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Overview
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Motivation

Here we will introduce Markov Chains as a Markovian stochastic process over a discrete

number of states

→ These are useful in their own right, but are also a powerful tool if you discretize a

continuous-state stochastic process

Using these, we will apply these to

→ Introduce a simple model of unemployment and employment dynamics

→ Risk-neutral asset pricing

In a future lecture these for more advanced asset-pricing examples including option-

pricing and to explore risk-aversion
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Materials

Adapted from QuantEcon lectures coauthored with John Stachurski and Thomas J.

Sargent

→

→

Finite Markov Chains

A Lake Model of Employment and Unemployment

using LinearAlgebra, Statistics, Distributions1
using Plots.PlotMeasures, Plots, QuantEcon, Random2
using StatsPlots, LaTeXStrings, NLsolve3
default(;legendfontsize=16, linewidth=2, tickfontsize=12,4
         bottom_margin=15mm)5
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https://julia.quantecon.org/introduction_dynamics/finite_markov.html
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Markov Chains
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Discrete States

Consider a set of  possible states of the world

Markov chain: a sequence of random variables  on  with the 

It will turn out that all Markov stochastic processes with a discrete number of states are

Markov Chains and can be summarize by a transition matrix
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See  for Continuous Time Markov Chains which replace the transition probabilities with transition rateshere
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https://en.wikipedia.org/wiki/Markov_property
https://en.wikipedia.org/wiki/Markov_property
https://en.wikipedia.org/wiki/Continuous-time_Markov_chain#Definition


Transition Matrix

Summarize into a transition matrix where

Each row is a probability distribution for the next state ( ) conditional on the current one (

)

→ Hence  and  for all 

The ordering of the matrix or states  is arbitrary, but you need to be consistent!
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Example: Unemployed and Employed

E 1-α

U

α λ

1-λ

: probability of moving from employed to

unemployed

: probability of moving from unemployed

to employed

, etc.

Summarize as Transition Matrix

α

λ

P(X

t+1

= U |X

t

= E) = α

P ≡ [ ]

1 − α α

λ 1 − λ
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Example: Recessions Transitions

N 0.971

M

0.029 0.145

0.778

S

0.077

0.508

0.492

States (ordered consistently):

→ : Normal Growth, : Mild

Recession, : Severe Recession

Transitions empirically estimated in

N M

S

Hamilton 2005

P ≡

⎡

⎢
⎣

0.971 0.029 0

0.145 0.778 0.077

0 0.508 0.492

⎤

⎥
⎦
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https://julia.quantecon.org/zreferences.html#id84


Discrete RVs

probs = [0.6, 0.4]1
@show sum(probs) ≈ 12
d = Categorical(probs)3
@show d4
draws = rand(d, 4)5
@show draws6
# Assign associated with indices7
G = [5, 20]8
# access by index9
@show G[draws];10

sum(probs) ≈ 1 = true
d = Categorical{Float64, Vector{Float64}}
(support=Base.OneTo(2), p=[0.6, 0.4])
draws = [2, 1, 1, 1]
G[draws] = [20, 5, 5, 5]
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Simulating Markov Chains

Create Categorical per row

One chain for each X_0

Simulate for each chain by:

→ Save current index

→ Use index to choose row

→ Draw the new index according to that

distribution

function simulate_markov_chain(P, X_0, T)1
    N = size(P, 1)2
    num_chains = length(X_0)3
    P_dist = [Categorical(P[i, :])4
              for i in 1:N]5
    X = zeros(Int, num_chains, T+1)6
    X[:, 1] .= X_07
    for t in 1:T8
        for n in 1:num_chains9
            X[n, t+1] = rand(P_dist[X[n, t]])10
        end11
    end12
    return X13
end14
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Simulating Unemployment and Employment
alpha, lambda = 0.3, 0.61
P = [1-alpha alpha; lambda 1-lambda]2
G = [100000.00, 20000.00]3
X_0 = ones(Int, 100)  # 100 people employed4
T = 605
X = simulate_markov_chain(P, X_0, T)6
X_values = G[X]  # just indexes by the X7
X_mean = mean(X_values;dims=1)8
plot(0:T, X_mean', xlabel="t",9
     legend=:bottomright, label="Mean Income",10
     size=(600, 400))11
hline!([G[1]]; label=L"x_E", linestyle=:dash)12
hline!([G[2]]; label=L"x_U", linestyle=:dash)13
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Distribution of Future Wages
unique_values = unique(X_values)1
counts = [sum(X_values[:, t] .== val) for2
          val in unique_values, t in 1:T]3
# Create the stacked bar chart4
groupedbar(1:T, counts';5
           bar_position = :stack,6
           xlabel="t", ylabel="Count",7
           label = [L"x_E" L"x_U"],8
           size=(600, 400))9
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Simulating with QuantEcon packages
alpha, lambda = 0.3, 0.61
P = [1-alpha alpha; lambda 1-lambda]2
mc = MarkovChain(P)3
T = 10004
init=1 # initial condition5
# using QuantEcon.jl6
X = simulate(mc, T;init)7
prop_E = sum(X .== 1)/length(X)8
println("Prop in E = $prop_E");9

