-y

Crash Course on Julia

Undergraduate Computational Macro

Jesse Perla

jesse.perla@ubc.ca

University of British Columbia

L] 1/39

mailto:jesse.perla@ubc.ca
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

miy
Table of contents

e Introduction to Julia
Basic Operations and Control Flow

Functions and Functional Programming
Plotting and Visualization

Data Structures

Arrays and Linear Algebra

f 2/39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Introduction to Julia

-y

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

i
Introductory Lectures

» Seeintro lecture for environment setup instructions
» Assuming you are familiar with Matlab or Python, Julia will be easy to learn

» Adapted from QuantEcon lectures coauthored with John Stachurski and Thomas J.
Sargent

— Julia by Example
- Essentials
- Fundamental Types

e SciML Cheat Sheet for Matlab/Python/Julia

L] 41/39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/slides/intro.html#setup-environment
https://julia.quantecon.org/getting_started_julia/julia_by_example.html
https://julia.quantecon.org/getting_started_julia/julia_essentials.html
https://julia.quantecon.org/getting_started_julia/fundamental_types.html
https://sciml.github.io/Scientific_Modeling_Cheatsheet/scientific_modeling_cheatsheet
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

0/
Jsing Packages

» First ensure your project is activated and packages instantiated

using LinearAlgebra, Statistics, Plots, Distributions, Random

f 5/39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Basic Operations and Contro

-low

-y

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

i
Plotting Random Numbers

Random.seed! (42) # for reproducibility

n = 20
ep = randn(n) 1f
. . 1 - | I,
plot(1:n, ep;size=(600,400)) f\\ ;xx
ok -"\ "II _
!
-1 \\.
\
\
5 10 15 20

f 7139

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

i
LoOpS

n = 100
ep = zeros(n)
for i in 1:n

ep[i] = randn()
end
println(ep[1:5])

[-0.9654904870197227, 0.9656607495563969, 1.3110173557334994, 0.4041754007591603, 1.1979596698125403]

L] 8/39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

0/
While Loops and break

i=1
total = 0.0
while i <= 10
total += rand()
if total > 2.0
break # leave the loop early when condition met
end
i+=1
end
@show i, total;

(i, total) = (4, 2.1678515649076444)

f 9/39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

. 0/
Comprehensions

Comprehensions
@show [2 * 1 for 1 in 1:4];

[21 for 1 = 1:4] = [2, 4, 6, 8]

L] 10/39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

i
Manually Calculated Mean

ep_sum = 0.0 # careful to use 0.0 here, instead of 0
for ep_val in ep
ep_sum = ep_sum + ep_val
end
@show ep_mean = ep_sum / length(ep)
@show ep_mean mean(ep)
@show ep_mean
@show sum(ep) / length(ep)
@show sum(ep_val for ep_val in ep) / length(ep); # generator/comprehension

0

ep_mean = ep_sum / length(ep) = -0.10436111001880369

ep_mean = mean(ep) = true

ep_mean = -0.10436111001880369

sum(ep) / length(ep) = -0.10436111001880365

sum((ep_val for ep_val = ep)) / length(ep) = -0.10436111001880369

L] 11/39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

0/
String Interpolation

» Use sname for variables or $(expr) for expressions inside strings

name = "Julia"
X = 3
println("Hello $name, 2x = $(2x)")

Hello Julia, 2x = 6

L] 12 /39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

0/
Macros and @show

» Macros (prefixed with @) transform code before execution; @show is a handy debug macro

a=1+ 2
@show a
@show sum(randn(3));

a=3
sum(randn(3)) = 0.9905223195566424

13/39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

-unctions and
Programming

-unctional

-y

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

| i
FUunctions

function generatedata(n)
ep = randn(n) # use built in function
for i in eachindex(ep) # or i in 1:length(ep)
ep[i] = ep[i]”r2 # squaring the result
end
return ep
end
data = generatedata(5)
println(data)

[0.45629390661111663, 2.239276519973084, 0.012093086182622361, 0.8178133947622638, 0.029520710239712283]

f 15/39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

0/
Broadcasting

function generatedata(n)
ep = randn(n) # use built in function
return ep .N 2

end

@show generatedata(5)

generatedata2(n) = randn(n) .N 2

@show generatedata2(5);

generatedata(5) = [0.7936585609350724, 2.54008455063787, 0.03630079956534469, 1.0596951950031361, 0.026581091545836936]
generatedata2(5) = [0.12012915959661571, 0.14908580134436417, 1.2037454134039276, 0.014073031953049788,
3.7808480859126736]

