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Overview
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Motivation

We have been studying many problems where agents use their expectations of the future

to make decisions today

But what is the feedback between those decisions, expectations, and the actual

outcomes?

This lecture introduces the concept of rational expectations equilibrium and Markov

perfect equilibrium to study this feedback

To illustrate it, we describe a linear quadratic version of a famous and important model

due to Lucas and Prescott 1971
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https://julia.quantecon.org/zreferences.html#id103


Materials

Adapted from QuantEcon lectures coauthored with John Stachurski and Thomas J.

Sargent

→

→

Rational Expectations Equilibrium

Markov Perfect Equilibrium

using LinearAlgebra, Statistics1
using Distributions, LaTeXStrings, QuantEcon2
using Plots.PlotMeasures, NLsolve, Roots, Random, Plots3
default(;legendfontsize=16, linewidth=2, tickfontsize=12,4
         bottom_margin=15mm)5
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https://julia.quantecon.org/multi_agent_models/rational_expectations.html
https://julia.quantecon.org/multi_agent_models/markov_perf.html


Perceived and Actual Laws of Motion
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Recall: Rational Expectations

In  we discussed models for how agents’ form expectations

Our key approach was to use the  to formalize how agents’

use expectations of the future to make decisions today

→ e.g. ,  where  is a random variable forecast by agents given (precisely

de�ned)  at time 

It was often convenient to write down models with Markov random variables so that

 only depended on  and not , etc.

If we assumed that agents’ were using the best possible forecasts given the information

they had, we called this rational expectations

→ Key feature: rational expectations forecasts are not 

previous lectures
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https://jlperla.github.io/ECON408/lectures/linear_state_space_models.html#/models-of-expectations
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https://jlperla.github.io/ECON408/lectures/linear_state_space_models.html#/information-sets
https://jlperla.github.io/ECON408/lectures/linear_state_space_models.html#/systematic-bias-in-forecasts


Microfoundations, Decisions, and Expectations

We took those tools to take agents’ forecasts of some stochastic process and solve for

their decisions

A core insight of modern macroeconomics is that in order to evaluate changes in policy

you need to have some self-consistent model of behavior (what we call

microfoundations)

These give us a tool to understand counterfactuals of how an agent would respond to

changes in the environment (e.g., )

If we take as given the stochastic processes that agents use to form expectations (e.g.,

paths of prices such as interest rates) we can evaluate how changes to that environment

will change the decisions of agents

endogenous savings in the Permanent Income Model
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https://jlperla.github.io/ECON408/lectures/permanent_income.html#/exogenous-vs.-endogenous-savings


Decisions and Outcomes

But what if the stochastic process is a consequence of those decisions?

e.g. there are agents’  each with a state  and a decision that affects each

individuals payoffs, then agent  must forecast the entire distribution of  for  to

make their decision

→ This, in turn, requires them to know the decision rules of those agents

Sometimes this can be simpli�ed since “payoff relevant” (i.e., things that enter individual

decisions) are summarized by prices like interest rates, future wages, etc.

Keep in mind that the true evolution of  will depend on the decisions of all agents

, so if we consider policy changes that affect decisions, it would change the

evolution of 
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Example: Capital Accumulation

For example, consider savings decisions in a 

As we saw, the rate of savings by consumers will determine the rate of capital

accumulation

But in a competitive market, the return to capital will depend on the amount of capital in

the economy

From the consumers’ perspective, they will make decisions based on the returns to

capital, which are a price like an interest rate

In order to make optimal savings decisions they then need to forecast the future capital

stock (or interest rates), which in turn are a consequence of those savings

growth model
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https://jlperla.github.io/ECON408/lectures/deterministic_dynamics.html#/solow-model-dynamics


Example: Education and Wages

Or another example, consider how much education (or other human capital) a consumer

should acquire

When making human capital decisions, students try to predict future wages for different

levels of education

But those wages depend on the supply of workers with a given level of education

→ So in some ways they need to forecast the decisions of other students to make their

own decisions - which could be used to forecast the wages

To consider policy counterfactuals large enough to change to education distribution (and

wages) we need students to be able to forecast how other students will respond to those

changes
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Example: Asset Pricing

Our classic  results are similar

Part of the decision on the price of an asset today is the expected future price of that

asset

→ But that price was determined by the decisions of all other agents!

