Calculation of Expectations

One application of this is the numerical calculation of expectations

Let  be a random variable with density , and hence 

(or  if discrete)

These integrals are often difficult to calculate analytically, but if we can draw , then

we can approximate the expectation by

Then by the LLN this converges to the true expectation as 
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Discrete Example

Let  be a discrete random variable with  states and probabilities 

Then 

For example, the Binomial distribution and 

X N p

i

E[f(X)] = ∑

N

i=1

f(x

i

)p

i

f(x) = log(x+ 1)

# number of trials and probability of success1
dist = Binomial(10, 0.5)2
plot(dist;label="Binomial PMF",3
     size=(600,400))4
vals = support(dist) # i.e. 0:105
p = pdf.(dist, vals)6
# Calulate the expectation manually7
@show mean(dist), dot(vals, p);8

(mean(dist), dot(vals, p)) = (5.0, 5.000000000000008)
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Using Monte-Carlo
N = 5001
# expectation with PMF, then MC2
f_expec = dot(log.(vals .+ 1), p)3
x_draws = rand(dist, N)4
f_x_draws = log.(x_draws .+ 1)5
f_expec_mc = sum(f_x_draws) / N6
@show f_expec, f_expec_mc7
# Just calculate sums then divide by N8
f_means = cumsum(f_x_draws)./(1:N)9
plot(1:length(f_means), f_means;10
     label=L"\frac{1}{n}\sum_{i=1}^n f(x_i)",11
     xlabel="n", ylabel=L"\bar{f}(X)",12
     size=(600,400))13
hline!([f_expec];linestyle = :dash,14
       label = L"\mathbb{E}[f(X)]")15

(f_expec, f_expec_mc) = (1.7526393207741702, 
1.7552834928857293)
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Stochastic Processes
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Stochastic Processes

A stochastic process is a sequence of random variables

→ We will focus on discrete time stochastic processes, where the sequence is indexed

by 

→ Could be discrete or continuous random variables

Skipping through some formality, assume that they share the same values but

probabilities may change

Denote then as a sequence 
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}

∞
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Joint, Marginal, and Conditional Distributions

Can ask questions on the probability distributions of the process

The joint distribution of  or a subset

→ In many cases things will be correlated over time or else no need to be a process

The marginal distribution of  for any 

→ This is a proper PDF, marginalized from the joint distribution of all values

Conditional distributions, fixing some values

→ e.g.   given , etc. are known
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Markov Process

Before we go further, lets discuss a broader class of these processes useful in

economics

A Markov process is a stochastic process where the conditional distribution of 

given  is the same as the conditional distribution of  given 

→ i.e. the future is independent of the past given the present

Note that with the AR(1) model, if I know  then I can calculate the PDF of  directly

without knowing the past

This is “first-order” since only one lag is required, but could be higher order

→ A finite number of lags can always be added to the state vector to make it first-order
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AR(1) Processes
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A Simple Auto-Regressive Process with One Lag

Just added randomness to the deterministic process from time  to 

 is IID “shocks” or “noise”

Could have an initial condition for  Or could have an initial distribution

→  is a random variable, and so can 

→ “Degenerate random variable” if  for some 

→ Assume , and  is the degenerate case
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Evolution of the AR(1) Process

Both  and  are assumed to be normally distributed

As we discussed, linear combinations of normal random variables are normal

→ So  is normal for all  by induction

Furthermore, we have a formula for the recursion

→ If , then 

→ Hence, the evolution of the mean and variance follow a simple difference equation

 and 

→ Let 
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Visualizing the AR(1) Process
a = 0.91
b = 0.12
c = 0.53

4
# initial conditions mu_0, v_05
mu = -3.06
v = 0.67

0.6
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Visualizing the AR(1) Process
sim_length = 51
x_grid = range(-5, 7, length = 120)2

