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Motivation

» Here we will introduce Markov Chains as a Markovian stochastic process over a discrete

number of states

These are useful in their own right, but are also a powerful tool if you discretize a
continuous-state stochastic process

» Using these, we will apply these to
Introduce a simple model of unemployment and employment dynamics
Risk-neutral asset pricing

 In a future lecture these for more advanced asset-pricing examples including option-
pricing and to explore risk-aversion
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Materials

» Adapted from Quantkcon lectures coauthored with John Stachurski and Thomas J.
Sargent

— Finite Markov Chains

- A Lake Model of Employment and Unemployment

using LinearAlgebra, Statistics, Distributions

using Plots.PlotMeasures, Plots, QuantEcon, Random

using StatsPlots, LaTeXStrings, NLsolve

default(; legendfontsize=16, linewidth=2, tickfontsize=12,
bottom_margin=15mm)
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https://julia.quantecon.org/introduction_dynamics/finite_markov.html
https://julia.quantecon.org/multi_agent_models/lake_model.html
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Discrete States

» Consider a set of N possible states of the world

» Markov chain: a sequence of random variables { X; } on {x1, ..., 2N} with the Markov
property

P(Xt—Fl =T ‘ Xt) = P(Xt—l—l = X | Xt7 Xt—17 . )

« [t will turn out that all Markov stochastic processes with a discrete number of states are
Markov Chains and can be summarize by a transition matrix

See here for Continuous Time Markov Chains which replace the transition probabilities with transition rates
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https://en.wikipedia.org/wiki/Markov_property
https://en.wikipedia.org/wiki/Markov_property
https://en.wikipedia.org/wiki/Continuous-time_Markov_chain#Definition

s
Transition Matrix

« Summarize into a P € RYV*Y transition matrix where
P =P( X1 =2;| Xe =2;), fori=1,...N,5=1,...N

» Each row is a probability distribution for the next state () conditional on the current one (
)
N :
Hence P > 0and ) . P = 1forall

» The ordering of the matrix or states x1, ... x N is arbitrary, but you need to be consistent!
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Example: Unemployed and Employed

o probability of moving from employed to
unemployed

1-a A probability of moving from unemployed
to employed

IP)(XH_l =U ‘ Xt - E) = @, €lC.

0 ¢ A Summarize as Transition Matrix

ST,

A 1—A
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Example: Recessions Transitions

» States (ordered consistently):

IN:Normal Growth, M: Mild
Recession, S Severe Recession

 Transitions empirically estimated in
Hamilton 2005

0.971 0.020 0
0.145 0.778 0.077
0  0.508 0.492]

g
]
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https://julia.quantecon.org/zreferences.html#id84

s
Discrete RVs

probs = [0.6, 0.4] sum(probs) = 1 = true
d = Categorical{Float64, Vector{Float64}}

@show sum(probs) = 1 it g vectoritio
d = Categorical(probs) éizazoi Ezasi. 29 ig ), p=[0.6, 0.4])

@show d G[draws] = [20, 5, 5, 5]
draws = rand(d, 4)

@show draws

# Assign associated with indices

G = [5, 20]

# access by index

@show G[draws];
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Simulating Markov Chains

function simulate_markov_chain(P, X_0, T)
N = size(P, 1)
num_chains = length(X_0)
P_dist = [Categorical(P[i, :])
for 1 in 1:N]
X = zeros(Int, num_chains, T+1)
X[:, 1] .= X_0
for t in 1:T
for n in 1:num_chains
X[n, t+1] = rand(P_dist[X[n, t]])
end
end
return X
end

-y

e Create Categorical per row
» One chain for each x_o
» Simulate for each chain by:
Save current index
Use index to choose row

