
Crash Course on Julia

Undergraduate Computational Macro

Jesse Perla

University of British Columbia

jesse.perla@ubc.ca

 1 / 39

mailto:jesse.perla@ubc.ca
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Table of contents

Introduction to Julia

Basic Operations and Control Flow

Functions and Functional Programming

Plotting and Visualization

Data Structures

Arrays and Linear Algebra

 2 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Introduction to Julia

 3 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Introductory Lectures

See for environment setup instructions

Assuming you are familiar with Matlab or Python, Julia will be easy to learn

Adapted from QuantEcon lectures coauthored with John Stachurski and Thomas J.

Sargent

→

→

→

 for Matlab/Python/Julia

intro lecture

Julia by Example

Essentials

Fundamental Types

SciML Cheat Sheet

 4 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/slides/intro.html#setup-environment
https://julia.quantecon.org/getting_started_julia/julia_by_example.html
https://julia.quantecon.org/getting_started_julia/julia_essentials.html
https://julia.quantecon.org/getting_started_julia/fundamental_types.html
https://sciml.github.io/Scientific_Modeling_Cheatsheet/scientific_modeling_cheatsheet
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Using Packages

First ensure your project is activated and packages instantiated

using LinearAlgebra, Statistics, Plots, Distributions, Random1

 5 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Basic Operations and Control Flow

 6 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Plotting Random Numbers
Random.seed!(42) # for reproducibility1
n = 202
ep = randn(n)3
plot(1:n, ep;size=(600,400))4

 7 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Loops
n = 1001
ep = zeros(n)2
for i in 1:n3
 ep[i] = randn()4
end5
println(ep[1:5])6

[-0.9654904870197227, 0.9656607495563969, 1.3110173557334994, 0.4041754007591603, 1.1979596698125403]

 8 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

While Loops and break
i = 11
total = 0.02
while i <= 103
 total += rand()4
 if total > 2.05
 break # leave the loop early when condition met6
 end7
 i += 18
end9
@show i, total;10

(i, total) = (4, 2.1678515649076444)

 9 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Comprehensions
Comprehensions1
@show [2 * i for i in 1:4];2

[2i for i = 1:4] = [2, 4, 6, 8]

 10 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Manually Calculated Mean
ep_sum = 0.0 # careful to use 0.0 here, instead of 01
for ep_val in ep2
 ep_sum = ep_sum + ep_val3
end4
@show ep_mean = ep_sum / length(ep)5
@show ep_mean ≈ mean(ep)6
@show ep_mean7
@show sum(ep) / length(ep)8
@show sum(ep_val for ep_val in ep) / length(ep); # generator/comprehension9

ep_mean = ep_sum / length(ep) = -0.10436111001880369
ep_mean ≈ mean(ep) = true
ep_mean = -0.10436111001880369
sum(ep) / length(ep) = -0.10436111001880365
sum((ep_val for ep_val = ep)) / length(ep) = -0.10436111001880369

 11 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

String Interpolation

Use $name for variables or $(expr) for expressions inside strings

name = "Julia"1
x = 32
println("Hello $name, 2x = $(2x)")3

Hello Julia, 2x = 6

 12 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Macros and @show

Macros (prefixed with @) transform code before execution; @show is a handy debug macro

a = 1 + 21
@show a2
@show sum(randn(3));3

a = 3
sum(randn(3)) = 0.9905223195566424

 13 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Functions and Functional
Programming

 14 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Functions

function generatedata(n)1
 ep = randn(n) # use built in function2
 for i in eachindex(ep) # or i in 1:length(ep)3
 ep[i] = ep[i]^2 # squaring the result4
 end5
 return ep6
end7
data = generatedata(5)8
println(data)9

[0.45629390661111663, 2.239276519973084, 0.012093086182622361, 0.8178133947622638, 0.029520710239712283]

 15 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Broadcasting
function generatedata(n)1
 ep = randn(n) # use built in function2
 return ep .^ 23
end4
@show generatedata(5)5
generatedata2(n) = randn(n) .^ 26
@show generatedata2(5);7

generatedata(5) = [0.7936585609350724, 2.54008455063787, 0.03630079956534469, 1.0596951950031361, 0.026581091545836936]
generatedata2(5) = [0.12012915959661571, 0.14908580134436417, 1.2037454134039276, 0.014073031953049788,
3.7808480859126736]

 16 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Higher Order Functions
generatedata3(n, gen) = gen.(randn(n)) # broadcasts on gen1
f(x) = x^2 # simple square function2
@show generatedata3(5, f); # applies f3

generatedata3(5, f) = [0.7121322893565936, 0.0185955776623056, 0.0912022660336257, 0.11442078211374904,
0.25477412900679614]