L] 16 /39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

0/
Higher Order Functions

generatedata3(n, gen) = gen.(randn(n)) # broadcasts on gen
f(x) = xA2 # simple square function
@show generatedata3(5, f); # applies f

generatedata3(5, f) = [0.7121322893565936, 0.0185955776623056, 0.0912022660336257, 0.11442078211374904,
0.25477412900679614]

L] 17 /39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Plotting and Visualization

-y

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

More Plotting Examples

0o N o 0o~ W N B

using Distributions
function plothistogram(dist, n)
n draws from distribution
ep = rand(dist, n)
return histogram(ep;size=(600,400))
end
dist = Laplace() # dist != dist in function
plothistogram(dist, 500)

100

75

50

25

0/

19/39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

i
Changing Types

 Therand(dist, n) changes its behavior based on the type of dist

1 dist = Normal()
2 plothistogram(Normal(), 500) 100

75

30 -

25 F

f 20/39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Ranges

X = range(0.0, 1.0; length = 5)

@show X

@show Vector(x)

plot(x,

sqrt.(x); size=(600,400))

X =

Vector(x) = [0.0, 0.25, 0.5, 0.75, 1.0]

1.00

0.75

0.50

0.25

0.00

0.0:0.25:1.0

0.00

0.25

0.50

0.75

1.00

-y

21/39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

i
Defining Functions

» You can create anonymous functions as in R, but it is harder for the compiler because
the type £3 can change. Avoid -> if name reguired

f(x) = xn2
function f2(x)
return xA2
end
f3 = x -> xA2 # assignment not required
@show f(2), f2(2), f3(2);

(f(2), f2(2), f3(2)) = (4, 4, 4)

L] 22 /39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

0/
Default Function Arguments

f(x, a = 1) = exp(cos(a * x))
@show f(pi)
@show f(pi, 2);

f(pi) = 0.36787944117144233
f(pi, 2) = 2.718281828459045

n 23 /39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

0/
Keyword Arguments

f2(x; a = 1) = exp(cos(a * x)) # note the ; in the definition
same as longform
function f(x; a = 1)
return exp(cos(a * x))
end
@show f(pi)
@show f(pi; a = 2) # passing in adate
a =2
@show f(pi; a); # equivalent to f(pi; a = a)
f(pi) = 0.36787944117144233

f(pi; a = 2) = 2.718281828459045
f(pi; a) = 2.718281828459045

h 24/ 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

iy
Closures

 In general, try to avoid globals and closures outside of functions

a==0.2

f(x) = a * xA2 # refers to the "a’ in the outer scope
@show (1)

The a is captured in this scope by name. Careful!
a==0.3

@show f(1);

(1)
(1)

0.2
0.3

f 25/39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

0/
Closures Inside Functions

» But within a function they are safe, common, and usually free of overhead

function g(a)

f(x) = a * x"2 # refers to the "a’ passed in the function
return (1)

end

a = 123.5 # Different scope than the "a in function
@show g(0.2);

g(0.2) = 0.2

26 /39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Data Structures

-y

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

0/
Tuples and Named Tuples

t = (1, 2.0, "hello")

@show t[1]

nt = (; a=121, b=2.0, ¢ = "hello")
@show nt

@show nt.a; # can't use nt[1] or nt["a"]

t[1] = 1
nt = (a=1, b =2.0, c = "hello")
nt.a = 1

L] 28 /39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

0/
Tuples Packing and Unpacking

function solve_model(x)

a = XxXN2

b=2%*a

c=a+b

return (; a, b, ¢c) # note local scope of tuples!

end

@show solve_model(0.1)

can unpack in different order, or use subset of values
(; ¢, a) = solve_model(0.1)

println("a = $a, c = $c");

solve_model(0.1) = (a = 0.010000000000000002, b = 0.020000000000000004, c = 0.030000000000000006)
a = 0.010000000000000002, c = 0.030000000000000006

29 /39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Arrays and Linear Algebra

-y

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Array

b
A
@show
@show
@show
@show
@show
@show
@show
@show
@show
@show
@show

BasICS

[1.0, 2.1, 3.0] # 1d array
[1 2; 3 4] # 2x2 matrix

size(b)
size(A)
typeof(b)
typeof (A)
zeros(3)
ones(2, 2)
fill(1.0, 2, 2)
similar (A)
A[1, 1]

Al1, :]
A[l:end, 1];

size(b) = (3,)
size(A) = (2, 2)
typeof(b) =

typeof(A) = Matrix{Int64}
zeros(3) =
ones(2, 2)

A[1, 1] = 1
AlL, :1 =1[1, 2]
A[l:end, 1] = [1, 3]

Vector{Float64}

[0.0, 0.0, 0.0]

