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Overview
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Motivation and Materials

In this lecture, we will introduce �xed points, practice a little Julia coding, move on to

geometric series

The applications will be to asset pricing and Keynesian multipliers

→ Asset pricing, in particular, will be something we come back to repeatedly as a way

to practice our tools

Even for those not interested in �nance, you will see that many problems are tightly

related to asset pricing

→ Human capital accumulation, choosing when to accept jobs, etc.
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Materials

Adapted from QuantEcon lectures coauthored with John Stachurski and Thomas J.

Sargent

→

→

Julia by Example

Geometric Series for Elementary Economics

using LinearAlgebra, Statistics, Plots, Random, Distributions, LaTeXStrings1
default(;legendfontsize=16)2
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https://julia.quantecon.org/getting_started_julia/julia_by_example.html
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Intro to Fixed Points
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Fixed Points

Fixed points are everywhere!

→ Lets �rst look at the mechanics and practice code, then apply them.

Take a mapping  for some set .

→ If there exists an  such that , then : is called a “�xed point” of

A �xed point is a property of a function, and may not be unique

Lets walk through the math, and then practice a little more Julia coding with them

f : X → X X

x

∗

∈ X f(x

∗

) = x

∗

x

∗

f
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Simple, Linear Example

For given scalars  and a scalar  of interest

If , then this can can be solved in closed form as 

Rearrange the equation in terms of a map 

Therefore, a �xed point  is a solution to the above problem such that 

y,β v

v = y + βv

|β| < 1 v = y/(1 − β)

f : R → R

f(v) := y + βv

f(⋅) v = f(v)
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Fixed Point Iteration

Consider iteration of the map  starting from an initial condition 

Does this converge? Depends on , as we will explore in detail

→ It shouldn’t depend on  or there is an issue

See 

f v

0

v

n+1

= f(v

n

)

f(⋅)

v

0

Banach’s �xed-point theorem
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https://en.wikipedia.org/wiki/Banach_fixed-point_theorem


When to Stop Iterating?

If  is a scalar, then we can check convergence by looking at  with some

threshold, which may be problem dependent

→ If  will be a vector, so we should use a norm 

→ e.g. the Euclidean norm, norm(v_new - v_old) in Julia

Keep numerical precision in mind! Can see this in Julia with the following

v

n

|v

n+1

− v

n

|

v

n

||v

n+1

− v

n

||

@show eps() #machine epsilon, the smallest number such that 1.0 + eps() > 1.01
@show 1.0 + eps()/2 > 1.0;2

eps() = 2.220446049250313e-16
1.0 + eps() / 2 > 1.0 = false
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Verifying with the Linear Example

For our simple linear map: 

Iteration becomes . Iterating backwards

→  and  if 

→ So , converges to  for all 

f(v) ≡ y + βv

v

n+1

= y + βv

n

v

n+1

= y + βv

n

= y + βy + β

2

v

n−1

= y

n−1

∑

i=0

β

i

+ β

n

v

0

∑

n−1

i=0

β

i

=

1−β

n

1−β

∑

∞

i=0

β

i

=

1

1−β

|β| < 1

n → ∞ v = y/(1 − β) v

0
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Implementing with For Loop
y = 1.01
beta = 0.92
v_iv = 0.8 # initial condition3
v_old = v_iv4
normdiff = Inf5
iter = 16
for i in 1:10007
    v_new = y + beta * v_old # the f(v) map8
    normdiff = norm(v_new - v_old)9
    if normdiff < 1.0E-7 # check convergence10
        iter = i11
        break # converged, exit loop12
    end13
    v_old = v_new # replace and continue14
end15
println("Fixed point = $v_old  |f(x) - x| = $normdiff in $iter iterations");16

Fixed point = 9.999999081896231  |f(x) - x| = 9.181037796679448e-8 in 154 iterations
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Implementing in Julia with While Loop
v_old = v_iv1
normdiff = Inf2
iter = 13
while normdiff > 1.0E-7 && iter <= 10004
    v_new = y + beta * v_old # the f(v) map5
    normdiff = norm(v_new - v_old)6
    v_old = v_new # replace and continue7
    iter = iter + 18
end9
println("Fixed point = $v_old  |f(x) - x| = $normdiff in $iter iterations")10