Draw the new index according to that
distribution
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Simulating Unemployment and Employment

alpha, lambda = 0.3, 0.6 1.O><105
P = [1-alpha alpha; lambda 1-lambda]
G = [100000.00, 20000.00]
X_0 = ones(Int, 100) # 100 people employed
T = 60
X = simulate_markov_chain(P, X_0, T) 6.0x10° F
X_values = G[X] # just indexes by the X
X_mean = mean(X_values;dims=1) 4 —Mean Income
plot(0:T, X_mean', xlabel="t", 4.0x10° 1 —_—=Tp
legend=:bottomright, label="Mean Income", — =Ty
size=(600, 400)) 2 0x10% brmmmm e .
hline!([G[1]]; label=L"x_E", linestyle=:dash) 0 10 20 30 40 50 60
hline!([G[2]]; label=L"x_U", linestyle=:dash) t

8.0x10*
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Distribution of Future Wages

unique_values = unique(X_values)
counts = [sum(X_values[:, t] .== val) for
val in unique_values, t in 1:T]
# Create the stacked bar chart
groupedbar(1:T, counts';
bar_position = :stack,
xlabel="t", ylabel="Count",
label = [L"x_E" L"x_U"],
size=(600, 400))

Count
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40

20

-y
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Simulating with QuantEcon packages

alpha, lambda = 0.3, 0.6 Prop in E = 0.69
P = [1-alpha alpha; lambda 1-lambda]

mc = MarkovChain(P)

T = 1000

init=1 # initial condition

# using QuantEcon.jl

X = simulate(mc, T;init)

prop_E = sum(X .== 1)/length(X)

println("Prop in E = $prop_E");
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Probability Mass Functions (PMF)

» Let the PMF of X; be given by a row vector
T = [P(Xt S 331) “ e P(Xt — wN)]

: N
my > O0foralle=1,...Nand > ." ;my =1
Using 7 a row vector for convenience

 If the initial state is known at t = 0 then g might be degenerate
eg,ifP(Xg=FE)=1thenmy=1[1 0]
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Conditional Forecasts

» Many macro questions involve: P(X ¢4 = x;| Xt = x;) etc.
» The transition matrix makes it very easy to forecast the evolution of the distribution.
Without proof, given s initial condition

[P(Xt+1 = wl) co IP)(XH_:[ = wN)] = TMtyr1 — 7TtP
* Inductively: for the matrix power (i.e. P x P x ... P, not pointwise)

P(Xij=21) ... P(Xpj=zN)] =7 = mP?
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Conditional Expectations

» Given the conditional probabilities, expectations are easy

Now assign X; as a random variable with values 1, ...z x and pmf m;

DefneG =[xy ... zp]

From definition of conditional expectations, where Xy ~ ¢

N
E[Xyj| Xe] =Y @impejs = G- (mP7) = G(mP) !
=1

7

This works for enormous numbers of states IV, as long as P is sparse (i.e., the number
of elements of P is significant)
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Example: Expected Income

» Define incomes in E and U states as
G = [100,000 20,000]
Maintain P(Xo = E) =1L, ormg = [1 0]

» Expected income in 20 periods is then

E[X2 | Xo =25 = G - (7oP?)
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Reminder: PDV for Linear State Space Models

o |If Liir1 — ACUt -+ C’th and Yt — Gil?t then,

p(zy) =E Zﬂjytﬂ“wt
| j=0 _

— G(I — ﬂA)_laz‘t

» Relabel Markov Chains to match thealgebraz =7',A=P',C =0
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Expected Present Discounted Value

» Consider an asset with period payoffs in 1, . ..xn with transitions according to P
» Risk-neutral expected present discounted value(EPDV)

| =0

N

Zﬂth+j X,

N .
=Y BE[Xe;| X4
j:O \ . ~ _J/

=G(m,Pi)’

—G(I—BPT) x)

Note the connection to the LSS

-y
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Stationary Distribution

» Take some X3 initial condition, does this converge?

llIIl Xt—l—j|Xt — llIIl 7Tt'PJ :7'('00?
J—00 J—00

Does it exist? Is it unique?