 17 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Plotting and Visualization

 18 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

More Plotting Examples
using Distributions1
function plothistogram(dist, n)2
 # n draws from distribution3
 ep = rand(dist, n) 4
 return histogram(ep;size=(600,400))5
end6
dist = Laplace() # dist != dist in function7
plothistogram(dist, 500)8

 19 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Changing Types

The rand(dist, n) changes its behavior based on the type of dist

dist = Normal()1
plothistogram(Normal(), 500)2

 20 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Ranges
x = range(0.0, 1.0; length = 5)1
@show x2
@show Vector(x)3
plot(x, sqrt.(x); size=(600,400))4

x = 0.0:0.25:1.0
Vector(x) = [0.0, 0.25, 0.5, 0.75, 1.0]

 21 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Defining Functions

You can create anonymous functions as in R, but it is harder for the compiler because

the type f3 can change. Avoid -> if name required

f(x) = x^21
function f2(x)2
 return x^23
end4
f3 = x -> x^2 # assignment not required5
@show f(2), f2(2), f3(2);6

(f(2), f2(2), f3(2)) = (4, 4, 4)

 22 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Default Function Arguments
f(x, a = 1) = exp(cos(a * x))1
@show f(pi)2
@show f(pi, 2);3

f(pi) = 0.36787944117144233
f(pi, 2) = 2.718281828459045

 23 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Keyword Arguments
f2(x; a = 1) = exp(cos(a * x)) # note the ; in the definition1
same as longform2
function f(x; a = 1)3
 return exp(cos(a * x))4
end5
@show f(pi)6
@show f(pi; a = 2) # passing in adate7
a = 28
@show f(pi; a); # equivalent to f(pi; a = a)9

f(pi) = 0.36787944117144233
f(pi; a = 2) = 2.718281828459045
f(pi; a) = 2.718281828459045

 24 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Closures

In general, try to avoid globals and closures outside of functions

a = 0.21
f(x) = a * x^2 # refers to the `a` in the outer scope2
@show f(1)3
The a is captured in this scope by name. Careful!4
a = 0.35
@show f(1);6

f(1) = 0.2
f(1) = 0.3

 25 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Closures Inside Functions

But within a function they are safe, common, and usually free of overhead

function g(a)1
 f(x) = a * x^2 # refers to the `a` passed in the function2
 return f(1)3
end4
a = 123.5 # Different scope than the `a` in function5
@show g(0.2);6

g(0.2) = 0.2

 26 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Data Structures

 27 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Tuples and Named Tuples
t = (1, 2.0, "hello")1
@show t[1]2
nt = (; a = 1, b = 2.0, c = "hello")3
@show nt4
@show nt.a; # can't use nt[1] or nt["a"]5

t[1] = 1
nt = (a = 1, b = 2.0, c = "hello")
nt.a = 1

 28 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Tuples Packing and Unpacking
function solve_model(x)1
 a = x^22
 b = 2 * a3
 c = a + b4
 return (; a, b, c) # note local scope of tuples!5
end6
@show solve_model(0.1)7
can unpack in different order, or use subset of values8
(; c, a) = solve_model(0.1)9
println("a = $a, c = $c");10

solve_model(0.1) = (a = 0.010000000000000002, b = 0.020000000000000004, c = 0.030000000000000006)
a = 0.010000000000000002, c = 0.030000000000000006

 29 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Arrays and Linear Algebra

 30 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Array Basics
b = [1.0, 2.1, 3.0] # 1d array1
A = [1 2; 3 4] # 2x2 matrix2
@show size(b)3
@show size(A)4
@show typeof(b)5
@show typeof(A)6
@show zeros(3)7
@show ones(2, 2)8
@show fill(1.0, 2, 2)9
@show similar(A)10
@show A[1, 1]11
@show A[1, :]12
@show A[1:end, 1];13

size(b) = (3,)
size(A) = (2, 2)
typeof(b) = Vector{Float64}
typeof(A) = Matrix{Int64}
zeros(3) = [0.0, 0.0, 0.0]
ones(2, 2) = [1.0 1.0; 1.0 1.0]
fill(1.0, 2, 2) = [1.0 1.0; 1.0 1.0]
similar(A) = [140033842892576 140033842892608;
140033842892592 140034887560608]
A[1, 1] = 1
A[1, :] = [1, 2]
A[1:end, 1] = [1, 3]