Fixed point = 9.999999173706609  |f(x) - x| = 9.181037796679448e-8 in 155 iterations
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Avoid Global Variables

function v_fp(beta, y, v_iv; tolerance = 1.0E-7, maxiter=1000)1
    v_old = v_iv2
    normdiff = Inf3
    iter = 14
    while normdiff > tolerance && iter <= maxiter5
        v_new = y + beta * v_old # the f(v) map6
        normdiff = norm(v_new - v_old)7
        v_old = v_new8
        iter = iter + 19
    end10
    return (v_old, normdiff, iter) # returns a tuple11
end12
y = 1.013
beta = 0.914
v_star, normdiff, iter = v_fp(beta, y, 0.8)15
println("Fixed point = $v_star |f(x) - x| = $normdiff in $iter iterations")16

Fixed point = 9.999999173706609 |f(x) - x| = 9.181037796679448e-8 in 155 iterations
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Use a Higher Order Function and Named Tuple

Why hardcode the mapping? Pass it in as a function

Lets add in keyword arguments and use a named tuple for clarity

function fixedpointmap(f, iv; tolerance = 1.0E-7, maxiter=1000)1
    x_old = iv2
    normdiff = Inf3
    iter = 14
    while normdiff > tolerance && iter <= maxiter5
        x_new = f(x_old) # use the passed in map6
        normdiff = norm(x_new - x_old)7
        x_old = x_new8
        iter = iter + 19
    end10
    return (; value = x_old, normdiff, iter) # A named tuple11
end12

fixedpointmap (generic function with 1 method)
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Passing in a Function
y = 1.01
beta = 0.92
v_initial = 0.83
f(v) = y + beta * v # note that y and beta are used in the function!4
sol = fixedpointmap(f, 0.8; tolerance = 1.0E-8) # don't need to pass5
println("Fixed point = $(sol.value) |f(x) - x| = $(sol.normdiff) in $(sol.iter) iterations")6

7
# Unpacking notation for the named tuples not sensitive to order8
(; value, iter, normdiff) = fixedpointmap(v -> y + beta * v, # creates an anonymous "closure"9
                                          v_initial; tolerance = 1.0E-8)10
println("Fixed point = $value |f(x) - x| = $normdiff in $iter iterations")11

Fixed point = 9.999999918629035 |f(x) - x| = 9.041219328764782e-9 in 177 iterations
Fixed point = 9.999999918629035 |f(x) - x| = 9.041219328764782e-9 in 177 iterations

16 / 62



Other Algorithms

VFI is instructive, but not always the fastest

Can also write as a “root �nding” problem

→ i.e.   so that  is the �xed point

→ These can be especially fast if  is available

Another is called Anderson Acceleration

→ The �xed-point iteration we have above is a special case

^

f(x) ≡ f(x) − x

^

f(x

∗

) = 0

∇

^

f(⋅)
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Use Packages with Better Algorithms

 has equations for solving equations (and �xed points)

→ e.g., 3 iterations, not 177, for Andersen Acceleration

Uses multi-dimensional maps, so can write in that way rather than scalar

NLsolve.jl

using NLsolve1
# best style2
y = 1.03
beta = 0.94
iv = [0.8] # note move to array5
f(v) = y .+ beta * v # note that y and beta are used in the function!6
sol = fixedpoint(f, iv) # uses Anderson Acceleration7
fnorm = norm(f(sol.zero) .- sol.zero)8
println("Fixed point = $(sol.zero) |f(x) - x| = $fnorm  in $(sol.iterations) iterations")9

Fixed point = [9.999999999999972] |f(x) - x| = 3.552713678800501e-15  in 3 iterations
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https://github.com/JuliaNLSolvers/NLsolve.jl/


Geometric Series and PDVs
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Geometric Series

Finite geometric series

In�nite geometric series, requiring 

1 + c + c

2

+ c

3

+⋯+ c

T

=

T

∑

t=0

c

t

=

1 − c

T+1

1 − c

|c| < 1

1 + c + c

2

+ c

3

+⋯ =

∞

∑

t=0

c

t

=

1

1 − c
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Discounting

In discrete time, 

Let  be a one-period net nominal interest rate

A one-period gross nominal interest rate  is de�ned as

If the nominal interest rate is  percent, then  and 

t = 0, 1, 2,…

r > 0

R

R = 1 + r > 1

5 r = 0.05 R = 1.05
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Interpretation as Prices

The gross nominal interest rate  is an exchange rate or relative price of dollars at

between times  and . The units of  are dollars at time  per dollar at time .

