
Course Overview and Computational Environment

Undergraduate Computational Macro

Jesse Perla

University of British Columbia

jesse.perla@ubc.ca

1 / 51

mailto:jesse.perla@ubc.ca

Table of contents

Course Overview and Objectives

Programming Languages

Quantitative, Empirical, and Theoretical Economics

Computational Environment

Crash Course on Julia

2 / 51

Course Overview and Objectives

3 / 51

Course Structure and Prerequisites

“Macroconomics on a computer”. Mostly macro-finance and macro-labor

→ Not an intro to programming course or stats/econometrics class

→ Less programming than ECON323, more math and theory

Build experience with computational tools and structural models in macroeconomics

which can help you conduct “counterfactuals”

→ Lots of simulation, but not much data or empirics

→ Complement to other courses focusing on “field” topics, empirics, estimation,

inference, datascience, etc.

4 / 51

Prerequisites

You need to have

→ One of ECON 301, ECON 304, ECON 308

→ One of ECON 323, CPSC 103, CPSC 110, MATH 210, COMM 337

→ One of MATH 221, MATH 223.

Not negotiable to have intermediate micro

Not negotiable to have the formal programming class in some general purpose language

(e.g., Stata and R don’t count, self-study isn’t enough)

Math requirement you can talk to me, especially if you took ECON307 or have significant

background in linear algebra and multivariate calculus

5 / 51

Assessments

Grading:

→ 6-8 problem sets: 20% (total)

→ Midterm exam: 30%

→ Final exam: 50%

Midterm and final examinations will be done in a computer lab or on your own computer

in class. Not testing programming skills

Problem sets will start off short and easy to help those with less programming

experience, and then build in (economics) complexity.

See the for missed exam policiessyllabus

6 / 51

file:///home/runner/work/undergrad_computational_macro/undergrad_computational_macro/.lectures_output/pages/syllabus.html

Programming Languages

7 / 51

Which Language?

Plenty of languages used in economics and finance: Matlab, Python, Julia, Fortran, C++,

Stata, Dynare, R, Stan…

→ All are great for some things, and terrible for others

→ Some are highly specialized and less general purpose than others (e.g. Stata and R)

I love specialized languages! But…

→ My philosophy is you will need to learn at least two general purpose programming

languages over your career.

8 / 51

Benefits of Learning more Languages

Plan for your longrun career, languages come and go…

The 2nd language makes you a better programmer at both

The 3rd is even easier as you learn similarities and differences

On grad school or job applications everyone says they know Python

→ Differentiator to credibly claim you know another serious language

→ Increasingly important to signal computational sophistication to get jobs

→ Julia is as good as any for that purpose

9 / 51

Advantages of Learning Julia for Economics and Finance

Python is great for datascience and ML, but “ugly”, verbose, and slow to use directly for

many simulations and computational methods

→ Python wrappers for high-performance code used in ML are great

→ But when an appropriate framework doesn’t exist, writing fast code yourself in

Python is much harder than in Julia

→ Performance in Python usually means C++ or frameworks like JAX

Julia (and Matlab) is more natural for programming mathematics than Python. Easier to

learn than alternative Python packages.

Many in economists and finance research use Julia for computational methods, so it

may help you directly

10 / 51

Don’t Worry If You are New to Programming

Costs of learning languages has decreasing returns to scale

→ Learning the first programming language is the hardest

Julia will come easily if you have the prerequisities (i.e. a course using Matlab or Python,

sadly R is not sufficient preparation)

Submitting your code in Matlab or Python is not possible given the course structure and

infrastructure

11 / 51

Quantitative, Empirical, and

Theoretical Economics

12 / 51

Why Isn’t Big Data ML/Statistics Enough?