3
plt = plot(;size = (600, 400))4
for t in 1:sim_length5
    mu = a * mu + b6
    v = a^2 * v + c^27
    dist = Normal(mu, sqrt(v))8
    plot!(plt, x_grid, pdf.(dist, x_grid),9
    label = L"\psi_{%$t}", linealpha = 0.7)10
end11
plt12
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From a Degenerate Initial condition

Cannot plot  since it is a point mass at ψ

0

μ

0

mu = -3.01
v = 0.02
plt = plot(;size = (600, 400))3
for t in 1:sim_length4
    mu = a * mu + b5
    v = a^2 * v + c^26
    dist = Normal(mu, sqrt(v))7
    plot!(plt, x_grid, pdf.(dist, x_grid),8
    label = L"\psi_{%$t}", linealpha = 0.7)9
end10
plt11
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Practice with Iteration

Let us practice creating a map and iterating it

We will need to modify our iterate_map function to work with vectors

Let ,x ≡ [ ]

⊤

μ v

function iterate_map(f, x0, T)1
    x = zeros(length(x0), T + 1)2
    x[:, 1] = x03
    for t in 2:(T + 1)4
        x[:, t] = f(x[:, t - 1])5
    end6
    return x7
end8

iterate_map (generic function with 1 method)

33 / 94



Implementation of the Recurrence for the AR(1)
function f(x;a, b, c)1
  mu = x[1]2
  v = x[2]3
  return [a * mu + b, a^2 * v + c^2]4
end5
x_0 = [-3.0, 0.6]6
T = 57
x = iterate_map(x -> f(x; a, b, c), x_0, T)8

2×6 Matrix{Float64}:
 -3.0  -2.6    -2.24     -1.916    -1.6244   -1.36196
  0.6   0.736   0.84616   0.93539   1.00767   1.06621
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Using Matrices

x

t+1

= [ ]

≡A

x

t

+ [ ]

≡B

a 0

0 a

2



b

c

2



A = [a 0; 0 a^2]1
B = [b; c^2]2
x = iterate_map(x -> A * x + B, x_0, T)3

2×6 Matrix{Float64}:
 -3.0  -2.6    -2.24     -1.916    -1.6244   -1.36196
  0.6   0.736   0.84616   0.93539   1.00767   1.06621
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Fixed Point?

Whenever you have maps, you can ask whether a fixed point exists

This is especially easy to check here. Solve,

→

→

Lets check for a fixed point numerically

μ = aμ+ b ⟹ μ =

b

1−a

v = a

2

v+ c

2

⟹ v =

c

2

1−a

2

sol = fixedpoint(x -> A * x + B, x_0)1
@show sol.zero2
@show b/(1-a), c^2/(1-a^2);3

sol.zero = [1.0000000000000266, 1.3157894736842035]
(b / (1 - a), c ^ 2 / (1 - a ^ 2)) = (1.0000000000000002, 1.3157894736842108)
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Existence of a Fixed Point

The important of  is also clear when we look at the  matrix

We know the eigenvalues of a diagonal matrix are the diagonal elements

→ i.e.,  and 

If , then  and hence the maxim absolute value of the eigenvalues

below 1

As we saw in the univariate case, conditions of this sort were crucial to determine

whether the systems would converge

We will see more complicated versions of the  matrix as we move into richer “state

space models”
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2
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Evolution of the Probability Distributions
x_0 = [-1.0, 0.1] # tight1
T = 102
f(x) =  A * x + B3
x = iterate_map(f, x_0, T)4
x_star = fixedpoint(f, x_0).zero5
plt = plot(Normal(x_star[1], sqrt(x_star[2]));6
           label = L"\psi^*",7
           style = :dash,8
           size = (600, 400))9
for t in 1:T10
    dist = Normal(x[1, t], sqrt(x[2, t]))11
    plot!(plt, dist, label = L"\psi_{%$(t-1)}",12
         linealpha = 0.7)13
end14
plt15
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Stationary Distributions
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Fixed Points and Steady States