 31 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Useful Array Helpers
x = [1.0, -1.0, 2.5, -0.5]1
@show cumsum(x)2
g(x) = x > 1.03
@show findfirst(g, x) # 1-based index of first match4
equivalent anonymous function versions:5
val_1 = findfirst(x_val -> x_val > 1.0, x)6
val_2 = findfirst(x -> x > 1.0, x) # note scope!7
@show val_1, val_2;8

cumsum(x) = [1.0, 0.0, 2.5, 2.0]
findfirst(g, x) = 3
(val_1, val_2) = (3, 3)

 32 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Linear Algebra Basics
A = [1 2; 3 4]1
b = [1, 2]2
@show A * b # Matrix product3
@show A' # transpose4
@show dot(b, [5.0, 2.0]) # dot product5
@show b' * b # dot product6
@show Diagonal([1.0, 2.0]) # diagonal matrix7
@show I # identity matrix8
@show inv(A); # inverse9

A * b = [5, 11]
A' = [1 3; 2 4]
dot(b, [5.0, 2.0]) = 9.0
b' * b = 5
Diagonal([1.0, 2.0]) = Diagonal([1.0, 2.0])
I = LinearAlgebra.UniformScaling{Bool}(true)
inv(A) = [-1.9999999999999996 0.9999999999999998;
1.4999999999999998 -0.4999999999999999]

 33 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Norms

Defaults to the Euclidean (2) norm; use norm(v, 1) or norm(v, Inf) for others

v = [3.0, -4.0, 1.0]1
manual_euclid1 = sqrt(sum(v.^2))2
manual_euclid2 = sqrt(sum(abs2, v)) # sum can apply function first3
@show norm(v)4
@show manual_euclid1, manual_euclid25
@show norm(v, 1)6
@show norm(v, Inf);7

norm(v) = 5.0990195135927845
(manual_euclid1, manual_euclid2) = (5.0990195135927845, 5.0990195135927845)
norm(v, 1) = 8.0
norm(v, Inf) = 4.0

 34 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Linear Solves

A = [2.0 1.0; 1.0 3.0]1
b = [1.0, 0.0]2
x = A \ b # preferred over inv(A) * b3
@show x4
@show norm(A * x - b); # residual norm5

x = [0.6, -0.2]
norm(A * x - b) = 5.551115123125783e-17

 35 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Eigenvalues and Eigenvectors
A = [2.0 1.0; 1.0 2.0]1
vals = eigvals(A)2
F = eigen(A)3
@show vals4
@show F.vectors[:, 1];5

vals = [1.0, 3.0]
F.vectors[:, 1] = [-0.7071067811865475, 0.7071067811865475]

 36 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Modifying Vectors

Scalars and tuples/named tuples are immutable

Vectors and matrices are mutable

A = [1 2; 3 4]1
A[1, 1] = 22
@show A3
b = [1, 2]4
b[1] = 25
@show b6
b .= [3, 4] # otherwise just renamed7
@show b8
A[1, :] .= [3, 4] # assign slice9
@show A;10

A = [2 2; 3 4]
b = [2, 2]
b = [3, 4]
A = [3 4; 3 4]

 37 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Slicing Higher-D Arrays

Julia is column-major; slicing by the last index stays contiguous and fast

Loop order: vary first index fastest for best cache performance

X = reshape(collect(1:24), 2, 3, 4) # 2×3×4 tensor1
@show size(X)2
M2 = X[:, :, 2] # 2×3 matrix view, contiguous in memory3
@show M24
@show view(X, :, :, 2) # does not allocate, nice if contiguous5
@show X[1, :, 2]; # row slice from that matrix6

size(X) = (2, 3, 4)
M2 = [7 9 11; 8 10 12]
view(X, :, :, 2) = [7 9 11; 8 10 12]
X[1, :, 2] = [7, 9, 11]

 38 / 39

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

Learning More

Clone the QuantEcon lectures

→ > Git: Clone the https://github.com/quantecon/lecture-julia.notebooks

This covers part of and

Other more advanced lectures, not required for this course, are

→

→

→

Julia Essentials Fundamental Types

Introduction to Types and Generic Programming

Generic Programming

Visual Studio and Other Tools

 39 / 39

https://julia.quantecon.org/getting_started_julia/julia_essentials.html
https://julia.quantecon.org/getting_started_julia/fundamental_types.html
https://julia.quantecon.org/more_julia/generic_programming.html
https://julia.quantecon.org/more_julia/generic_programming.html
https://julia.quantecon.org/software_engineering/tools_editors.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html
file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/index.html