We considered the case where the pricing was self-consistent (easy in that case because

we assumed a large number of identical agents)

→ We solved a version with endowments (i.e. stochastic process  in �xed supply) but

if production or other decisions entered, then agents’ would have needed to predict

them to make their decisions

consumption-based asset pricing

c

t
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https://jlperla.github.io/ECON408/lectures/asset_pricing_lucas_trees.html#/aggregate-endowment-and-complete-markets


Example: Firm Investment

A classic example comes from Lucas and Prescott (1971) where �rms make investment

decisions

To determine the appropriate scale of a �rm, �rms need to forecast pro�ts

But prices and pro�ts depend on the scale of all �rms in the economy

→ The market clearing price is decreasing in the total output of all �rms

→ Which in turn depends on the investment decisions

So �rms’ need to forecast the decisions of all other �rms (or, at least, forecast the prices)

to make their own investment decision

13 / 46



Expectations and Outcomes

If you consider counterfactuals which are unlikely to change aggregates (and hence

prices) much, then this feedback isn’t a problem

→ i.e., partial equilibrium analysis which is �ne for many questions

But if not, then this feedback is especially challenging because it relies on expectations of

the future

This is at the heart of why macroeconomics is theoretically and computationally

challenging

→ It also forces you to take a stand on models of expectations

Without assumptions, you may end up with internally inconsistencies (e.g., agents’

forecasts of prices are based on an evolution of the economy that is inconsistent with

those decisions)
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Equilibrium Concepts
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Rational Expectations Equilibrium

A classic benchmark which preserves this self-consistency is the rational expectations

equilibrium (REE)

1. Agents’ make decisions today using rational expectations to forecast the future - and

taking as given the stochastic process of the evolution of the aggregate state/etc.

2. Given those decisions, solve for the actual evolution of the aggregate state

3. The equilibria is that the perceived and actual laws of motion are the same (i.e., �xed-

point between the perceived and actual laws of motion)

As with rational expectations, agents do not know the future exactly, but forecast given

the information they have and to have no systematic biases
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Markov Perfect Equilibrium

This is a special case of another equilibrium concept called Markov Perfect Equilibrium

(MPE) or Markov Perfect Nash Equilibrium

In that, we make the same basic assumptions but consider strategic interactions

between agents

→ e.g., in a Nash equilibrium, if I change my strategy today it will change the aggregate

state, which will change the strategies of other agents

→ e.g., if I change my output, I am big enough to affect the aggregates

With a smaller number of agents (e.g., 3 �rms completing) MPE is more appropriate - but

in the limit they converge

Intuitively: as soon as the actions of each agent end up having a very small affect on

payoff relevant functions of the the aggregate state (e.g., prices) then the MPE and REE

are often the same
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Aggregates and Representative Agents

REE are typically used with price-taking agents (i.e., competitive equilibrium)

With many competitive equilibria, the distribution is not important, and the aggregate

state is su�cient to calculate “payoffs”

e.g., a �rm may only need to know the total amount of output of competitive �rms, not

the distribution of output

If we do not need to solve for the evolution of the distribution, then we may be able to

assume conditions such that a representative agent can be used to solve the model.

Aggregation result (not assumption)

→ The easiest examples are often with homothetic and identical production processes

and preferences
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The “Big K, little k” trick

The self-consistency between the perceived and actual laws of motion is easiest to see

work with when all �rms are identical and price-taking

Classic example: Lucas and Prescott (1971) model of �rm investment

→ The perceived law of motion is of the aggregate , capital

→ The individual �rm chooses investment  to maximize pro�ts

→ The REE is when the perceived law of motion is the same as the actual law of

motion (i.e.   for  identical �rms)

→ If all we care about are dynamics of the aggregate  then we might as well just use

a single representative �rm

Pervasive technique in macro: often called the “Big K, little k” trick

K

k

K = Nk N

K
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Simple Example

20 / 46



Static Example

To demonstrate the approach, lets �rst consider a simple static example

There is an undifferentiated good produced by  �rms sold on a competitive

market for 

 �rms each face cost to produce with  units of output

→ (Scaling by  is a hack to make things closer to homothetic)

If �rms are identical, then de�ne the aggregate output 

→ Where the last equality is only true if all �rms are identical
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Demand and Price

Since the good is undifferentiated, and if we assume that prices are determined by the

aggregate supply and demand, we can summarize demand as an inverse-demand

function

→ Where  and  are parameters

→ Note that this is a function of the aggregate output
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Pro�t Maximization for REE