When people borrow and lend, they trade dollars now for dollars later or dollars later for

dollars now.

The price at which these exchanges occur is the gross nominal interest rate.

→ If I sell  dollars to you today, you pay me  dollars tomorrow.

→ This means that you borrowed  dollars for me at a gross interest rate  and a net

interest rate .

In equilibrium, the prices for borrowing and lending should be related

R

t t + 1 R t + 1 t

x Rx

x R

r
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Where do Interest Rates Come From?

More later, but consider connection to a discount factor  in consumer

preferences

This represents how much consumers value future consumption tomorrow relative to

today

In some simple cases  makes sense

→ Much more later, including how to think about cases with randomness

For now, just use  directly as a discount factor, thinking about risk-neutrality

β ∈ (0, 1)

R

−1

= β

R

−1
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Accumulation

 tells us how investment of  dollar value of an investment accumulate

through time. Compounding

Reinvested in the project (i.e., compounding)

→ thus,  dollar invested at time  pays interest  dollars after one period, so we have

 dollars at time 

→ at time  we reinvest  dollars and receive interest of  dollars at time 

plus the principal  dollars, so we receive  dollars at the
end of period 

x,xR,xR

2

,⋯ x

1 0 r

r + 1 = R 1

1 1 + r = R rR 2

R rR + R = (1 + r)R = R

2

2
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Discounting

 tells us how to discount future dollars to get their values in terms of

today’s dollars.

Tells us how much future dollars are worth in terms of today’s dollars.

Remember that the units of  are dollars at  per dollar at .

→ the units of  are dollars at  per dollar at 

→ the units of  are dollars at  per dollar at 

→ and so on; the units of  are dollars at  per dollar at 

1,R

−1

,R

−2

,⋯

R t + 1 t

R

−1

t t + 1

R

−2

t t + 2

R

−j

t t + j
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Asset Pricing

An asset has payments stream of  dollars at times 

and 

→ i.e. grows at  percent, discounted at  percent

The present value of the asset is

y

t

t = 0, 1, 2,… ,G ≡ 1 + g, g > 0

G < R ≡ 1 + r

y

t

= G

t

y

0

g r

p

0

= y

0

+ y

1

/R + y

2

/(R

2

) +⋯ =

∞

∑

t=0

y

t

(1/R)

t

=

∞

∑

t=0

y

0

G

t

(1/R)

t

=

∞

∑

t=0

y

0

(G/R)

t

=

y

0

1 − G/R
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Gordon Formula

For small  and , use a Taylor series or  to get

Hence,

r g rg ≈ 0

GR

−1

≈ 1 + g − r

p

0

= y

0

/(1 − (1 + g)/(1 + r)) ≈

y

0

r − g
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Assets with Finite Lives

Consider an asset that pays  for  and  for 

→ i.e., the same process but truncated it  periods

The present value is

How large is ?

→ If small, then in�nite horizon may be a good approximation

y

t

= 0 t > T y

t

= G

t

y

0

t ≤ T

T

p

0

=

T

∑

t=0

y

t

(1/R)

t

=

T

∑

t=0

y

0

G

t

(1/R)

t

=

T

∑

t=0

y

0

(G/R)

t

= y

0

1 − (G/R)

T+1

1 − G/R

(G/R)

T+1
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Is In�nite Horizon a Reasonable Approximation?

Implement these in code to compare

infinite_payoffs(g, r, y_0) = y_0 / (1 - (1 + g) * (1 + r)^(-1))1
function finite_payoffs(T, g, r, y_0)2
    G = 1 + g3
    R = 1 + r4
    return (y_0 * (1 - G^(T + 1) * R^(-T - 1))) / (1 - G * R^(-1))5
end6
@show infinite_payoffs(0.01, 0.05, 1.0)7
@show finite_payoffs(100, 0.01, 0.05, 1.0);8

infinite_payoffs(0.01, 0.05, 1.0) = 26.24999999999994
finite_payoffs(100, 0.01, 0.05, 1.0) = 25.73063957477331
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Comparing Different Horizons
g = 0.011
r = 0.052
y_0 = 1.03
T = 1004
# broadcast over 0:T5
p_finite = finite_payoffs.(0:T, g, r, y_0)6
p_infinite = infinite_payoffs(g, r, y_0)7
plot(0:T, p_finite,xlabel = "T",8
     label= L"p_0(T)", size = (600,400))9
hline!([p_infinite], linestyle = :dash,10
       label = L"p_0(\infty)")11
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Discounting vs. Growth