Recall in the lecture on deterministic dynamics that we discussed fixed point and steady

states  has a fixed point  if 

→ e.g.   has  if 

We can also interpret as a steady state  as  for some 

→ Stability looked at stability which told us about which  the process would

approach from points  near 

The key: for  if we apply  evolution equation and remain at that point
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Stationary Distributions

Analogously, with stochastic processes we can think about applying the evolution

equation to random variables

→ Instead of a point, we have a distribution 

→ Then rather than checking , we check , where that notation

is loosely taking into account the distribution of shocks

Similar to stability, we can consider if repeatedly applying  repeatedly to various 

converges to 
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0
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AR(1) Example

Take  if  for 

Recall If , then using properties of Normals

→

→ We derived the fixed point of the mean and variance iteration as

Apply the evolution equation to  we demonstrate that 

→ i.e., from any initial condition, the distribution of  converges to 
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What if ?a > 1

a,b,c = 1.1, 0.2, 0.251
A = [a 0; 0 a^2]2
B = [b; c^2]3
f(x) =  A * x + B4
T = 155
x = iterate_map(f, [0.0, 0.1], T)6
plt = plot(Normal(x[1, end], sqrt(x[2, end]));7
            label = L"\psi_{%$T}",8
           size = (600, 400))9
for t in 1:510
    dist = Normal(x[1, t], sqrt(x[2, t]))11
    plot!(plt, dist, label=L"\psi_{%$(t-1)}",12
         linealpha = 0.7)13
end14
plt15
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Analyzing the Failure of Convergence

If it exists, the stationary distribution would need to be 

Note that if  we get the drift of the process forward

→ But, just as in the case of the deterministic process, this just acts as a force to move

the distribution, not spread it out

In fact, with  the mean of  is always 0, but the variance grows without bound if

Lets plot the  case
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2
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b = 0 ψ

t

c > 0

a = 1, b = 0
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What if ?a = 1, b = 0

a,b,c = 1.0, 0.0, 0.251
A = [a 0; 0 a^2]2
B = [b; c^2]3
f(x) =  A * x + B4
T = 155
x = iterate_map(f, [0.0, 0.1], T)6
plt = plot(Normal(x[1, end], sqrt(x[2, end]));7
            label = L"\psi_{%$T}",8
           size = (600, 400))9
for t in 1:510
    dist = Normal(x[1, t], sqrt(x[2, t]))11
    plot!(plt, dist, label=L"\psi_{%$(t-1)}",12
         linealpha = 0.7)13
end14
plt15
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Ergodicity

There are many different variations and definitions of ergodicity

Among other things, this rules out are cases where the process is “trapped” in a subset of

the state space and can’t swith out

Also ensures that the distribution doesn’t spread or drift asymptotically

Ergodicity lets us apply LLNs to the stochastic process, even though they are not

independent
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Ergodicity

We will consider a process  with a stationary distribution 

The process is ergodic if for any  (with regularity conditions)

→ i.e. the time average of the function converges to the expectation of the function.

Mean ergodic if only require this to work for 

{X

t

}

∞

t=0

ψ

∗

f : R → R

lim

T→∞

1

T

T

∑

t=1

f(X

t

) = ∫ f(x)ψ
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Iteration with IID Noise

Adapt scalar iteration for iid noise

function iterate_map_iid(f, dist, x0, T)1
    x = zeros(T + 1)2
    x[1] = x03
    for t in 2:(T + 1)4
        x[t] = f(x[t - 1], rand(dist))5
    end6
    return x7
end8
a,b,c = 0.9, 0.1, 0.059
x_0 = 0.510
T = 511
h(x, W) = a * x + b + c * W # iterate given random shock12
x = iterate_map_iid(h, Normal(), x_0, T)13