Taking prices  and the perceived output of the other �rms ( ) as given the �rm

solves

→ Crucially, the  and the  are different here! The  is their perceived output level in

the industry, and  is the �rms’ chosen output level

→ Here we are thinking that the �rm is su�ciently small, or non-strategic, such that it

doesn’t consider its own impact on the price

p(Y ) Y

max

y

{p(Y )y − c(y)}

Y y Y

y
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Take the FOC First, Apply REE Second

Take the problem with the cost and prices

Take the FOC with respect to the . Don’t touch the ! They take it as given

Finally, to impose the REE we have that  so that

→ Or that . Why not just use ?
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Nash Equilibrium-Style Solutions

The MPE/Nash equivalent in this case would be if the �rm considers that its own output

will affect the price

In particular, �rm  forecasts  for all  and then solves

→ Which requires considering the impact of  in their decision

→ Then an symmetric MPE is one in which the  are all the same and ful�ll that

equation

With large ,  and an REE is a good approximation

n y
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Dynamic Firm Investment Model
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Competitive Equilibria with Adjustment Costs

Maintain capital = output for now. Just trying to make the

→  for  �rms

→ , aggregate output

Homogenous good sold at price 

Firms are pro�t maximizing price takers discounting at rate 

y

n

t
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Adjustment Costs

While they have no uncertainty, it is costly to adjust their output

The cost of adjusting output is quadratic in the change in output

→ Where  is a parameter

Since they own the capital to produce, we will ignore other marginal production costs.

Normalizing

c(y

t+1

− y

t

) =

1

2

γ(y

t+1

− y

t

)

2

γ > 0

28 / 46



Forecasting the Aggregates

The challenge faced by the �rm is that  depend on aggregate output , will drop and

perhaps even go negative

So if they over produce and choose too high of a  then may end up with lower or

negative pro�ts

The REE challenge is that all other �rms are making that decision, so  is a function of

all the ’s

We could have them forecast  directly, but note that  so we can have them

forecast a law of motion for  instead
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Firm Beliefs

The agents have a deterministic perceived law of motion for 

→ More generally, we would need a stochastic process for the perceived law of motion

of .

Given the known initial condition , de�ne this as

This belief  is an equilibrium object we will solve for

→ The next step is to take it as given, and solve the �rm’s problem
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Sequential Firm Problem (Given Beliefs)

Take as given and generate  from  and 

Firm period pro�ts net adjustment costs are 

The �rm takes prices,  and given, and solves

→ Turns out we can write solution as a  in this case.
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Firm Problem (Given Beliefs)

Jumping to a Bellman Equation with value function: 

The state:  for the �rm, and  for the aggregate. Take as given

→ De�ne the solution to the optimization problem as the , and denote

Note that  and  would depend on the 
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(Optional) First-Order Characterization of 

Take the FONC, then

→ As in  we need to use the envelope theorem, following a result of

→ Gives that 

Substituting this equation gives

→ with initial conditions for 

→ the terminal transversality condition

h
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Imposing the REE Equilibrium

Given a solution for the , we can then impose the REE equilibrium

In this case, can show that the  evolution will be independent of 

Might as well set  then set  to solve for the equilibrium

→ i.e.  , or the actual LOM = perceived LOM

→ The “Big K, little k” trick. But can’t do  until after FOCs

y

t+1

= h(y

t

,Y

t

)

Y

t+1

= H(Y

t

)

= Nh(Y

t

/N ,Y

t

)

Y

t

N

N = 1 Y

t

= y

t

h(Y

t

,Y

t

) = H(Y

t

)

Y

t

= y

t

34 / 46



Computing the REE
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Solution Methods

This �xed point problem connecting the perceived and actual laws of motion is

computationally challenging

→ Internally we can �x a LOM and then solve the agent’s problem, but then we need to

�nd the new LOM given those decisions

→ We can literally set it up as a �xed-point problem, but it isn’t a 

so naive iteration won’t always work.