Going well before the big data/ML revolution economists asked whether they could just

use statistical models with enough data

→ Answer: only if you had the right (statistical) model for a particular experiment, but

historical data doesn’t have variation in crucial directions

→ The right “statistical model” would need to reflect that humans adapt and make

forecasts - responding to policy and incentives

→ Especially difficult in macro because of dynamics and GE effects

→ Cowles Commision, Lucas Critique, Policy Ineffectiveness Proposition (Sargent and

Wallace), Time Inconsistency (Kydland and Prescott)

Having more data and fancier statistics doesn’t solve these problems

13 / 51

Forecasts and Distributions

Summary: conducting experiments with a data generating process (DGP) is fine, but how

to find the right one for a given problem?

Think probabilistically: the world is a joint distribution of observables, unobservables (i.e.,

latent variables), shocks, and parameters

Joint distributions let you calculate conditional expectations and conduct “experiments”

by conditioning on different events

Statistics and machine learning is often criticized as being only about “prediction” and

sometimes “inference”

→ This isn’t quite true, but lets us ask what prediction really means

14 / 51

Counterfactuals: “What If?”

Most interesting problems in economics are about counterfactuals

→ What would unemployment have been if the government had not intervened during

the recession?

→ What would have been her income if she had not gone to college, or if she wasn’t

subjected to gender bias?

By definition these are not observable. If we had the data already we wouldn’t need to

ponder these “What if?”

How can you answer a question with data that doesn’t exist?

YOU HAVE TO MAKE SOMETHING UP

15 / 51

The Role of Theory

There is no data interpretation without some theory - even if it is sometimes implicit.

Interpreting empirical results require self-reflection

The role of both data and theory is then to help constrain the set of possible

counterfactuals for the “what if?”

So any criticisms of ML or statistics as “merely prediction” are basically a statement on

whether the theory makes sense

→ i.e., if you fit on data to find a function, then theory tells you if

you made the right assumptions (e.g., that the data is representative and wouldn’t

change for your counterfactual of interest, etc)

y = f(X) + ϵ

^

f(X)

X

16 / 51

Approach in this Course

Always remember: you need assumptions in one form or another because the

counterfactuals are inherently not in the data

Broadly there are three approaches to conducting counterfactuals. They are not mutually

exclusive

1. Structural models emphasize theory as structure on the joint distribution

2. Causal inference using matching, instrumental variables, etc. which use theoretical

assumptions on independence to adjust for bias and missing unobservable (latent)

variables

3. Randomized Experiments/Treatment Effects where you can get good data which

truly randomizes some sort of “treatment”.

In this course we will focus on simulations and structural models - sometimes called

“quantitative economics”

17 / 51

Macroeconomic Models Require Lots of Tools

Conducting macroeconomic counterfactuals requires a lot of tools because

→ Macroeconomic decisions are dynamic and often stochastic

→ Agents are forward looking

→ Agents interact through markets and prices, which creates “general equilibrium”

effects (i.e., which are inherently nonlinear)

→ Heterogeneity leads to the distributional being crucial

→ Agent’s may respond to policies by thinking through the dynamic effects

We formalize these assumptions with math, but we are rarely able to solve them

analytically. Use a computer!

18 / 51

Tools Topics

See Syllabus for more details

1. Linear algebra and basic scientific computing

2. Geometric Series and Discrete Time Dynamics

3. Basic Stochastic Processes

4. Linear State Space Models

5. Markov Chains

6. Dynamic Programming

19 / 51

Applications Topics

The tools are interleaved with applications such as

1. Marginal Propensity to Consume

2. Dynamics of Wealth and Distributions

3. Permanent Income Model

4. Models of Unemployment

5. Asset Pricing

6. Lucas Trees and No-arbitrage Option Pricing

7. Recursive Equilibria and the McCall Search Model

8. Time permitting: Rational Expectations and Firm Equilibria, Growth Models

20 / 51

Computational Environment

21 / 51

Setup

You can install Julia on your laptop by following

While one can use Julia entirely from just Jupyter notebooks, we will also introduce basic

 and usage as well to help broaden your exposure to computational

tools.

So my suggestion is to challenge yourself to learn VS Code, GitHub, and other tools.