» How does it compare to fixed point below, i.e. does m* = w4, for all X;?
™ =xn P

This is the eigenvector associated with the eigenvalue of 1 of P"
Can prove there is always at least one. If more than one, multiplicity
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Stochastic Matrices

e Pis a stochastic matrix if
Zj-\il P;; = 1forallz, e.g. rows are conditional distributions
» Key Properties:

One (or more) eigenvalue of 1 with associated left-eigenvector 7
TP =m
Equivalently the right eigenvector with eigenvalue = 1
P'n'=1xx'

. N
Where we can normalizeto » " ;m; =1
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https://en.wikipedia.org/wiki/Stochastic_matrix

0/
Calculating Stationary Distributions
o Compare the steady states
Left-eigenvector: m* = 7* P (calculate with right-eigenvector 1 x m* ' = P 'x*1)

Limiting distribution: imp_,s mo P

» Can show that the stationary distribution is " = [—aﬂ = }
eigvals, eigvecs = eigen(P'") pi_star = [0.6666666666666666, 0.3333333333333333]

index = findfirst(x -> isapprox(x, 1), eigvals) pi_inf = [0.6666666666666629 0.33333333333333154]

pi_star = real.(vec(eigvecs[:, index]))
pi_star = pi_star / sum(pi_star)

pi_0 = [1.0, 0.0]

pi_inf = pi_0' * (PA100) # \approx infty?
println("pi_star = ", pi_star)
println("pi_inf =", pi_inf);

26 /54



s
Communicating States

« Consider two states X; and X ; ordered by indices 2z and 7 in P,

e Ifitis possible to move from X; to X ; in a finite number of steps, the states are said to
communicate

« Formally, X; and Y; communicate if there exist [ and m such that
l
P;>0 and P; >0

Consider transition probabilities to see why this implies communication
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[rreducibility

o A Markov chain is irreducible if all states communicate with each other

» Calculated in practice with tools such as strongly connected components from Graph
Theory

mc = MarkovChain(P)
@show is_irreducible(mc);

is_irreducible(mc) = true
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https://en.wikipedia.org/wiki/Strongly_connected_component

Example: Not-Irreducible

P2 = [0.4 0.4 0.2 0.0;

0.6 0.4 0.0 0.0,

0.0 0.0 0.4 0.6;

0.0 0.0 0.6 0.4]
mc2 = MarkovChain(P2)
@show is_irreducible(mc2);

is_irreducible(mc2) = false

-y
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Periodicity
» Loosely speaking, a Markov chain is called periodic if it cycles in a predictable way, and

aperiodic otherwise

» See here for more details

The "period” is the greatest common divisor of the set of times at which the chain
can return to a state

mc = MarkovChain(P)
@show is_aperiodic(mc);

is_aperiodic(mc) = true
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https://en.wikipedia.org/wiki/Discrete-time_Markov_chain#Periodicity
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Example: Aperiodic

P3=[010; 001, 10 0]
mc3 = MarkovChain(P3)
@show is_aperiodic(mc3);

is_aperiodic(mc3) = false
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Theorems for Stationarity

» Theorem Every stochastic matrix P has at least one stationary distribution.
» Theorem If P is irreducible and aperiodic then

it has a unique stationary distribution 7*

for any initial distribution g, limp_, o, 1o P1 = 7*

P;; > 0forall e, jis a sufficient condition

it is ergodic. With 1.{-} the indicator function

1z
%EEOT;H{Xt =x;} =m;, foralli
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Ergodicity

» These is the same sense of ergodicity we discussed before

alpha, lambda = 0.3, 0.6

P = [1-alpha alpha; lambda 1-lambda]

mc = MarkovChain(P)

pi_star = stationary_distributions(mc)[1]

T = 1000

init=1

X = simulate(mc, T;init)

prop_E_t = cumsum(X.==1)./(1:1length(X))

plot(1:T, prop_E_t, xlabel="t",
label=L"\frac{1}{t}\sum_{s=0}~t \mathbb{1}\{X_s = E\}"
size=(600, 400))

hline!([pi_star[1]]; label=L"\pin{*}_E",
linestyle=:dash)

1.0 ;

0.9}

0.8}

-y
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https://jlperla.github.io/ECON408/lectures/stochastic_dynamics.html#/ergodicity

Discretizing Continuous State
ProCcesses
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Discretization

» Unless continuous variables are easily summarized by a finite number of parameters or
statistics, we will need to convert continuous functions and stochastic processes into

discrete ones.