In some cases we can �nd a  with the same solution

Here we will discuss the general approach without going through the computational

challenges and solutions

contraction mapping

planning problem
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https://julia.quantecon.org/multi_agent_models/rational_expectations.html#misbehavior-of-phi
https://julia.quantecon.org/multi_agent_models/rational_expectations.html#a-planning-problem-approach


Outline of Algorithm
1. Choose a functional form for the LOM. In this case, we will guess that

2. Then, for some  and  guess, we solve the �rm’s problem taking the  as given

This gives us a  in this case

3. Use the  example, and set  and �nd the implied  and 

4. Applying the simple  case we have  which means that

5. Iterate until  and 
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Linear Quadratic Optimal Control

This problem �ts into the  framework

→ Where  is a state vector,  is a control vector, and  are matrices for payofffs

→ The  is a LSS law of motion. Also can handle gaussian shocks

Can show optimal solution is a  for some  matrix

Linear Quadratic (LQ) optimal control
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Fitting the LQ Law of Motion

If the perceived law of motion is  this �ts the LSS

Let 

Let , i.e. scalarchange in output
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Fitting the LQ Payoffs

Payoffs in our model are

Mapping to the LQ setup
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Mapping Solution to  and 

LQ optimal control gives an optimal 

For our  and ,

Let  to apply REE condition for 

Compare to the assumed  LOM to solve
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Implementation of Firm Problem (Given Beliefs)
function solve_firm_problem(kappa, mod)1
  kappa_0, kappa_1 = kappa # beliefs for H(Y_t)2
  (; a_0, a_1, gamma, beta) = mod3
  A = [1 0 04
      0 kappa_1 kappa_05
      0 0 1]6
  B = [1.0, 0.0, 0.0]7
  R = [0 a_1/2 -a_0/28
      a_1/2 0 09
      -a_0/2 0 0]10
  Q = gamma/211
  lq = QuantEcon.LQ(Q, R, A, B; bet = beta)  # Package solves for u_t = -F x_t12
  P, F, d = stationary_values(lq)13
  kappa_0_hat = -F[3]14
  kappa_1_hat = 1 - F[1] - F[2]15
  return [kappa_0_hat, kappa_1_hat] # implied h(Y_t, Y_t)16
end17
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Rational Expectations Equilibria

Key: �nd �xed point of 

Note that naive �xed-point iteration may not work

H(Y ) = h(Y ,Y )

function solve_REE(mod; kappa_iv = [95.5, 0.95], Y_ss_iv = [1500.0])1
  sol = fixedpoint(kappa -> solve_firm_problem(kappa, mod), kappa_iv)2
  kappa_0, kappa_1 = sol.zero3
  H(Y) = [kappa_0 + kappa_1 * Y[1]] # vectorized4
  Y_ss = fixedpoint(Y -> H(Y), Y_ss_iv).zero # steady state of H(Y)5
  return (;kappa_0, kappa_1, H, Y_ss)6
end7
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Finding the Fixed Point of H = h
firm_dynamics_model(;a_0 = 100, a_1 = 0.05, beta = 0.95, gamma = 10.0) = (;a_0, a_1, beta, gamma)1
kappa_iv = [95.5, 0.95] # H() belief initial condition2
mod = firm_dynamics_model() # default values3
kappa_hat = solve_firm_problem(kappa_iv, mod)4
(;kappa_0, kappa_1, H, Y_ss) = solve_REE(mod; kappa_iv)5
@show solve_firm_problem([kappa_0, kappa_1], mod) - [kappa_0, kappa_1];6

solve_firm_problem([kappa_0, kappa_1], mod) - [kappa_0, kappa_1] = [1.7195134205394424e-12, 1.1102230246251565e-15]
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REE Dynamics
function iterate_map(f, x0, T)1
    x = zeros(length(x0), T + 1)2
    x[:, 1] = x03
    for t in 2:(T + 1)4
        x[:, t] = f(x[:, t - 1])5
    end6
    return x7
end8
(;H, Y_ss) = solve_REE(mod)9
Y_0 = [1500.0]10
T = 5011
Y_path = iterate_map(H, Y_0, T) # H 12
plot(Y_path'; label = L"Y_t", xlabel = L"t",13
     size = (600, 400), legend = :bottomright)14
hline!([Y_ss[1]]; label = L"Y^*",15
       linestyle=:dash)16
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Counterfactual

(;H, Y_ss) = solve_REE(mod)1
Y_0 = [1500.0]2
T = 2003
Y_path = iterate_map(H, Y_0, T)4
plot(Y_path'; label = L"Y_t(\gamma = 10.0)",5
     xlabel = L"t", size = (600, 400),6
     legend = :bottomright)7
mod = firm_dynamics_model(;gamma = 20.0)8
(;H, Y_ss) = solve_REE(mod)9
Y_path = iterate_map(H, Y_0, T)10
plot!(Y_path'; label = L"Y_t(\gamma = 20.0)")11
hline!([Y_ss[1]]; label = L"Y^*",12
       linestyle=:dash)13
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