6-element Vector{Float64}:
 0.5
 0.5252717486805177
 0.5306225876900339
 0.46819901566492783
 0.532032538532688
 0.583020976850554
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Demonstration of Ergodicity with Mean
T = 20001
x_0 = 0.52
x = iterate_map_iid(h, Normal(), x_0, T)3
x_means = cumsum(x)./(1:(T+1))4
plot(0:T, x_means;5
  label=L"\frac{1}{t}\sum_{s=0}^{t-1} X_s",6
  xlabel = "t", size = (600, 400))7
hline!([b/(1-a)], color = :black,8
  linestyle = :dash,9
  label = L"\mathbb{E}[X]")10
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Starting at the Stationary Distribution

A reasonable place to start many simulations is a draw from the stationary distribution

Random.seed!(20)1
x_0 = rand(Normal(b/(1-a), sqrt(c^2/(1-a^2))))2
x = iterate_map_iid(h, Normal(), x_0, T)3
x_means = cumsum(x)./(1:(T+1))4
plot(0:T, x_means;5
  label=L"\frac{1}{t}\sum_{s=0}^{t-1} X_s",6
  xlabel = "t", size = (600, 400))7
hline!([b/(1-a)], color = :black,8
  linestyle = :dash,9
  label = L"\mathbb{E}[X]")10
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The Speed of Convergence

The speed with which the process converges towards its stationary distribution is

important

Key things which govern this transition will be

→ Autocorrelation: As  goes closer to , the faster it converges back towards the

mean - as with deterministic processes

→ Variances: Wth large  the noise may dominate and the  becomes broader

a 0

c ψ

∗
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Close to a Random Walk

Random.seed!(20)1
a,b,c = 0.99, 0.01, 0.052
h(x, W) = a * x + b + c * W3
T = 20004
x_0 = 0.55
x = iterate_map_iid(h, Normal(), x_0, T)6
x_means = cumsum(x)./(1:(T+1))7
plot(0:T, x_means;8
  label=L"\frac{1}{t}\sum_{s=0}^{t-1} X_s",9
  xlabel = "t", size = (600, 400))10
hline!([b/(1-a)], color = :black,11
  linestyle = :dash,12
  label = L"\mathbb{E}[X]")13
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Dependence on Initial Condition

Intuition: ergodicity is that the initial conditions “wear off” over time

However, even if a process is ergodic and has a well-defined stationary distribution, it

may take a long time to converge to it

This is very important in many quantitative models:

→ How much does your initial wealth matter for your long-run?

→ If your wages start low due to discrimination, migration, or just bad luck, how long

does it converge?

→ If we provide subsidies to new firms, how long would it take for that to affect the

distribution of firms?
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Example of a Non-Ergodic Stochastic Process

Between  and  a coin is flipped (e.g., result of key exam)

→ If heads: income follows  with  for 

→ If tails: income follows  with  for 

The initial condition and early sequence cannot be forgotten

If there is ANY probability of switching between careers, then it is ergodic because it

“mixes”

t = 0 t = 1

X

t+1

= aX

t

+ b+ cW

t+1

b = 0.1 t ≥ 1

X

t+1

= aX

t

+ b+ cW

t+1

b = 1.0 t ≥ 1
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Moving Average Representation, MA( ), for AR(1)

From , iterate backwards to  and 
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Interpreting the Auto-Regressive Parameter

The distribution of  then depends on the distribution of  and the distribution of the

sum of  iid random variables

If  and  are normal, then  is normal since it is a linear combination

→ If  then the initial condition is never “forgotten”

→ If ,  shocks are just as important determining the distribution of 

because the  doesn’t “decay” over time
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Simulation of Moving Average Representation
X_0 = 0.5 # degenerate prior1
a, b, c = 0.9, 0.1, 0.052
A = [a 0; 0 a^2]3
B = [b; c^2]4
T = 205
num_samples = 100006
Xs = iterate_map(x -> A * x + B, [X_0, 0], T)7
X_T = Normal(Xs[1, end], sqrt(Xs[2, end]))8
W = randn(num_samples, T)9
# Comprehensions and generators example, looks like math10
X_T_samples = [a^T * X_0 + b * (1-a^T)/(1-a) + c * sum(a^j * W[i, T-j] for j in 0:T-1)11
               for i in 1:num_samples]12
histogram(X_T_samples; xlabel="x", normalize=true,13
          label=L"Samples of $X_{%$T}$ using MA($\infty$)")14
plot!(X_T; label=L"Analytic $X_{%$T}$", lw=3)      15
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Simulation of Moving Average Representation
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Nonlinear Stochastic Processes
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Nonlinearity with Additive Shocks

