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Motivation and Materials

In this section we introduce a class of dynamic models that are widely used in

economics and �nance

Unlike the previous sections, we will be separating out the equations for the “evolution” of

the state and the “observation”

The main applications will be some simple models of asset pricing, but we will use this

machinery in the next section on the permanent income model

For the asset pricing examples, we will be building off the deterministic versions we

discussed 

Finally, we will introduce the Kalman Filter: a workhorse for estimation, implementing

learning in dynamic models, and machine learning

previously
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https://jlperla.github.io/ECON408/lectures/geometric_series_fixed_points.html#/asset-pricing-and-fixed-points


Materials

Adapted from QuantEcon lectures coauthored with John Stachurski and Thomas J.

Sargent

→

→

The new package, QuantEcon.jl is used for some of the code examples for easy

simulation

Linear State Space Models

A First Look at the Kalman Filter

using Distributions, Plots, LaTeXStrings, LinearAlgebra, Statistics1
using Plots.PlotMeasures, QuantEcon, StatsPlots2
default(;legendfontsize=16, linewidth=2, tickfontsize=12,3
         bottom_margin=15mm)4
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https://julia.quantecon.org/introduction_dynamics/kalman.html
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State Space Models

State space models describe state and observation dynamics

→  denoting the state, which may be “latent”

→ observables of that state

→ shocks which cannot be forecasted

Where the model includes a pair of equations

→ A law of motion of a state variable  (the “evolution equation”)

→ A law of motion of the observables  given the state  (the “observation equation”)

A recursive, Markovian model is the goal. Linearity is convenient
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Primitives for a LSS

transition matrix

volatility matrix

observation matrix (or output matrix)

Then the LSS is given by

A ∈ R
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G ∈ R
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Initial Conditions

The initial condition  could be given, or it could be a distribution

Given  and , a (positive semi-de�nite) covariance matrix

→ Note that if  then  deterministically

→ Later, when we discuss the Kalman Filter, we will consider this as a “prior”

distribution over possible  states
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Example: Difference Equation

Let  be a deterministic sequence that satis�es

→ Given a 

→ Map this into the LSS by choosing a 

→ “Finding the state is an art”
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Example: Difference Equation in LSS

Ful�ll: 
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Simulation

phi0, phi1, phi2 = 1.1, 0.8, -0.81
A = [1.0 0.0 02
     phi0 phi1 phi23
     0.0 1.0 0.0]4
C = zeros(3, 1)5
G = [0.0 1.0 0.0]6
y_0 = 1.07
y_m1 = 1.08
mu_0 = [1.0, y_0, y_m1]9
lss = LSS(A, C, G; mu_0)10
x, y = simulate(lss, 50)11
plot(y'; xlabel = L"t", label = L"y_t",12
         size=(600, 400))13
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Example: Auto-Regressive Process
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Simulation

phi1, phi2, phi3, phi4 = 0.5, -0.2, 0, 0.51
sigma = 0.22
A = [phi1 phi2 phi3 phi43
     1.0 0.0 0.0 0.04
     0.0 1.0 0.0 0.05
     0.0 0.0 1.0 0.0]6
C = [sigma7
     0.08
     0.09
     0.0]10
G = [1.0 0.0 0.0 0.0]11
mu_0 = ones(4)12
lss = LSS(A, C, G; mu_0)13
x, y = simulate(lss, 200)14
plot(y'; xlabel = L"t", label = L"y_t",15
         size=(600, 400))16
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Moments and Forecasts

Given , can forecast 

And given some 
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Forecasts and Expected Net Present Values

Given , we can forecast  and  for any 

Useful for computing expected net present values of future cash �ows
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Stationary Distributions

If they exist, from any gaussian initial condition, the stationary distribution is

Must ful�ll the �xed points of the previous iteration,

→ The �rst is an eigenvalue problem

→ The second is a discrete 
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Noisy Observation Equation

Given  and  matrices, you may be able to recover  from the 

What if the observations in the LSS are noisy? Then  is truly “latent”

→ If , then noiseless observation
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Tracking the Distribution of the State

Can the latent  state be estimated from the noisy  observations?