* Hence, to implement many algorithms, it is useful to model decisions with a finite
number of states

f the natural stochastic process is discrete, then no problem
Otherwise, you can discretize the continuous time process into N states
Try to ensure crucial statistics are preserved

N might be very largel
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AR(1) Transition Probabilities

e.q. X¢r1 = pX; + owssq using Tauchen's Method

N = 50 # number of nodes

rho = 0.8

sigma = 0.25

mc = tauchen(N, rho, sigma)

X_vals = mc.state_values

heatmap(X_vals, X_vals, mc.p;
xlabel=L"X_t",
ylabel=L"X_{t+1}",
title="Transition Probabilities",
color=:Blues,
size=(600, 400))

Transition Probabilities

-y
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https://julia.quantecon.org/introduction_dynamics/finite_markov.html#exercise-3

Simulation

T = 100

X simulate(mc, T;init=1)

plot(X, xlabel=L"t", label=L"X_t",
alpha = 0.3, size=(600, 400))

0.5r

0.0

—-0.5F}

-1.0¢}

25

75

100

-y
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Ensemble

© 00 N O O A W N B

T = 100
num_chains = 50
plt = plot(;ylabel=L"X_t", xlabel=L"t",
size=(600, 400), legend=false)

for i in 1:num_chains

X = simulate(mc, T;init=1)

plot!(X; alpha = 0.1, color=:blue)
end
plt

0/
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Individual Worker

» Consider a worker who can be either employed (E) or unemployed (U), following our
previous markov chain

» Assign the value of 0 if unemployed and 1 if employed

» Lets calculate the cumulative proportion of their time employed
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Reminder on Long-Run

» What is the probability in the distant future of being employed?
» Note ergodic interpretation!

lambda = 0.283 (stationary_distributions(mc))[1] = [0.043918918918918914,
alpha = 0.013 0:956081081081081]
T = 5000 pi_star = [0.04391891891891895, 0.9560810810810811]

# order U, E

P = [1-lambda lambda; alpha 1-alpha]

mc = MarkovChain(P)

@show stationary_distributions(mc)[1]

eigvals, eigvecs = eigen(P')

index = findfirst(x -> isapprox(x, 1), eigvals)
pi_star real.(vec(eigvecs[:, 1index]))

pi_star pi_star / sum(pi_star)

@show pi_star;
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Cumulative Employment

mc = MarkovChain(P, [0; 1]) # U -> 0, E -> 1 Percent of time unemployed

s_path = simulate(mc, T; init = 2) 0.100 +

u_bar, e_bar = stationary_distributions(mc)[1]

# Note mapping in MarkovChain 0.075 = U}

s_bar_e = cumsum(s_path) ./ (1:7) '

S_bar_u =1 .- s_bar_e

s_bars = [s_bar_u s_bar_e] 0.050

plot(title = "Percent of time unemployed", B -

1:T, s_bars[:, 1], lw = 2, 0.025 |

label=L"\frac{1}{t}\sum_{s=0}~t \mathbb{1}\{X_s = U\}"

legend=:topright, size=(600, 400))

hline!([u_bar], linestyle = :dash, 0.000 L . . . . .
label = L"\pinr{*}_U") 0 1000 2000 3000 4000 5000
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Many Workers

» Consider if an entire economy is populated by workers of these types

» With approximately a continuum of agents of this type, can we interpret the statistical
distribution of the states as a fraction in the distribution?