Further signalling for RA/predoc/jobs/etc.

these instructions

GitHub VS Code

22 / 51

https://julia.quantecon.org/getting_started_julia/getting_started.html
https://github.com/
https://code.visualstudio.com/

Summary of Installation

1. Install

2. Install

3. Install Julia with

Windows: easiest method is winget install julia -s msstore in a Windows

terminal

Linux/Mac: in a terminal use curl -fsSL https://install.julialang.org | sh

4. Install

5. Install the extension

Git

Anaconda

juliaup

Visual Studio Code (VS Code)

VS Code Julia

23 / 51

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git/
https://www.anaconda.com/download
https://github.com/JuliaLang/juliaup#installation
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=julialang.language-julia

Some Common Errors on MacOS

To open a terminal on MacOS

→ Press Cmd + Space to open Spotlight, then type Terminal

→ Or with VS Code <Cmd-Shift-P> then View: Toggle Terminal

If you get permissions problems try

If it still shows errors, then and do some combo of

→ Then retry sudo curl -fsSL https://install.julialang.org | sh

sudo curl -fsSL https://install.julialang.org | sh

see here

sudo chown $(id -u):$(id -g) ~/.bashrc
sudo chown $(id -u):$(id -g) ~/.zshrc
sudo chown $(id -u):$(id -g) ~/.bash_profile

24 / 51

https://github.com/JuliaLang/juliaup/wiki/Permission-problems-during-setup

Clone Notebooks and Install Packages

1. Open the command palette with <Ctrl+Shift+P> or <Cmd+Shift+P> on mac and type >
Git: Clone and choose

https://github.com/jlperla/undergrad_computational_macro_notebooks

2. Instantiate packages, in VSCode or

Run a terminal in that directory

Then julia and] enters package mode

] add IJulia, which adds to global environment

] activate, which chooses the Project.toml file

] instantiate

3. Then use VS Code or jupyter lab to open

25 / 51

Julia Environment Basics

Project files keep track of dependencies and make things reproducible

→ Similar to Python’s virtual environments but easier to use

VS Code and Jupyter will automatically activate a Project.toml

→ In REPL or Jupyter enter] for managing packages

→ Can manually activate with] activate or] activate path/to/project

→ On commandline, can use julia --project

→ If a file doesn’t exist, then]activate creates one for the folder

With activated project, use] instantiate to install all the packages

For this course: no package management required after instantiation

26 / 51

Reproducibility

ALWAYS use a Project.toml file

→ Keep your global environment as clean

→ Enough to do] add IJulia

Associated with Project.toml is a Manifest.toml file which establishes the exact

versions for reproducibility

→] instantiate will install the exact versions

→ Less important for us, but very useful for reproducibility in research to distribute

with project

27 / 51

Crash Course on Julia

28 / 51

Introductory Lectures

Assuming you are familiar with Matlab or Python, Julia will be easy to learn

Adapted from QuantEcon lectures coauthored with John Stachurski and Thomas J.

Sargent

→

→

→

Julia by Example

Essentials

Fundamental Types

29 / 51

https://julia.quantecon.org/getting_started_julia/julia_by_example.html
https://julia.quantecon.org/getting_started_julia/julia_essentials.html
https://julia.quantecon.org/getting_started_julia/fundamental_types.html

Using Packages

First ensure your project is activated and packages instantiated

using LinearAlgebra, Statistics, Plots1

30 / 51

Plotting Random Numbers
n = 201
ep = randn(n)2
plot(1:n, ep;size=(600,400))3

31 / 51

Loops
n = 1001
ep = zeros(n)2
for i in 1:n3
 ep[i] = randn()4
end5
println(ep[1:5])6

[-1.064821744918741, 0.20055320814040425, -0.42053012088019653, -2.1674797424122554, -0.9601569259178233]

32 / 51

Comprehensions
Comprehensions1
@show [2 * i for i in 1:4];2

[2i for i = 1:4] = [2, 4, 6, 8]

