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Overview
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Motivation

Previously, the savings rate has been an exogenously given function of income

In this section we will analyze optimal consumption and savings decisions in a simple

model: the classic permanent income model of Milton Friedman and refined by Hall

(1978)

→ Given these decision processes, we could embed them into our previous models of

income dynamics
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Fort Knox

 holds about 13K tons of gold

→ Secured in granite, with a steel door 21 inches thick weighing 20 tons

The data:

→ Fort Knox has been around since 1937 and has never been robbed

Counterfactual: How much should we spend on protection?

What if we only look at the historical data

→ If it has never been robbed, why does it need to be secured at all?

“Structural” models let us consider a broader class of counterfactuals

→ Need to have a “deep” model of criminal incentives, detection ability, etc. to see the

appropriate level of security

This is used as a classic example of the 

Fort Knox

Lucas Critique
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Exogenous vs. Endogenous Savings

Why do we need to bother with a model of savings and consumption? Couldn’t we just

estimate it from the data use it empirically?

The challenge is that this only leads to a limited number of counterfactuals

→ For example, we can simulate a panel of agents living in a fixed economy spanned

by the data

But what about numerical experiments where the environment changes??

→ A tax cut when future taxes balance budget

→ Wouldn’t the savings rate change in response to these plans?

This led early macro-economists to consider that the Marginal Propensity to Consume

(MPC) might adjust based on information sets alone
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Materials

Adapted from QuantEcon lectures coauthored with John Stachurski and Thomas J.

Sargent

→

→ Note using . i.e., financial assets rather than debt

Optimal Savings I: The Permanent Income Model

F

t

= −b

t

using Distributions, Plots, LaTeXStrings, LinearAlgebra, Statistics1
using Plots.PlotMeasures, QuantEcon, StatsPlots2
default(;legendfontsize=16, linewidth=2, tickfontsize=12,3
         bottom_margin=15mm)4
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Welfare and Preferences

To introduce an endogenous choice, consider how an agent would compare alternative

bundles of consumption goods. Assume agent:

→ Lives for  (see  importance)

→ Gains period utility  from consumption . Previously we assumed this was

linear

→ Discounts future  with discount factor 

This leads to preferences that are additively separable and they compare 

streams of consumption at time 
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Period Utility

Previously we had assumed a linear utility function (which we called “risk neutral”)

Consider utility which is strictly concave where:

→ : More is better

→ : Diminishing Marginal Utility

→ : Infinite Marginal Utility at zero

Examples include

→  and  for 

→  for  as long as  is less than the “satiation point”

where 
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Strictly Concave Utility

Positive Marginal Utility of Consumption

Diminishing Returns

No (visible, at least) point of satiation
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Uncertainty

What if the agent does not know  because it is random or uncertain?

In that case, we can instead have the agent compare expected utility streams

→ Where  with  the information set we make available at time  for

forecasting in our model

→ This uses our model of expectation formation from the 
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Risk Aversion vs. Inter-temporal Substitution

If  is strictly concave the agent:

→ Risk Averse: Prefers more deterministic consumption to those with a higher

variance

→ Preferences for Consumption Smoothing: Will substitute between time periods

rather than smoother consumption over time rather than large fluctuations

One challenge in macroeconomics with these preferences is that the  serves both

purposes, which have different economic interpretations.

→ To disentangle, can use recursive preferences such as  which decouple

these two concepts

u(c)

u(c)

Epstein-Zin
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Smoothing Incentives

Consider a simpler case where they live for two periods and don’t discount the future:

Consider two possible bundles:  and  where 

If the agent is risk-neutral, we see that 

However, if the agent if risk-averse, then

→ They strictly prefer smoother consumption over time

→ i.e., would forgo consumption on average to gain smoother consumption

V (c

1

, c

2

) ≡ u(c

1

) + u(c

2

)

{c

t

, c

t+1

} {c̄, c̄} c

t

+ c

t+1

= 2c̄

V (c

t

, c

t+1

) = V (c̄, c̄)

V (c

t

, c

t+1

) < V (c̄, c̄) unless c

t

= c

t+1

= c̄

14 / 72



Smoothing and Concavity

Recall 

2 periods, 

Same “price” for  and 

Two possible bundles:

1. 