Prop in E = 0.69

15 / 54



Transitions and Expectations
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Probability Mass Functions (PMF)

Let the PMF of  be given by a row vector

→  for all  and 

→ Using  a row vector for convenience

If the initial state is known at  then  might be degenerate

→ e.g., if  then 
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Conditional Forecasts

Many macro questions involve:  etc.

The transition matrix makes it very easy to forecast the evolution of the distribution.

Without proof, given  initial condition

Inductively: for the matrix power (i.e.  , not pointwise)
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Conditional Expectations

Given the conditional probabilities, expectations are easy

Now assign  as a random variable with values  and pmf 

Define 

From definition of conditional expectations, where 

This works for enormous numbers of states , as long as  is sparse (i.e., the number

of elements of  is significant)
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Example: Expected Income

Define incomes in E and U states as

→

→ Maintain , or 

Expected income in 20 periods is then

G ≡ [ ]100, 000 20, 000

P(X

0

= E) = 1 π

0

= [ ]1 0

E[X

20

|X

0

= x

E

] = G ⋅ (π

0

P

20

)
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Reminder: PDV for Linear State Space Models

If  and  then,

Relabel Markov Chains to match the algebra: 
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Expected Present Discounted Value

Consider an asset with period payoffs in  with transitions according to 

Risk-neutral expected present discounted value(EPDV)

→ Note the connection to the LSS
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Stationarity and Ergodicity
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Stationary Distribution

Take some  initial condition, does this converge?

→ Does it exist? Is it unique?

How does it compare to fixed point below, i.e. does  for all ?

→ This is the eigenvector associated with the eigenvalue of  of 

→ Can prove there is always at least one. If more than one, multiplicity

X

t

lim

j→∞

X

t+j

|X

t

= lim

j→∞

π

t

⋅ P

j

= π

∞

?

π

∗

= π

∞

X

t

π

∗

= π

∗

⋅ P

1 P

⊤

24 / 54



Stochastic Matrices

 is a  if

→  for all , e.g. rows are conditional distributions

Key Properties:

→ One (or more) eigenvalue of  with associated left-eigenvector 

→ Equivalently the right eigenvector with eigenvalue 

→ Where we can normalize to 

P stochastic matrix

∑
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Calculating Stationary Distributions

Compare the steady states

→ Left-eigenvector:  (calculate with right-eigenvector )

→ Limiting distribution: 

Can show that the stationary distribution is 

π

∗

= π

∗

P 1 × π

∗⊤

= P

⊤

π

∗⊤

lim

T→∞

π

0

P

T

π

∗

= [ ]

λ

α+λ

α

α+λ

eigvals, eigvecs = eigen(P')1
index = findfirst(x -> isapprox(x, 1), eigvals)2
pi_star = real.(vec(eigvecs[:, index]))3
pi_star = pi_star / sum(pi_star)4
pi_0 = [1.0, 0.0]5
pi_inf = pi_0' * (P^100) # \approx infty?6
println("pi_star = ", pi_star)7
println("pi_inf = ", pi_inf);8

pi_star = [0.6666666666666666, 0.3333333333333333]
pi_inf = [0.6666666666666629 0.33333333333333154]
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Communicating States

Consider two states  and  ordered by indices  and  in ,

If it is possible to move from  to  in a finite number of steps, the states are said to

communicate

Formally,  and  communicate if there exist  and  such that

→ Consider transition probabilities to see why this implies communication

X
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X

j

i j P

X

i

X
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i

Y

j

l m
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ij

> 0 and P

m

ji
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Irreducibility

A Markov chain is irreducible if all states communicate with each other

Calculated in practice with tools such as  from Graph

Theory

strongly connected components

mc = MarkovChain(P)1
@show is_irreducible(mc);2

is_irreducible(mc) = true
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https://en.wikipedia.org/wiki/Strongly_connected_component


Example: Not-Irreducible

A 0.4

B

0.4

C

0.20.6

0.4 0.4

D

0.60.6

0.4

P2 = [0.4 0.4 0.2 0.0;1
     0.6 0.4 0.0 0.0;2
     0.0 0.0 0.4 0.6;3
     0.0 0.0 0.6 0.4]4
mc2 = MarkovChain(P2)5
@show is_irreducible(mc2);6

is_irreducible(mc2) = false
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Periodicity