33 / 51

Manually Calculated Mean
ep_sum = 0.0 # careful to use 0.0 here, instead of 01
for ep_val in ep2
 ep_sum = ep_sum + ep_val3
end4
@show ep_mean = ep_sum / length(ep)5
@show ep_mean ≈ mean(ep)6
@show ep_mean7
@show sum(ep) / length(ep)8
@show sum(ep_val for ep_val in ep) / length(ep); # generator/comprehension9

ep_mean = ep_sum / length(ep) = -0.014019546438837875
ep_mean ≈ mean(ep) = true
ep_mean = -0.014019546438837875
sum(ep) / length(ep) = -0.014019546438837903
sum((ep_val for ep_val = ep)) / length(ep) = -0.014019546438837875

34 / 51

Functions

function generatedata(n)1
 ep = randn(n) # use built in function2
 for i in eachindex(ep) # or i in 1:length(ep)3
 ep[i] = ep[i]^2 # squaring the result4
 end5
 return ep6
end7
data = generatedata(5)8
println(data)9

[1.7182747971605918, 0.01762455734677663, 1.0111342207535723, 3.2936289192315935, 0.6153258611237733]

35 / 51

Broadcasting
function generatedata(n)1
 ep = randn(n) # use built in function2
 return ep .^ 23
end4
@show generatedata(5)5
generatedata2(n) = randn(n) .^ 26
@show generatedata2(5);7

generatedata(5) = [0.7664969548681376, 0.5658795847535621, 0.1920865182464282, 0.44516414349150646, 0.4335964686270287]
generatedata2(5) = [3.231571451656551, 0.26727719282014856, 5.756213117912331, 0.32414937784829506,
0.008613087034908314]

36 / 51

Higher Order Functions
generatedata3(n, gen) = gen.(randn(n)) # broadcasts on gen1
f(x) = x^2 # simple square function2
@show generatedata3(5, f); # applies f3

generatedata3(5, f) = [9.712146802111512, 0.3200963448050346, 1.1942889536301105, 0.07268419480565189,
0.001438483083349692]

37 / 51

More Plotting Examples
using Distributions1
function plothistogram(dist, n)2
 # n draws from distribution3
 ep = rand(dist, n) 4
 return histogram(ep;size=(600,400))5
end6
dist = Laplace() # dist != dist in function7
plothistogram(dist, 500)8

38 / 51

Changing Types

The rand(dist, n) changes its behavior based on the type of dist

dist = Normal()1
plothistogram(Normal(), 500)2

39 / 51

Ranges
x = range(0.0, 1.0; length = 5)1
@show x2
@show Vector(x)3
plot(x, sqrt.(x);size=(600,400))4

x = 0.0:0.25:1.0
Vector(x) = [0.0, 0.25, 0.5, 0.75, 1.0]

40 / 51

Defining Functions

You can create anonymous functions as in R, but it is harder for the compiler because

the type f3 can change. Avoid -> if name required

f(x) = x^21
function f2(x)2
 return x^23
end4
f3 = x -> x^2 # assignment not required5
@show f(2), f2(2), f3(2);6

(f(2), f2(2), f3(2)) = (4, 4, 4)

41 / 51

Default Arguments
f(x, a = 1) = exp(cos(a * x))1
@show f(pi)2
@show f(pi, 2);3

f(pi) = 0.36787944117144233
f(pi, 2) = 2.718281828459045

42 / 51

Keyword Arguments
f2(x; a = 1) = exp(cos(a * x)) # note the ; in the definition1
same as longform2
function f(x; a = 1)3
 return exp(cos(a * x))4
end5
@show f(pi)6
@show f(pi; a = 2) # passing in adate7
a = 28
@show f(pi; a); # equivalent to f(pi; a = a)9

f(pi) = 0.36787944117144233
f(pi; a = 2) = 2.718281828459045
f(pi; a) = 2.718281828459045