2. 

Later,  and prices will simply distort this

exact tradeoff
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Risk-Aversion Intuition

Consider a utility  and a lottery which is a random variable

→

→ Let 

→ We can form expected utility as 

Note if risk-neutral then 

Then if an agent is risk-averse,

→ i.e., would forgo consumption on average to avoid the risk
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Risk Aversion and Concavity

Interpretation as fair, risk-neutral prices for

lotteries

Then compare choice between lotteries:

1. 

2. 

The strict concavity of  shows you are

better off with the deterministic

consumption
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The Decision Problem
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Permanent Income Model

The classic permanent income model explored the impact of these economic forces on

consumption and savings decisions. The agent

→ has an exogenous, potentially stochastic, income stream 

→ chooses a consumption policy  to maximize expected welfare

→ forecasts the random variables  and  streams using mathematical

expectations

→ has access to a risk-free bond market with interest rate  to either save or borrow,

enabling them to smooth consumption over time or deal with uncertainty

→ has financial assets at time  be  which also must be forecast
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Period-By-Period Budgets

Given income , consumption , and financial assets , the agent’s budget constraint

is

→ where  is the gross interest rate on saving or borrowing, and 

would be the net interest rate

→ the interpretation is simple: take their bank account value (positive or negative), add

or subtract savings that period, and then they gain interest on the new balance (or

the the debt grows if negative)

If this was the only constraint, you might have infinite borrowing each period
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Lifetime Budget Constraint (LBC)

Alternatively, if all of those accounting relationships must hold, substitute to form a single

budget

Given forecasts of  and , the budget must fulfill

The  is the current financial assets. Consider leaving in bank to pay for 

→ Then  enters because  today grows to  in  periods

→ That allows you to buy  units of 
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A Special Case of 

Where does  come from? The decisions of other agents in the economy

→ Lenders are asked to give up 1 unit of consumption today for  units of

consumption tomorrow

→ Hence the  should reflect the degree of impatience of the lender

An important case is when 

→ As we will discuss later, this will arise in equilibrium as the natural rate of interest

when agent’s can smooth consumption fully

The intuition is that the gross interest rate exactly offsets the impatience, as captured by

the discount factor. Risk, etc. will enter later

R = 1/β

R

R

R

βR = 1
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Lifetime Budget Constraint when 

In that case, we see that the budget constraint simplifies to

→ This should give you hope on tractability: if  and  follow simple stochastic

processes (e.g., the LSS) then we can can calculate these EPDV
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Decision Problem

Economists (usually) formalize decisions as optimization problems

Taking an exogenous gross interest rate  and 

No-ponzi condition treated informally: prevents the agent from borrowing too quickly,

equivalent to not dying in debt if they had a finite life
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Decision Problem (Alternative)

While we cannot in extensions with borrowing constraints, etc., here we can use the LBC

→ rearranged to show that the EPDV of savings = initial financial assets. Implicitly uses

the no-ponzi scheme condition

max
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Consumption Plans, Information Sets, and Forecasts

 and  are random variables for all 

The agent is making a plan for each realization of the random shocks

To forecast the future, they are conditioning on their own decisions given the

randomness inherent to the  process

Formally modeling information to use 
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State-Contingent Plans

At time , the agent chooses a 

In doing so, they need to consider their future  for 

→ But they do not know  until they see  for 

More generally, the agent is choosing a plan 

→ i.e. a contingent plan of how much to consume given all possible information states.

→ They are choosing a random variable!

This seems like an intractable problem? Is there even a sense of self-consistency?
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Time-Consistency

Would they change their mind and choose a different  than their plan?