For , we assumed that , or approximately T = ∞ GR

−1

< 1 g < r

T = 101
y_0 = 1.02
plot(title = L"Present Value $p_0(T)$", legend = :topleft, xlabel = "T")3
plot!(finite_payoffs.(0:T, 0.4, 0.9, y_0),4
      label = L"r=0.9 \gg 0.4 = g")5
plot!(finite_payoffs.(0:T, 0.4, 0.5, y_0), label = L"r=0.5 > 0.4 = g")6
plot!(finite_payoffs.(0:T, 0.4, 0.4001, y_0),7
      label = L"r=0.4001 \approx 0.4 = g")8
plot!(finite_payoffs.(0:T, 0.5, 0.4, y_0), label = L"r=0.4 < 0.5 = g")9
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Discounting vs. Growth
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Asset Pricing and Fixed Points
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Rewriting our Problem

Lets write a version of the model for arbitrary  and relabel 

The asset price,  starting at any 

y

t

β ≡ 1/R

p

t

t

p

t

=

∞

∑

j=0

β

j

y

t+j

p

t

= y

t

+ βy

t+1

+ β

2

y

t+2

+ β

3

y

t+3

+⋯

= y

t

+ β (y

t+1

+ βy

t+2

+ β

2

y

t+2

⋯)

= y

t

+ β

∞

∑

j=0

β

j

y

t+j+1

= y

t

+ βp

t+1
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Recursive Formulation

In the simple case of , recursive equation is

→ We could also check that  ful�lls this equation

→ There are be other  which ful�ll it, but we won’t explore that here

In cases where the price is time-invariant, write this as a �xed point

y

t

= ȳ

p

t

= ȳ + βp

t+1

p

t

=

ȳ

1−β

p

t

p = ȳ + βp ≡ f(p)
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Recursive Interpretation

The price  is the sum of

→ The payoffs you get that period

→ The discounted price of how much you can sell it next period

The  is the forecast of the price tomorrow

→ Here we are assuming the forecasts are perfect, as  is known

More generally, want expected price tomorrow using some probabilities

p

t

= y

t

+ βp

t+1

p

t

p

t+1

{y

t

}

∞

t=0
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Solving Numerically
y_bar = 1.01
beta = 0.92
iv = [0.8]3
f(p) = y_bar .+ beta * p4
sol = fixedpoint(f, iv) # uses Anderson Acceleration5
@show y_bar/(1 - beta), sol.zero;6

(y_bar / (1 - beta), sol.zero) = (10.000000000000002, [9.999999999999972])
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A More Complicated Example

Instead , asset may pay  or 

→ You don’t know the payoff  until  occurs

→ You need to assign some probabilities of each occurring. e.g., equal

As with the previous example, lets assume you hold onto the asset only a single period,

then sell it

→ Naturally, the value of the asset to both you and others depends on 

→ We will see much more in 

Hint: in future lectures will use mathematical expectations

ȳ y

L

y

H

y

t+1

t + 1

y

t+1

future lectures

p

t

= y

t

+ βE [p

t+1

]
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Recursive Formulation

Assume two prices:  and  for the asset depending on the 

Stack  and 

→ We will see later how to write as a mathematical expectation

We could solve this as a linear equation, but lets use a �xed point

p

L

p

H

y

t

p

L

= y

L

+ β [0.5p

L

+ 0.5p

H

]

p

H

= y

H

+ β [0.5p

L

+ 0.5p

H

]

p ≡ [ ]

⊤

p

L

p

H

y ≡ [ ]

⊤

y

L

y

H

p = y + β [ ]p ≡ f(p)