Then we can forecast the state  and future observables 

→ However, we also need to “nowcast” the state  since the state is unknown and our

observations are noisy

If we assume that , then we interpret this as a “prior” distribution over

the possible states of 

In that case, we use the  observation to update our beliefs about the state  to get a

new distribution over the state 

This is a  approach, 
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Bayesian Approach with Normal Distributions

In particular, we want to take our “prior”  and  to build new beliefs

about 

→ This is more complicated than a normal Bayesian update because the  is moving

with the evolution equation

The key here, as with our  is that a 

Because of this, it is su�cient to write a recurrence for  and 

→ Given  and  what is ?
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Kalman Filter

The Kalman Filter is the recursive, Bayesian updating of the distribution of the state 

given the observations  and a prior 

See  and other places for the derivation

→  is the “Kalman Gain” and  is called the “innovation”

→ The last equation is called a matrix Ricatti equation
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Interpreting the Gain

Consider the simple case where  and 

→ The  equation is a weighted average of the forecast (i.e.   since ) and

the observation 

→  says how much to update the forecast of the mean. Small “gain” means less

weight on new observations
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Forecasting and Nowcasting

Future states are forecasted by the Kalman Filter itself

The state is a hidden Markov variable, but we can forecast the current state and future

observations

Current state is constructed to be 

Given a  distribution, can get the  distribution as

→ Useful for forcasting (i.e., what would the observation distribution be for a future

distribution)

→ Also useful for estimation and likelihoods in structural models
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Different Canonical Forms

When looking at software packages, you may need to map to different version

For example, another common one is

→ Which maps to ours if  and 

→ Can go other direction with a Cholesky decomposition

→ Others may have an additional “control” term in the  equation
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Example Implementation

We will use the QuantEcon.jl package for the Kalman Filter, uses the  and  form

Consider a univariate function

→ We will assume that 

→ We will assume that the true  and hence  for all 
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Simulation

A, G, Q, R = 1.0, 1.0, 0.0, 1.01
x_hat_0, Sigma_0 = 8.0, 1.02
x_true = 10.03
# initialize Kalman filter4
kalman = Kalman(A, G, Q, R)5
set_state!(kalman, x_hat_0, Sigma_0)6
plt = plot(;title="First 5 Densities")7
for i in 1:58
    # record the current predicted mean and variance, and plot their densities9
    m, v = kalman.cur_x_hat, kalman.cur_sigma10
    plot!(Normal(m, sqrt(v)); label = "t = $i")11
    # Generate signal and update12
    y = x_true + sqrt(R) * randn() # i.e. x_t + v_t13
    update!(kalman, y)14
end15
plt16
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Simulation
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Applications of the Kalman Filter

The LSS with noisy observation is an example of a “hidden Markov model”

→ i.e., Observe only a noisy version of a Markovian state

The Kalman Filter is used in many applications

→ Estimating and forecasting the state of the economy given noisy data

→ Estimating the state of a latent variable or forming a likelihood in a structural model

→ Machine learning and reinforcement learning (e.g., estimating the position of a car

or pedestrian given noisy sensor data)

→  used a Kalman Filter to estimate the position of the spacecraftApollo 11
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Forecasts and Expectations

The emphasis on stochastic processes serves a dual role

1. Model of the economy which you can conduct quantitative experiments as an

“econometrician”

2. Model of the formation of expectations and the pricing of assets for an “agent” inside

of the model

This wasn’t required when we have exogenously given, ad-hoc decisions like the savings

rate previously

→ But if we want to model agent decisions, they need to form expectations about the

future

→ Without that model of decisions, can we conduct policy counterfactuals?
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Alternative Approaches

The baseline approach for most of macroeconomics in the 1960s+ is called “rational

expectations”

→ Use the mathematical expectation, and assume agent’s have a well-speci�ed model

of the economy

Using that as a baseline, there are many models of bounded rationality which deviate

from this in various ways

→ e.g., what it agents don’t fully know the evolution of the economy but have priors

(use Kalman Filter?)

→ what is agent’s only learn from their own past observations? The oldest versions of

this are called “adaptive expectations” and it is related to modern methods in

machine learning
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Using the Mathematical Expectation

A good starting point for a model of expectations is to assume that agents use the

mathematical expectation

This requires that they have an internal model of a stochastic process for the data-

generating process - conditional on their choices

→ Then they can use probabilities to calculated expected values

One bene�t is that we can use the mathematical expectation and its properties (e.g.,

linearity)

→ Requires a model of joint distribution of the data-generating process, and theory of

which values to condition on

E(aX + bY |Z) = aE(X|Z) + bE(Y |Z)
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Information Sets