A useful class involves nonlinear functions for the drift and variance

→ IID  with  and frequently 

Nests our AR(1) process

→  and 

X
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= μ(X

t

) + σ(X

t

)W

t+1

W

t+1

E[W

t+1

] = 0 E[W

2

t+1

] = 1

μ(x) = ax+ b σ(x) = c
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Auto-Regressive Conditional Heteroskedasticity (ARCH)

For example, we may find that time-series data has time-varying volatility and depends

on 1 lags

→ And that the variance increases as we move away from the mean of the stationary

distribution 

Hence the process becomes an ARCH(1)
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Simulation of ARCH(1)
a = 0.71
beta, gamma = 5, 0.52
X_0 = 1.03
T = 2004
h(x, W) = a * x + sqrt(beta + gamma * x^2) * W5
x = iterate_map_iid(h, Normal(), X_0, T)6
plot(x; label = L"X_t", size = (600, 400))7
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AR(1) with a Barrier

Nonlinearity in economics often comes in various forms of barriers, e.g. borrowing

constraints

Consider our AR(1) except that the process can never go below 

We could stop the process at this point, but instead we will continue to iterate

0

X

t+1

= max{aX

t

+ b+ cW

t+1

, 0.0}
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Simulation of AR(1) with a Barrier
a,b,c = 0.95, 0.00, 0.051
X_min = 0.02
h(x, W) = max(a * x + b + c * W, X_min)3
T = 10004
x_0 = 0.55
x = iterate_map_iid(h, Normal(), x_0, T)6
plot(x; label = L"X_t", size = (600, 400))7
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Histogram of the AR(1) with a Barrier

There isn’t a true density of  due to the point mass at ψ

∗

0

T = 200001
x = iterate_map_iid(h, Normal(), x_0, T)2
histogram(x; label = L"X_t", normalize = true,3
          xlabel = "x", size = (600, 400))4
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Stochastic Growth Model
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Simple Growth Model with Stochastic Productivity

Turning off population growth, for , and  constants

Let log productivity, , follow an AR(1) process (why logs?)

f(k) = k

α
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Stationary Distribution of Productivity

Recall that the stationary distribution of  is 

Given the stationary distribution of  is lognormal, we can check ergodicity

logZ

t

N (

b

1−a

,

c

2

1−a

2

)

Z

t

a, b, c = 0.9, 0.1, 0.051
Z_0 = 1.02
T = 200003
h(z, W) = a * z + b + c * W4
z = iterate_map_iid(h, Normal(), log(Z_0), T)5
Z = exp.(z)6
histogram(Z; label = L"Z_t", normalize = true,7
          xlabel = "Z", size = (600, 400))8
plot!(LogNormal(b/(1-a), sqrt(c^2/(1-a^2))),9
      lw = 3, label = L"\psi^*")10
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Quantiles

Reminder: A quantile  is the  such that 

Or, given a density  the quantile is the  such that 

With data we can calculate an empirical quantile by first sorting the data, then finding the

value of the observations below a certain count which is the proportion of the elements