Loosely speaking, a Markov chain is called periodic if it cycles in a predictable way, and

aperiodic otherwise

See  for more details

→ The “period” is the greatest common divisor of the set of times at which the chain

can return to a state

here

mc = MarkovChain(P)1
@show is_aperiodic(mc);2

is_aperiodic(mc) = true
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https://en.wikipedia.org/wiki/Discrete-time_Markov_chain#Periodicity


Example: Aperiodic

A

B

1.0

C

1.0

1.0

P3 = [0 1 0; 0 0 1; 1 0 0]1
mc3 = MarkovChain(P3)2
@show is_aperiodic(mc3);3

is_aperiodic(mc3) = false
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Theorems for Stationarity

Theorem Every stochastic matrix  has at least one stationary distribution.

Theorem If  is irreducible and aperiodic then

→ it has a unique stationary distribution 

→ for any initial distribution , 

→  for all  is a sufficient condition

→ it is ergodic. With  the indicator function
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Ergodicity

These is the same sense of ergodicity we discussed before

alpha, lambda = 0.3, 0.61
P = [1-alpha alpha; lambda 1-lambda]2
mc = MarkovChain(P)3
pi_star = stationary_distributions(mc)[1]4
T = 10005
init=16
X = simulate(mc, T;init)7
prop_E_t = cumsum(X.==1)./(1:length(X))8
plot(1:T, prop_E_t, xlabel="t",9
 label=L"\frac{1}{t}\sum_{s=0}^t \mathbb{1}\{X_s = E\}"10
 size=(600, 400))11
hline!([pi_star[1]]; label=L"\pi^{*}_E",12
linestyle=:dash)     13
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https://jlperla.github.io/ECON408/lectures/stochastic_dynamics.html#/ergodicity


Discretizing Continuous State

Processes
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Discretization

Unless continuous variables are easily summarized by a finite number of parameters or

statistics, we will need to convert continuous functions and stochastic processes into

discrete ones.

Hence, to implement many algorithms, it is useful to model decisions with a finite

number of states

→ If the natural stochastic process is discrete, then no problem

→ Otherwise, you can discretize the continuous time process into  states

→ Try to ensure crucial statistics are preserved

→  might be very large!

N

N
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AR(1) Transition Probabilities

e.g.   using X

t+1

= ρX

t

+ σw

t+1

Tauchen’s Method

N = 50 # number of nodes1
rho = 0.82
sigma = 0.253
mc = tauchen(N, rho, sigma)4
X_vals = mc.state_values5
heatmap(X_vals, X_vals, mc.p;6
        xlabel=L"X_t",7
        ylabel=L"X_{t+1}",8
        title="Transition Probabilities",9
        color=:Blues,10
        size=(600, 400))11
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Simulation

T = 1001
X = simulate(mc, T;init=1)2
plot(X, xlabel=L"t", label=L"X_t",3
     alpha = 0.3, size=(600, 400))4
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Ensemble

T = 1001
num_chains = 502
plt = plot(;ylabel=L"X_t", xlabel=L"t",3
           size=(600, 400), legend=false)4
for i in 1:num_chains5
    X = simulate(mc, T;init=1)6
    plot!(X; alpha = 0.1, color=:blue)7
end8
plt9
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Lake Model of Unemployment and
Employment
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Individual Worker

Consider a worker who can be either employed ( ) or unemployed ( ), following our

previous markov chain

Assign the value of  if unemployed and  if employed

Lets calculate the cumulative proportion of their time employed

E U

0 1
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Reminder on Long-Run

What is the probability in the distant future of being employed?

Note ergodic interpretation!

lambda = 0.2831
alpha = 0.0132
T = 50003
# order U, E4
P = [1-lambda lambda; alpha 1-alpha]5
mc = MarkovChain(P)6
@show stationary_distributions(mc)[1]7
eigvals, eigvecs = eigen(P')8
index = findfirst(x -> isapprox(x, 1), eigvals)9
pi_star = real.(vec(eigvecs[:, index]))10
pi_star = pi_star / sum(pi_star)11
@show pi_star;12

(stationary_distributions(mc))[1] = [0.043918918918918914, 
0.956081081081081]
pi_star = [0.04391891891891895, 0.9560810810810811]
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Cumulative Employment
mc = MarkovChain(P, [0; 1])  # U -> 0, E -> 11
s_path = simulate(mc, T; init = 2)2
u_bar, e_bar = stationary_distributions(mc)[1]3
# Note mapping in MarkovChain4
s_bar_e = cumsum(s_path) ./ (1:T)5
s_bar_u = 1 .- s_bar_e6
s_bars = [s_bar_u s_bar_e]7
plot(title = "Percent of time unemployed",8
 1:T, s_bars[:, 1], lw = 2,9
 label=L"\frac{1}{t}\sum_{s=0}^t \mathbb{1}\{X_s = U\}"10
 legend=:topright, size=(600, 400))11
hline!([u_bar], linestyle = :dash,12
       label = L"\pi^{*}_U")13
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Many Workers

Consider if an entire economy is populated by workers of these types

With approximately a continuum of agents of this type, can we interpret the statistical

distribution of the states as a fraction in the distribution?