→  to new information 

Solve for  and plan  for all  realizations

See  and  and “reoptimize”, solving for 

Without proof, with these preferences the plan is time-consistent: they will not want to

change their plan, even after seeing  for 
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First-Order Conditions

Without a full derivation, can show that the solution to this problem exists, for strictly

concave  where, given a  initial condition

→ Or, equivalently in this case, the LBC must also hold

→ Note that we have switched from the  to just  for current period

Still challenging since we need to forecast optimal 
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Interpreting the Euler Equation

Euler Equations are ubiquitous intertemporal optimality conditions

The cost consuming less today is the marginal utility today, 

The right-hand term is the benefit

→ You gain the marginal utility (MU) of consuming a little more tomorrow

→ Need to forecast MU tomorrow, considering risk aversion/smoothing

→ A unit of utility tomorrow is only worth  times that of today

→ However, you are compensated by the savings growing at interest rate  which

increases the amount of units of consumption you can afford
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(Optional) 2-Period Motivation
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Motivating Derivation of the Euler Equation

See  for a more complete derivation in the deterministic case

Will derive Euler Equation for the simple case of 2-periods  and , which ends up

nesting the general case

Budget  but assume  since they “die”

→ Then 
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Decision Problem with 2 Periods

And substitute the budget constraint into the objective function

Take the FONC, which can be rearranged to the Euler equation
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Special Case of Deterministic
Income
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Special Case of Deterministic Income and 

If  is deterministic, then this problem no longer requires forcasts

Furthermore, assume  (i.e. interest exactly offsets impatience)

Moreover, given assumptions that  and , this implies that 

This is the classic Permanent Income Result
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Reminder: Strictly Concave Utility

Positive Marginal Utility of Consumption

Diminishing Returns

No (visible, at least) point of satiation
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Marginal Utility

 but decreasing 

If  then 

The less they consume, the more valuable

additional consumption in that period

would be
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Equating Marginal Utilities

Euler here:  for all 

Exact for simple deterministic, 

case

By equating marginal utilities at all points,

they gain a lower average marginal utility
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Smoothing and Welfare

The higher average marginal utility for the

volatile consumption path corresponds to

a lower average utility

→ i.e. welfare here

If “risk-neutral”, then the agent is indifferent

between the two paths

→ We see that since the utility function

would be linear itself
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Permanent Income Result for Strictly Concave 

With , use  with the LBC

→ The consumer has a constant MPC out of total wealth
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Annuity Values

If  then notice that 

Consider  in financial assets and want to consume some and save the rest

Assume no income, and consider if you consume  proportion of 

So the annuity value is the amount I can take out and leave the bank account identical

after interest

Alternatively, the inverse of the price of an asset that payed out  each period forever

R ≡ 1 + r = 1/β 1 − β =

r

1+r

=

R−1

R

F

t

R−1

R

F

t

teF

t+1

= R(F

t

− c

t

) = R (F

t

−

R − 1

R

F

t

) = F

t

$1

41 / 72



Stochastic Income and

Consumption
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What about Stochastic Income?

Leaving  for the remainder of the slides

Optimality: agents would LOVE to equate all marginal utilities

→ Will do the best they can given information sets

With enough financial instruments to hedge all risks, they might!

→ However, for an arbitrary  function this is hard to achieve in our environment,

where they only have a single, risk-free asset
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Quadratic Utility

A special case of these preferences is  for 

→ This is a quadratic utility function

→ If  this is strictly concave

→ However,  is always negative for large enough 

→ i.e, satiation point for the  where 

Assume conditions such that , and this is strictly concave in the relevant range
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Euler Equation for Quadratic Utility

Since  we can write the euler equation as

→ That is, the agent will choose consumption so that the expected value of

consumption next period is equal to the current period

With more general strictly concave preferences, often: 
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Recall: Martingales

Reminder:  is a martingale if 

In other words, consumption is a  for any  stochastic process!

Key feature of martingales: the history has no predictive power for the future

This will also come up in macro-finance and asset pricing later

→ i.e., if the past had systematic and consistent predictive power, then there would be

systematic and consistent profits to be made

→ If there were systematic profits to be made, wouldn’t prices adjust as people tried to

make those profits?
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Consumption is a Martingale

Similar logic: Consumers use all available information to smooth consumption

With the financial assets we give them, a martingale is the closest they can get to fully

smoothed consumption

The agent will look at their permanent income (i.e. EPDV of human wealth + financial

assets) and plan to keep it constant on average

This highlights that the changes in consumption come from “surprise”

→ If any of that surprise was in their , then they would have already

adjusted

information sets
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Some Implications

As discussed, suggests that agents will adjust based on their forecasts of future income,

so they are harder to trick. Tax cut now with tax increase later may have little to know

effect?