0.5 0.5

0.5 0.5
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Solving Numerically with a Fixed Point
y = [0.5, 1.5] #y_L, y_H1
beta = 0.92
iv = [0.8, 0.8]3
A = [0.5 0.5; 0.5 0.5]4
sol = fixedpoint(p -> y .+ beta * A * p, iv) # f(p) := y + beta A p5
p_L, p_H = sol.zero # can unpack a vector6
@show p_L, p_H, sol.iterations7
# p = y + beta A p =>  (I - beta A) p = y => p = (I - beta A)^{-1} y8
@show (I - beta * A) \ y; # or $inv(I - beta * A) * y9

(p_L, p_H, sol.iterations) = (9.500000000000028, 10.500000000000028, 4)
(I - beta * A) \ y = [9.499999999999996, 10.499999999999996]
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Keynesian Multipliers
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Model without Prices

: consumption, : investment, : government expenditures, national income

Prices don’t adjust/exit to clear markets

→ Excess supply of labor and capital (unemployment and unused capital)

→ Prices and interest rates fail to adjust to make aggregate supply equal demand

(e.g., prices and interest rates are frozen)

→ National income entirely determined by aggregate demand, 

c i g y

↑ c ⟹ ↑ y
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Simple Model

Assume: consume a �xed fraction  of the national income 

→  is the marginal propensity to consume (MPC)

→  is the marginal propensity to save

→ Modern macro would have  adjust to re�ect prices, consumer preferences, etc. and

add in prices/production functions

Leads to three equations in this basic model

→ An accounting identity for the national income, the investment choice, and the

consumer choice above

0 < b < 1 y

t

b

1 − b

b
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Equations

National income is an accounting identity: the sum of consumption, investment, and

government expenditures is the national income

Investment private + government investment. Assume it is �xed here at  and . Embeds

behavioral assumptions?

Consumption , i.e. “behavior”, not accounting. Lag on last periods

income/output

y

t

= c

t

+ i

t

+ g

t

i g

c

t

= by

t−1
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Dynamics of Income and Consumption

Substituting the consumption equation into the national income equation

Iterative backwards to a ,

y

t

= c

t

+ i + g

y

t

= by

t−1

+ i + g

y

t

= b(by

t−2

+ i + g) + i + g

y

t

= b

2

y

t−2

+ b(i + g) + (i + g)

y

0

y

t

=

t−1

∑

j=0

b

j

(i + g) + b

t

y

0

=

1 − b

t

1 − b

(i + g) + b

t

y

0
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Keynesian Multiplier

Take limit as  to get

De�ne the Keynesian multiplier is 

→ More consumption delivers higher income, which delivers more consumption,

compounding…

→  implies . Same with 

Is this correct (or useful) of a model?

→ Probably not…gives intuition for more believable models

→ Lets us practice difference equations

t → ∞

lim

t→∞

y

t

=

1

1 − b

(i + g)

1/(1 − b)

i → i +Δ y → y +Δ/(1 − b) g

46 / 62



Iterating the Difference Equations

y

t

= by

t−1

+ i + g

function calculate_y(i, b, g, T, y_0)1
    y = zeros(T + 1)2
    y[1] = i + b * y_0 + g3
    for t in 2:(T + 1)4
        y[t] = b * y[t - 1] + i + g5
    end6
    return y7
end8
y_limit(i, b, g) = (i + g) / (1 - b)9

y_limit (generic function with 1 method)
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Plotting Dynamics
i_0 = 0.31
g_0 = 0.32
b = 2/3 # = MPC out of income3
y_0 = 04
T = 1005
plot(0: T,calculate_y(i_0, b, g_0, T, y_0);6
     title = "Aggregate Output",7
     size=(600,400), xlabel = L"t",8
     label = L"y_t")9
hline!([y_limit(i_0, b, g_0)];10
       linestyle = :dash,11
       label = L"y_{\infty}")12
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MPCs

Suggests that national output,  is increasing in MPC, , due to multiplier

To increase the longrun size of economy, decrease the savings rate ( )!

y

t

b

1 − b

bs = round.([1 / 3, 2 / 3, 5 / 6, 0.9], digits = 2)1
plt = plot(title = "Changing Consumption as a Fraction of Income",2
           xlabel = L"t", ylabel = L"y_t", legend = :topleft)3
[plot!(plt, 0:T, calculate_y(i_0, b, g_0, T, y_0), label = L"b = %$b")4
 for b in bs]5
plt6
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MPCs
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Can Governments (Magically) Expand Output?