43 / 51

Closures

In general, try to avoid globals and closures outside of functions

a = 0.21
f(x) = a * x^2 # refers to the `a` in the outer scope2
@show f(1)3
The a is captured in this scope by name. Careful!4
a = 0.35
@show f(1);6

f(1) = 0.2
f(1) = 0.3

44 / 51

Closures Inside Functions

But within a function they are safe, common, and usually free of overhead

function g(a)1
 f(x) = a * x^2 # refers to the `a` passed in the function2
 return f(1)3
end4
a = 123.5 # Different scope than the `a` in function5
@show g(0.2);6

g(0.2) = 0.2

45 / 51

Tuples and Named Tuples
t = (1, 2.0, "hello")1
@show t[1]2
nt = (;a = 1, b = 2.0, c = "hello")3
@show nt4
@show nt.a; # can't use nt[1] or nt["a"]5

t[1] = 1
nt = (a = 1, b = 2.0, c = "hello")
nt.a = 1

46 / 51

Tuples Packing and Unpacking
function solve_model(x)1
 a = x^22
 b = 2 * a3
 c = a + b4
 return (; a, b, c) # note local scope of tuples!5
end6
@show solve_model(0.1)7
can unpack in different order, or use subset of values8
(; c, a) = solve_model(0.1)9
println("a = $a, c = $c");10

solve_model(0.1) = (a = 0.010000000000000002, b = 0.020000000000000004, c = 0.030000000000000006)
a = 0.010000000000000002, c = 0.030000000000000006

47 / 51

Array Basics
b = [1.0, 2.1, 3.0] # 1d array1
A = [1 2; 3 4] # 2x2 matrix2
@show size(b)3
@show size(A)4
@show typeof(b)5
@show typeof(A)6
@show zeros(3)7
@show ones(2, 2)8
@show fill(1.0, 2, 2)9
@show similar(A)10
@show A[1, 1]11
@show A[1, :]12
@show A[1:end, 1];13

size(b) = (3,)
size(A) = (2, 2)
typeof(b) = Vector{Float64}
typeof(A) = Matrix{Int64}
zeros(3) = [0.0, 0.0, 0.0]
ones(2, 2) = [1.0 1.0; 1.0 1.0]
fill(1.0, 2, 2) = [1.0 1.0; 1.0 1.0]
similar(A) = [0 0; 0 0]
A[1, 1] = 1
A[1, :] = [1, 2]
A[1:end, 1] = [1, 3]

48 / 51

Linear Algebra Basics
A = [1 2; 3 4]1
b = [1, 2]2
@show A * b # Matrix product3
@show A' # transpose4
@show dot(b, [5.0, 2.0]) # dot product5
@show b' * b # dot product6
@show Diagonal([1.0, 2.0]) # diagonal matrix7
@show I # identity matrix8
@show inv(A); # inverse9

A * b = [5, 11]
A' = [1 3; 2 4]
dot(b, [5.0, 2.0]) = 9.0
b' * b = 5
Diagonal([1.0, 2.0]) = [1.0 0.0; 0.0 2.0]
I = UniformScaling{Bool}(true)
inv(A) = [-1.9999999999999996 0.9999999999999998;
1.4999999999999998 -0.4999999999999999]

49 / 51

Modifying Vectors

Scalars and tuples/named tuples are immutable

Vectors and matrices are mutable

A = [1 2; 3 4]1
A[1, 1] = 22
@show A3
b = [1, 2]4
b[1] = 25
@show b6
b .= [3, 4] # otherwise just renamed7
@show b8
A[1, :] .= [3, 4] # assign slice9
@show A;10

A = [2 2; 3 4]
b = [2, 2]
b = [3, 4]
A = [3 4; 3 4]

50 / 51

Learning More

Clone the QuantEcon lectures

→ > Git: Clone the https://github.com/quantecon/lecture-julia.notebooks

This covers part of and

Other more advanced lectures, not required for this course, are

→

→

→

Julia Essentials Fundamental Types

Introduction to Types and Generic Programming

Generic Programming

Visual Studio and Other Tools

51 / 51

https://julia.quantecon.org/getting_started_julia/julia_essentials.html
https://julia.quantecon.org/getting_started_julia/fundamental_types.html
https://julia.quantecon.org/more_julia/generic_programming.html
https://julia.quantecon.org/more_julia/generic_programming.html
https://julia.quantecon.org/software_engineering/tools_editors.html