→ Limits the effectiveness of fiscal policy

Makes it harder to interpret the data

→ A rapidly increasing income process might have little or no effect on consumption if

it is forecast

Policies which smooth consumption will increase consumer welfare

→ e.g., social security, unemployment insurance, etc.

→ Financial assets allowing more intertemporal substitution (e.g. bonds) or across

states (e.g. insurance, or risky assets like bonds)
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Changes in Consumption

We know that  and there is no  in forecasting

Changes are driven by shocks. Without proof, can show

→ Changes in consumption come only from information (  vs.  )

→ “Surprises” were anything they couldn’t forecast on average

→ By law of iterated expectations we see this is mean zero, consistent with the

martingale property
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Linear State Space Models
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Linear State Space Models for Income

While this theory applies to any stochastic process for income, consider a special case

which is a 

→ , and 

→

Key result if  and :

Linear Gaussian State Space
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Optimal Consumption with the LSS

Take the optimal consumption we derived earlier

We can use this in the , with 
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Impulse Response Function (IRFs)

A common tool in macro: look at the response of the system to a “shock”

This is called the impulse response function

→ Think of this as feeding in a one-time change to  and then seeing how that

propagates for  and 

→ These are especially easy in LSS models because you can solve the system feeding

in zeros for all other shocks as the comparison

Given this, we can also look at the present discounted value of the impulse response

function, which will help us interpret the model
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Impulse Response for a LSS

The impulse is a  shock, typically just zeros and ones depending on the experiment

and then  for all 

Then for some  initial condition, compare the evolution with this shock relative to one

with  for all 

Denote the version with zero shocks throughout as , then

More generally, for any 

→

→
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EPDV of an Impulse Response

Consider instead the expected present-discounted value of this “shock”

Going back to the change in consumption, we can show that

Interpretation: change in  = MPC  EPDV of IRF to “shock”
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Consolidating into a Single LSS

The “state” of the agent is then summarized by 

The key observations are the  and , where the later is now the optimal decision

Given that everything is still linear and Gaussian, we can combine these into a new LSS

(note: could  have used the  LOM)

→ State: 

→ Observables: 

Then the evolution and observation equations just need to be stacked
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Stacked LSS

The stacked evolution equation (for  a vector of zeros)

→ Then use our LSS tools with  and 
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Examples
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IID Income LSS

Consider the case where IID income: 

→ Hence:  and  where 

One way to write as a state-space model is: 

→ Note: 
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Stacked LSS for IID Income
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Analysis of Savings

From this, we see that

→ i.e., financial assets are a random walk, a martingale

Note that if  and  (i.e., )

→ i.e., financial assets = accumulated unanticipated income shocks

→ Lack of persistence in the income process means agent does not need to smooth

for predictable drifts
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Analysis of Consumption

The row of  in the LSS row is 

And with  and  (i.e., )

→ i.e., consumption is also a random walk and a martingale

Change in consumption is driven by IID shocks. MPC  annuitized value of the shock
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Direct Simulation

function simulate_iid_income(p, T; w = randn(T))1
    w_sum = cumsum(w) #(w_1, w_1 + w_2, w_1 + w_2 + w_3, ... sum_{j=1}^T w_j))    2
    c = p.mu .+ (1 - p.beta) * p.sigma  * w_sum # (c_1, c_2, ... c_T)3
    y = p.mu .+ p.sigma * w # (y_1, y_2, ... y_T)4
    F = [0.0; p.sigma * w_sum[1:end-1]] #(F_1, F_2, ... F_T)5
    return (;w, F, c, y)6
end7