Remember the limitation is that demand is too low and there is excess supply of labor

and/or capital

What if the government increases  by ?

→

Assume we start at the  for the 

→ Then we simulate dynamics for a permanent change to 

g Δ

y → y +Δ/(1 − b)

y

∞

g = 0.3

g

1

= 0.4
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Plotting Dynamics for Government Intervention
y_lim = y_limit(i_0, b, g_0)1
Delta_g = 0.12
y_1 = calculate_y(i_0, b,3
                  g_0 + Delta_g,4
                  T, y_lim) 5
plot(0: T, y_1, title = "Aggregate Output",6
     size=(600,400), xlabel = L"t",7
     label = L"y_t")8
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Convergence and Uniqueness
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Fixed Point Theory

Fixed points, which will come about across a variety of places in economics

→ Nash Equilibria, which requires �xed points of set-valued functions

→ General Equilibrium

→ Dynamic Programming - e.g., decision problems of macro agents

Frequently in quantitative macro you will rewrite problems as �xed points in order to

demonstrate uniqueness, convergence, and use �xed-point algorithms to solve
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Convergence

For , take the limit for some ,

→ Does this limit exist for all ? (i.e, globally convergent)

→ Does it exist “local” to any ? (i.e., locally convergent)

v
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= f(v

n

) v

0

v

1
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0

)
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= f(v
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v
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= f(f(… f((v

0
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∗

v

0
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0
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Uniqueness

For , are there multiple �xed points?

→ i.e., for some  goes to  and for some  goes to 

Uniqueness should be interpreted in terms of economics

→ Maybe non-uniqueness is interesting and leads to multiple equilibria (e.g., theories

of growth where you can get stuck in a bad equilibria)

→ Other times it says we wrote down the wrong model

v

n+1

= f(v

n

)

v

0

v

∗

1

v

0

v

∗

2
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Fixed Point Theorems

A variety of �xed point theorems exist to show when solutions exist, and when solutions

are unique

For us, we can look at an especially simple one which provides necessary and su�cient

conditions for convergence and uniqueness

→

→ Useful because the proof is constructive (i.e., suggests algorithm)

→ Gives us intuition on contraction mappings

Lets stay in 1-dimensions , but can be generalized

Banach’s �xed-point theorem

f : R → R
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https://en.wikipedia.org/wiki/Banach_fixed-point_theorem


Contraction Mappings

A contraction mapping is a function  such that for some  and all 

→ i.e., if I apply  to two points, the distance between the two points shrinks by a

factor of 

f 0 < β < 1 x, y ∈ X

|f(x) − f(y)| ≤ β|x − y|

f

β
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Banach’s Fixed Point Theorem

If  is a contraction mapping, then  has a unique �xed point 

Moreover, for any , the sequence  de�ned by  converges to

More generally: true on any on a complete metric space, but we won’t need to generalize

f f x

∗

x

0

x

0

,x

1

,… x
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x
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Sketch of Proof

The proof is constructive, and gives us a way to �nd the �xed point

Start with  and de�ne 

Then, for 

Since , the right hand side converges to zero as , independent of 

Hence the  goes to zero, so  as 

→ More subtle for fancier spaces , but the same idea

x
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Proving Contraction Mappings

I won’t ask you to do proofs in this class, but useful to see how you might do it

Given this, a crucial tool is to be able to prove that a particular  is a contraction mapping

Various ways to do this, and we will see connections to the gradient, 

One useful theorem are called 

Sometimes it is easy to just apply the de�nition of contraction mappings directly

f

∇f(⋅)

Blackwell’s Su�ciency Conditions
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https://users.econ.umn.edu/~tkehoe/classes/BlackwellsConditions.pdf


Example for Linear Functions

Let  for 

Substitute into the the de�nition of contraction mapping directly

→ So  is a contraction mapping iff 

→ Consequently,  has a unique �xed point, 

The multidimensional generalization of this checks the maximum absolute eigenvalue

f(x) = a + bx a, b ∈ R

|f(x) − f(y)| = |a + bx − (a + by)| = |b||x − y| ≤ β|x − y|

f β ≡ |b| < 1

f x

∗

= a + bx

∗
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