= [1.0 1.0; 1.0 1.0]

fill(1.0, 2, 2) = [1.0 1.0; 1.0 1.0]
similar(A) = [140033842892576 140033842892608;
140033842892592 140034887560608]

-y

31/39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Useful Array Helpers

x = [1.0, -1.0, 2.5, -0.5]

@show cumsum(x)

g(x) = x >1.0

@show findfirst(g, x) # 1-based index of first match
equivalent anonymous function versions:

val_1 findfirst(x_val -> x_val > 1.0, Xx)

val_2 findfirst(x -> x > 1.0, X) # note scope!
@show val_1, val_2;

cumsum(x) = [1.0, 0.0, 2.5, 2.0]
findfirst(g, x) = 3
(val_1, val_2) = (3, 3)

-y

32/39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

0/
Linear Algebra Basics

A
b
@show A * b # Matrix product
@show A' # transpose

[12; 3 4] A * b =[5 11]

[1’ 2] A' = [1 3, 2 4]

dot(b, [5.0, 2.0]) = 9.0

b'" * b =5

Diagonal([1.0, 2.0]) = Diagonal([1.0, 2.0])

@show dot(b, [5.0, 2.0]) # dot product I = LinearAlgebra.UniformScaling{Bool}(true)
@show b' * b # dot product inv(A) = [-1.9999999999999996 0.9999999999999998;
@show Diagonal([1.0, 2.0]) # diagonal matrix 1.4999999999999998 -0.4999999999999999]

@show I # identity matrix
@show inv(A); # inverse

33/39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

i
Norms

» Defaults to the Euclidean (2) norm; use norm(v, 1) or norm(v, Inf) for others

v = [3.0, -4.0, 1.0]
manual_euclidl = sqrt(sum(v./2))
manual_euclid2 = sqrt(sum(abs2, v)) # sum can apply function first
@show norm(v)
@show manual_euclidl, manual_euclid2
@show norm(v, 1)
@show norm(v, Inf);
norm(v) = 5.0990195135927845
(manual_euclidl, manual_euclid2) = (5.0990195135927845, 5.0990195135927845)
norm(v, 1) = 8.0
norm(v, Inf) = 4.0

L] 341739

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

| iy
Linear Solves

A=1[2.01.0; 1.0 3.0]

b =11.0, 0.0]

X = A\ b # preferred over inv(A) * b
@show x

@show norm(A * x - b); # residual norm

x = [0.6, -0.2]
norm(A * x - b) = 5.551115123125783e-17

f 35/39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

i
Figenvalues and Eigenvectors

A=12.01.0; 1.0 2.0]
vals = eigvals(A)

F = eigen(A)

@show vals

@show F.vectors[:, 1];

vals = [1.0, 3.0]
F.vectors[:, 1] = [-0.7071067811865475, 0.7071067811865475]

36/39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

i
Moditying Vectors

» Scalars and tuples/named tuples are immutable

o Vectors and matrices are mutable

A= 1[12; 3 4]

A[1, 1] = 2

@show A

b =1[1, 2]

b[1] = 2

@show b

b .= [3, 4] # otherwise just renamed
@show b

A[1, :] .= [3, 4] # assign slice
@show A;

[2 2; 3 4]
[2, 2]
[3, 4]
[3 4; 3 4]

> T T >
I

371739

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

0/
Slicing Higher-D Arrays

» Julia is column-major; slicing by the last index stays contiguous and fast

» Loop order: vary first index fastest for best cache performance

X = reshape(collect(1:24), 2, 3, 4) # 2x3x4 tensor

@show size(X)

M2 = X[:, :, 2] # 2x3 matrix view, contiguous in memory

@show M2

@show view(X, :, :, 2) # does not allocate, nice if contiguous
@show X[1, :, 2]; # row slice from that matrix

size(X) = (2, 3, 4)

M2 = [7 9 11; 8 10 12]

view(X, :, :, 2) = [7 9 11; 8 10 12]
X[1, :, 2] = [7, 9, 11]

38/39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

| iy
Learning More

e Clone the Quantkcon lectures

— > Git: Clonethe https://github.com/quantecon/lecture-julia.notebooks

e This covers part of Julia Essentials and Fundamental Types
» Other more advanced lectures, not required for this course, are

- Introduction to Types and Generic Programming
- Generic Programming

— Visual Studio and Other Tools

f 39/39

https://julia.quantecon.org/getting_started_julia/julia_essentials.html
https://julia.quantecon.org/getting_started_julia/fundamental_types.html
https://julia.quantecon.org/more_julia/generic_programming.html
https://julia.quantecon.org/more_julia/generic_programming.html
https://julia.quantecon.org/software_engineering/tools_editors.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