8
p = (;beta= 1.0 / (1.0 + 0.05), mu = 1.0, sigma = 0.15)9
T = 6010
res = simulate_iid_income(p, T)11
plot(1:T, res.y, color = :green, label = L"non-financial income, $y_t$",12
     xlabel="Time", legend = :bottomright)13
plot!(res.c, color = :black, label = L"consumption, $c_t$")14
plot!(res.F, color = :blue, label = L"Assets, $F_t$")15
hline!([p.mu], color = :black, linestyle = :dash, label = L"mean income, $\mu$")16
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Direct Simulation
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LSS Formulation

A = [0 0; 0 1]1
G = [p.sigma p.mu]2
C = [1; 0]3
H = G*inv(I-p.beta*A)4
A_tilde = [A zeros(2,1); H*(I-A) 1]5
C_tilde = [C; 0]6
G_tilde = [G 0; (1-p.beta)*H 1-p.beta]7
x_tilde_0 = [0.0, 1, 0.0] #[w_0, 1, F_0]8
lss_pi = LSS(A_tilde, C_tilde, G_tilde;9
              mu_0 = x_tilde_0)10
x, y = simulate(lss_pi, T)11
plot(1:T, y[1,:];label=L"y_t", size=(600,400))12
plot!(1:T, y[2,:], label=L"c_t")13
hline!([p.mu], color=:black, linestyle=:dash,14
       label = L"mean income, $\mu$")15
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Permanent and Transitory Income

Classic model analyzes income with persistent and transitory shocks

Let  be the permanent component and  be the transitory component where

And income itself is the sum of these two components
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Changes in Consumption

Recall from previous slides: 

For this LSS note that . Substitute:

→ Savings can show to follow:
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Interpretation

After they see shock, the consumer:

→ Consumes the entire permanent shock (i.e. MPC )

→ Consumers an annuitized fraction of transitory shock (i.e., MPC )

Given this, next periods savings:

→ Do not change from the permanent shocks

→ Add the transitory shock (after consuming the  fraction, and paid  gross

interest)

= 1

= 1 − β

1 − β 1/β
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Iteration and IRFs

function iterate_LSS(A, C, G, x_0, T; w = randn(size(C,2), T))1
    x = zeros(length(x_0), T + 1)2
    x[:, 1] = x_03
    for t in 2:(T + 1)4
        x[:, t] = A * x[:, t - 1] + C * w[:, t - 1]5
    end6
    return x, G * x #x, y7
end8
function IRF(A, C, G, w_1, T)9
  h_x = zeros(size(A,1), T+1)10
  h_x[:,2] = C * w_111
  for t in 3:T+112
    h_x[:,t] = A * h_x[:,t-1]13
  end14
  return h_x, G * h_x #h_x, h_y15
end16
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LSS Formulation

sigma_1, sigma_2 = 0.15, 0.151
beta = 1.0/(1.0 + 0.05)2
A = [1 0; 0 0]3
G = [1 1]4
C = [sigma_1 0; 0 sigma_2]5
H = G*inv(I-beta*A)6
A_tilde = [A zeros(2,1); H*(I-A) 1]7
C_tilde = [C; zeros(1,2)]8
G_tilde = [G 0; (1-beta)*H 1-beta]9
x_tilde_0 = [1.0, 0.0, 0.0]#[x_10, x_20, F_0]10
lss_pi = LSS(A_tilde, C_tilde, G_tilde;11
              mu_0 = x_tilde_0)12
T = 20              13
x, y = simulate(lss_pi, T)14
plot(1:T, y[1,:];label=L"y_t",size=(600,400))15
plot!(1:T, y[2,:], label=L"c_t")16
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IRFs for Permanent Shock

w_1 = [1.0, 0.0]1
h_x, h_y = IRF(A_tilde, C_tilde,2
               G_tilde, w_1, T)3
plot(0:T, h_y[2,:];label="Consumption",4
     size=(600,400), legend = :topright)5
plot!(0:T, h_x[3,:], label="Savings")6
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IRFs for Transitory Shock
w_1 = [0.0, 1.0]1
h_x, h_y = IRF(A_tilde, C_tilde,2
               G_tilde, w_1, T)3
plot(0:T, h_y[2,:];label="Consumption",4
     size=(600,400), legend = :topright)5
plot!(0:T, h_x[3,:], label="Savings")6
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