→ e.g. with 100 observations, the 5th percentile is the 5th smallest observation

The 0.5 quantile (i.e., the 50th percentile) is the median

For heavily skewed distributions, the median is often a better measure of central

tendency than the mean

q x P(X ≤ x) = q

f(x) x ∫

x

−∞

f(x)dx = q
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Practice with Iteration and Multivariate Functions

function iterate_map_iid_vec(h, dist, x0, T)1
    x = zeros(length(x0), T + 1)2
    x[:, 1] = x03
    for t in 2:(T + 1)4
        # accepts whatever type rand(dist) returns5
        x[:, t] = h(x[:, t - 1], rand(dist))6
    end7
    return x8
end9

iterate_map_iid_vec (generic function with 1 method)
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Simulation of the Stochastic Growth Model

alpha, delta, s = 0.3, 0.1, 0.21
a, b, c = 0.9, 0.1, 0.12
function h(x, W)3
    k = x[1]4
    z = x[2]5
    return [(1-delta) * k + s * exp(z) * k^alpha,6
            a * z + b + c * W]7
end8
x_0 = [7.0, log(2.0)] # k_0, z_09
T = 15010
x = iterate_map_iid_vec(h, Normal(), x_0, T)11
plot(x[1, :]; label = L"k_t", xlabel = "t", size = (600, 400), legend=:topright)12
plot!(exp.(x[2, :]), label = L"Z_t")13
dist = LogNormal(b/(1-a), sqrt(c^2/(1-a^2)))14
hline!([mean(dist)]; linestyle = :dash, label = L"\mathbb{E}[Z_t]")15
hline!([quantile(dist, 0.05)]; lw=0, fillrange = [quantile(dist, 0.95)], fillalpha=0.2, label = "5/95")16
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Simulation of the Stochastic Growth Model
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Ergodicity and Capital Accumulation

Evaluate the closed-form steady-state capital  for the deterministic modelk

∗

# Remember nonstochastic steady-state1
k_ss_det=  (s*mean(dist)/delta)^(1/(1-alpha))2

3
T = 2000004
x = iterate_map_iid_vec(h, Normal(), x_0, T)5
histogram(x[1, :]; label = L"k_t",6
          normalize = true, xlabel = "k",7
          alpha=0.5, size = (600, 400))8
vline!([k_ss_det]; linestyle = :dash, lw=3,9
       label = L"k_{ss}(c = 0)")10
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Multiplicative Growth Processes
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Proportional Growth

Many values grow or shrink proportional to their current size

→ e.g. population, firms, wealth, etc.

The growth rates are themselves often random

→ e.g. population growth rates, firm growth rates, returns on wealth

→ Random good or bad luck can compound, which changes the distribution

See  for morehere
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Kesten Process

The simplest Kesten Process is a process of the form

→  is a state variable

→  is an IID random growth rate

→  is an IID random shock

Examples: if population is  and growth rate between  and  is 

→ Then 

→ If we had migration , then 

Key questions will be about whether stationary distributions exist, how they depend on

parameters, and how fast they are approached
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Conditions for a Stationary Distribution

A stationary distribution may not exist.

Important conditions for stationary are that

→ , intuition:  most of the time

→

See  for more

E[log a

t

] < 0 a

t

< 1

E[y

t

] < ∞

Kesten Processes
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Example with Random Growth on a Asset

Let  be the gross returns on a asset, and  be value of it

→ i.e. no additional savings or consumption

Let , i.e. lognormally distributed

→ The support of  is  and 
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t
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Simulation

mu = -0.011
sigma = 0.12
R_dist = LogNormal(mu, sigma)3
T = 1004
W_0 = 1.05
@show mean(R_dist)6
@show exp(mu + sigma^2/2)7
plot(iterate_map_iid((W, R) -> W * R, R_dist,8
                     W_0, T);9
     ylabel = L"W_t", xlabel = "t",10
     size = (600, 400), legend=nothing,11
     title = "Simulations of Value")12
plot!(iterate_map_iid((W, R) -> W * R, R_dist,13
      W_0, T))14
plot!(iterate_map_iid((W, R) -> W * R, R_dist,15
      W_0, T))16