This is a key trick used throughout macro, but is subtle

We will assume a continuum of agents, but add in:

→ A proportion  die each period

→ A proportion  are born each period (into the  state)

→ Define , the net growth rate

d

b U

g ≡ b− d
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Definitions

To track distributions, a tight connection to the “adjoint” of the stochastic process for the

Markov Chain

Instead, building it directly from flows, define

→ , the total number of employed workers at date 

→ , the total number of unemployed workers at 

→ , the number of workers in the labor force at 

→ The employment rate .

→ The unemployment rate .

E

t

t

U

t

t

N

t

t

e

t

≡ E

t
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t

u

t

≡ U

t

/N

t
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Laws of Motion for Stock Variables

Of the mass of workers  who are employed at date ,

→  remain in , and  remain in 

Of the mass of workers  workers who are currently unemployed,

→  will remain in  and  enter 

The total stock of workers  evolves as

E
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Summarizing

Letting , the law of motion for  is

→ Note: 

→ Take a class in stochastic processes!

X

t

≡ [ ]

U
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X

X
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= [ ]

≡A

X

t
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b b

0 0
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Laws of Motion for Rates

Define 

Divide both sides of  by  and simplify to get

→ You can check that  implies that 

x

t

≡ [ ] = [ ]
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Longrun Distribution

To find the long-run distribution of employment rates note,

→ So could ,find a fixed point of 

→ Or solve an eigenvalue problem.

Note that if , there is no fixed point of 

x

∗

=

^

Ax

∗

= h(x

∗

)

h(⋅)

g ≠ 0 X

t+1

= AX

t
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Reminder: Simple Function Iteration
function iterate_map(f, x0, T)1
    x = zeros(length(x0), T + 1)2
    x[:, 1] = x03
    for t in 2:(T + 1)4
        x[:, t] = f(x[:, t - 1])5
    end6
    return x7
end8
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Implementation of a Lake Model
function lake_model(; lambda = 0.283, alpha = 0.013, b = 0.0124, d = 0.00822)1
    g = b - d2
    A = [(1 - lambda) * (1 - d)+b (1 - d) * alpha+b3
         (1 - d)*lambda (1 - d)*(1 - alpha)]4
    A_hat = A ./ (1 + g)5
    x_0 = ones(size(A_hat, 1)) / size(A_hat, 1)6
    sol = fixedpoint(x -> A_hat * x, x_0)7
    converged(sol) || error("Failed to converge in $(sol.iterations) iter")    8
    x_bar =sol.zero9
    return (; lambda, alpha, b, d, A, A_hat, x_bar)10
end11
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Aggregate Dynamics
lm = lake_model()1
N_0 = 1502
e_0 = 0.923
u_0 = 1 - e_04
T = 505
U_0 = u_0 * N_06
E_0 = e_0 * N_07
X_0 = [U_0; E_0]8
X_path = iterate_map(X -> lm.A * X, X_0, T - 1)9
x1 = X_path[1, :]10
x2 = X_path[2, :]11
plt_unemp = plot(1:T, X_path[1, :]; color = :blue,12
                 label = L"U_t", xlabel="t", title = "Unemployment")13
plt_emp = plot(1:T, X_path[2, :]; color = :blue,14
               label = L"E_t", xlabel="t", title = "Employment")15
plot(plt_unemp, plt_emp, layout = (1, 2), size = (1200, 400))16
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Aggregate Dynamics
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Transitions of Rates

u_bar, e_bar = lm.x_bar1
x_0 = [u_0; e_0]2
x_path = iterate_map(x -> lm.A_hat * x, x_0, T - 1)3
plt_unemp = plot(1:T, x_path[1, :];title = "Unemployment rate", 4
                 color = :blue, label = L"u_t")5
hline!(plt_unemp, [u_bar], color = :red, linestyle = :dash, label = L"\pi^{*}_U")6
plt_emp = plot(1:T, x_path[2, :]; title = "Employment rate", color = :blue, label = L"e_t")7
hline!(plt_emp, [e_bar], color = :red, linestyle = :dash,label = L"\pi^{*}_E")8
plot(plt_unemp, plt_emp, layout = (1, 2), size = (1200, 400))9
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Transitions of Rates

54 / 54