» Thisis a key trick used throughout macro, but is subtle
» We will assume a continuum of agents, but add in:
A proportion d die each period
A proportion b are born each period (into the U state)

Define g = b — d, the net growth rate
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Definitions

» To track distributions, a tight connection to the "adjoint” of the stochastic process for the
Markov Chain
* Instead, building it directly from flows, define
E;, the total number of employed workers at date ¢
U, the total number of unemployed workers at ¢
N, the number of workers in the labor force at ¢
The employment rate e; = E;/ Ny
The unemployment rate uy = U; /Ny
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Laws of Motion for Stock Variables

» Of the mass of workers E; who are employed at date ¢,
(1 — d)E¢remainin Ny, and (1 — @) (1 — d) Ey remain in By

Et_|_1 — (]_ — d)(]_ — Oé)Et -+ (1 — d))\Ut

» Of the mass of workers Uy workers who are currently unemployed,
(1 — d)U; will remain in Ny and (1 — d) AU, enter E;

Ui=1—-d)aE;+ (1 —d) (1 —ANUs+b(E;: + Uy)
» The total stock of workers Ny = F; + U, evolves as

Nt_|_1 — (]. -+ b— d)Nt — (]. -+ g)Nt
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Summarizing
. Ut | |
o Letting X; = [E ] , the law of motion for X is
t
d)(L—X)+b

_ (A=
Xtt1 —\[ (1— d)X
4

(1—d)a+b
(1-d)1- a>lXt

b b
Note: A = (1 — d)P '
ote ( ) +[O O]

Take a class in stochastic processes!

-y
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Laws of Motion for Rates

o) = e,
€t Et/Nt
» Divide both sides of X;,1 = AX; by N; 1 and simplify to get

o Define x; = [

1
=——A
Lt41 1+g Lt

N

=A

_J/

You can check that e; + u; = 1 impliesthat esr1 + usr1 = 1
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Longrun Distribution

» To find the long-run distribution of employment rates note,
z* = Az* = h(z*)

So could find a fixed point of A(+)

Or solve an eigenvalue problem.
« Note that if g # 0, there is no fixed point of X311 = AX;
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Reminder: Simple Function lteration

function iterate_map(f, x0, T)
X = zeros(length(x0), T + 1)
x[:, 1] = x0
for t in 2:(T + 1)
x[:, t] = f(x[:, t - 1])
end
return Xx
end
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Implementation of a Lake Model

function lake_model(; lambda = 0.283, alpha = 0.013, b = 0.0124, d = 0.00822)
g=»Db-d
A=[(1 lambda) * (1 - d)+b (1 - d) * alpha+tb
(1 - d)*lambda (1 - d)*(1 - alpha)]
A_hat = A ./ (1 + qg)
X_0 = ones(size(A_hat, 1)) / size(A_hat, 1)
sol = fixedpoint(x -> A_hat * x, x_0)
converged(sol) || error("Failed to converge in $(sol.iterations) iter")
X_bar =sol.zero
return (; lambda, alpha, b, d, A, A_hat, x_bar)

end
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Aggregate Dynamics

Ilm = lake_model()

N_O = 150

e_0 = 0.92

uo® =1-e.0

T = 50

U O =u®O™* N_O

E O =e.0 * N_O
[U_O; E_0]
X_path = iterate_map(X -> lm.A * X, X 0, T - 1)
x1 = X_path[1, :]
x2 = X_path[2, :]
plt_unemp = plot(1:T, X_path[1, :]; color = :blue,
label = L"U_t", xlabel="t", title = "Unemployment'")

plt_emp = plot(1:T, X_path[2, :]; color = :blue,

label = L"E_t", xlabel="t", title = "Employment'")
plot(plt_unemp, plt_emp, layout = (1, 2), size = (1200, 400))

|><
o
1
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Transitions of Rates

u_bar, e_bar = lm.x_bar
X_0 = [u_0; e_0]
X_path = iterate_map(x -> lm.A_hat * x, x 0, T - 1)
plt_unemp = plot(1:T, x_path[1, :];title = "Unemployment rate",
color = :blue, label = L"u_t")
hline!(plt_unemp, [u_bar], color = :red, linestyle = :dash, label = L"\pinr{*}_U")
plt_emp = plot(1:T, x_path[2, :]; title = "Employment rate'", color = :blue, label = L"e_t")
hline!(plt_emp, [e_bar], color = :red, linestyle = :dash, label = L"\pinr{*}_E")
plot(plt_unemp, plt_emp, layout = (1, 2), size = (1200, 400))
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Transitions of Rates
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