mean(R_dist) = 0.9950124791926823
exp(mu + sigma ^ 2 / 2) = 0.9950124791926823

79 / 94



Simulating an Ensemble

Frequently we will want to simulate a large number of paths

function iterate_map_iid_ensemble(f, dist, x0, T, num_samples)1
    x = zeros(num_samples, T + 1)2
    x[:, 1] .= x03
    for t in 2:(T + 1)4
        # or could do a loop over samples5
        x[:, t] .= f.(x[:, t - 1], rand(dist, num_samples))6
    end7
    return x8
end9
num_samples = 20010
W = iterate_map_iid_ensemble((W, R) -> W * R, R_dist, W_0, T, num_samples)11
plot(W'; ylabel = L"W_t", xlabel = "t", legend = nothing, alpha = 0.1,12
     color=:blue, lw = 1)13
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Simulating an Ensemble
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Distribution of Ensemble Values at t=10

t = 101
bin_edges = range(0.0, 5.0, length=50)2
histogram(W[:,t+1]; normalize=:pdf,3
         xlabel=L"W_t", ylabel="Density",4
         title="Distribution of Values at t=$(t)",5
         legend=nothing, size=(600,400),6
         bins=bin_edges)7
vline!([mean(W[:,t+1])]; color=:red, linestyle=:dash, label="Mean")8
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Distribution of Ensemble Values at t=10
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Distribution of Ensemble Values at t=50
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Distribution of Ensemble Values at t=100
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Displaying the Distribution Dynamics
num_samples = 10001
T = 2002
W = iterate_map_iid_ensemble((W, R) -> W * R, R_dist, W_0, T, num_samples)3
q_50 = [quantile(W[:,i], 0.5) for i in 1:T+1]4
q_05 = [quantile(W[:,i], 0.05) for i in 1:T+1]5
q_95 = [quantile(W[:,i], 0.95) for i in 1:T+1]6
mean_W = mean(W, dims=1)'7
plot(mean_W; label = "Mean Value")8
plot!(q_50; label = "Median Value", style = :dash, color = :lightblue)9
plot!(q_05; label = "5/95 Percentile", lw=0, fillrange = q_95, fillalpha=0.4, color = :lightblue)10
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Displaying the Distribution Dynamics
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Larger Returns
mu = -0.0011
sigma = 0.12
R_dist = LogNormal(mu, sigma)3
T = 1004
W_0 = 1.05
@show mean(R_dist)6
num_samples = 10007
W = iterate_map_iid_ensemble((W, R) -> W * R, R_dist, W_0, T, num_samples)8
q_50 = [quantile(W[:,i], 0.5) for i in 1:T+1]9
q_05 = [quantile(W[:,i], 0.05) for i in 1:T+1]10
q_95 = [quantile(W[:,i], 0.95) for i in 1:T+1]11
mean_W = mean(W, dims=1)'12
plot(mean_W; label = "Mean Value")13
plot!(q_50; label = "Median Value", style = :dash, color = :lightblue)14
plot!(q_05; label = "5/95 Percentile", lw=0, fillrange = q_95, fillalpha=0.4, color = :lightblue)15
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Larger Returns
mean(R_dist) = 1.004008010677342
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Distribution of Ensemble Values at t=10

t = 101
bin_edges = range(0.0, 5.0, length=50)2
histogram(W[:,t+1]; normalize=:pdf,3
         xlabel=L"W_t", ylabel="Density",4
         title="Distribution of Values at t=$(t)",5
         legend=nothing, size=(600,400),6
         bins=bin_edges)7
vline!([mean_W[t+1]]; color=:red, linestyle=:dash, label="Mean")8
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Distribution of Ensemble Values at t=10
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Distribution of Ensemble Values at t=50
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Distribution of Ensemble Values at t=100
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Divergence and Tails of Distributions

These examples show that for multiplicative processes the distributions will often fan

out, and potentially diverge

This is a common feature of many economic and financial time series

In particular, theory will show that for Kesten Processes, the tails of the distribution will

be heavy even if it converges to a stationary distribution

→ i.e. the probability of large deviations from the mean will be higher than for a normal

distribution

These will have what we call Power Law tails in the next section
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