Think of the values we can condition on in our expectations as being the “information set”

of the agent

→ For stochastic processes that unfold over time, a good default is to think of all

information up to time  being available

→ Call this the “Information Set”. Shorthand denote with subscript

If Markov, information set is summarized by the current state
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Law of Iterated Expectations

Frequently you will �nd yourself taking expectations of future expectations

A useful property of mathematical expectations is the “Law of Iterated Expectations”
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Models of Learning a Hidden State

Specifying the information set is a key part of economic models

If a state is hidden, then the agent must expectations from observables

Models of learning a hidden value or latent state are often built around some form of

state-space model

For example, with a LSS model  and 

→ In that case, could use a posterior probabilities from Kalman Filter

Not all models of learning are Bayesian, but economists often case about
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Forecast Errors

With either a learning model or one with noiseless observations, we can de�ne the one-

period ahead forecast error as

With our LSS, the information sets are  vs. 

- The forecast error is a random variable, but it is uncorrelated with the information set
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Systematic Bias in Forecasts

How far off do you expect your forecasts to be?

→ That comes from the linearity of expectations

→ A hallmark of rational expectations is that agents don’t systematically over or under-

estimate the future

→ If they did, why not just manually adjust fudge expectations?
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Variance of Forecast Errors

While there is no systematic bias, that doesn’t mean the forecasts are correct

In some cases the agent may care deeply about how precise they are

For a LSS we can calculate the variance (using the mean zero result)

With the observation equation (and possible measurement error)
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Forecasting Error with Learning Models

If  is not in the information set, then (conditional on ) the expected forecast error

may not be zero.

→ With a LSS and a Kalman Filter and ,

In that setup, the agent has an unbiased estimate if they use their  estimate since
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Martingales

An important type of stochastic process are Martingales where

→ i.e., in expectation, the future value is the current value

→ Inductively you can see that  for all 

The canonical Martingale is a random walk  where 

Forecasting: the best guess for the future is the current value

Martingales have many applications in asset pricing and �nance, models of learning, and

in consumption and savings models
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Risk-Neutral Asset Pricing
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Risk-Neutrality

Economically what does linearity in payoffs  mean?

→ It means that the agent is “risk-neutral” and only cares about the expected value of

the payoff

→ This is a strong assumption, but it may be accurate in many cases (e.g., institutional

investors)

Risk averse agents have concave utility functions, and risk-loving agents have convex

utility functions

Linearity is especially useful for stochastic processes because we can use it with the

mathematical expectation

u(c) = c
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Risk-Neutral Asset Pricing

If an agent has no risk aversion, the their preferences can be rationalized by something

proportional a linear utility

For our LSS model we can just use the EPDV to calculate a price

→ The interpretation is that the agent is using their internal model to forecast the

evolution of the state and the observable payoff

→ Also has a second interpretation called “certainty equivalent” where the agent is

indifferent to the risks and volatility in any decisions (i.e., no )
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Risk-Neutral Asset Pricing with Hidden States

If the state is hidden, then the agent must use their internal model to forecast the future

With a Kalman Filter, this becomes
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Example: AR(1) Process

Consider the AR(1) process  with  and

Let  the LSS is

The price of the asset is then 
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Simulation

rho = 0.91
a = 1.02
sigma = 0.23
beta = 0.84
A = [rho a5
     0 1]6
C = [sigma; 0]7
G = [1 0]8
x_0 = [0.5, 1.0]9
lss = LSS(A, C, G; mu_0 = x_0)10
x, y = simulate(lss, 30)11
H = G * inv(I - beta * A)12
p = H * x13
plot(p'; label = L"p_t",14
     xlabel = L"t", size=(600, 400))15
plot!(y', label = L"y_t")16
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Example: Wages and Productivity

Wages . Human capital: 

→ Workers productivity follow  given 

→ Firm productivity follows  given 

Guess a state of 
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Simulation

alpha, gamma = 0.1, 0.11
sigma = 0.22
theta = 0.53
beta = 0.84
A = [1 0 alpha5
     0 1 gamma6
     0 0 1]7
C = [sigma; 0; 0] 8
G = [theta 1-theta 0]9
mu_0 = [1.0, 1.0, 1.0]10
lss = LSS(A, C, G; mu_0)11
x, y = simulate(lss, 30)12
H = G * inv(I - beta * A)13
p = H * x14
plot(p'; label = L"p_t",15
     xlabel = L"t", size=(600, 400))16
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