
Geometric Series, Fixed Points, and Asset Pricing

Undergraduate Computational Macro

Jesse Perla

University of British Columbia

jesse.perla@ubc.ca

1 / 62

mailto:jesse.perla@ubc.ca

Table of contents

Overview

Intro to Fixed Points

Geometric Series and PDVs

Asset Pricing and Fixed Points

Keynesian Multipliers

Convergence and Uniqueness

2 / 62

Overview

3 / 62

Motivation and Materials

In this lecture, we will introduce fixed points, practice a little Julia coding, move on to

geometric series

The applications will be to asset pricing and Keynesian multipliers

→ Asset pricing, in particular, will be something we come back to repeatedly as a way

to practice our tools

Even for those not interested in finance, you will see that many problems are tightly

related to asset pricing

→ Human capital accumulation, choosing when to accept jobs, etc.

4 / 62

Materials

Adapted from QuantEcon lectures coauthored with John Stachurski and Thomas J.

Sargent

→

→

Julia by Example

Geometric Series for Elementary Economics

using LinearAlgebra, Statistics, Plots, Random, Distributions, LaTeXStrings1
default(;legendfontsize=16)2

5 / 62

https://julia.quantecon.org/getting_started_julia/julia_by_example.html
https://julia.quantecon.org/tools_and_techniques/geom_series.html

Intro to Fixed Points

6 / 62

Fixed Points

Fixed points are everywhere!

→ Lets first look at the mechanics and practice code, then apply them.

Take a mapping for some set .

→ If there exists an such that , then : is called a “fixed point” of

A fixed point is a property of a function, and may not be unique

Lets walk through the math, and then practice a little more Julia coding with them

f : X → X X

x

∗

∈ X f(x

∗

) = x

∗

x

∗

f

7 / 62

Simple, Linear Example

For given scalars and a scalar of interest

If , then this can can be solved in closed form as

Rearrange the equation in terms of a map

Therefore, a fixed point is a solution to the above problem such that

y,β v

v = y + βv

|β| < 1 v = y/(1 − β)

f : R → R

f(v) := y + βv

f(⋅) v = f(v)

8 / 62

Fixed Point Iteration

Consider iteration of the map starting from an initial condition

Does this converge? Depends on , as we will explore in detail

→ It shouldn’t depend on or there is an issue

See

f v

0

v

n+1

= f(v

n

)

f(⋅)

v

0

Banach’s fixed-point theorem

9 / 62

https://en.wikipedia.org/wiki/Banach_fixed-point_theorem

When to Stop Iterating?

If is a scalar, then we can check convergence by looking at with some

threshold, which may be problem dependent

→ If will be a vector, so we should use a norm

→ e.g. the Euclidean norm, norm(v_new - v_old) in Julia

Keep numerical precision in mind! Can see this in Julia with the following

v

n

|v

n+1

− v

n

|

v

n

||v

n+1

− v

n

||

@show eps() #machine epsilon, the smallest number such that 1.0 + eps() > 1.01
@show 1.0 + eps()/2 > 1.0;2

eps() = 2.220446049250313e-16
1.0 + eps() / 2 > 1.0 = false

10 / 62

Verifying with the Linear Example

For our simple linear map:

Iteration becomes . Iterating backwards

→ and if

→ So , converges to for all

f(v) ≡ y + βv

v

n+1

= y + βv

n

v

n+1

= y + βv

n

= y + βy + β

2

v

n−1

= y

n−1

∑

i=0

β

i

+ β

n

v

0

∑

n−1

i=0

β

i

=

1−β

n

1−β

∑

∞

i=0

β

i

=

1

1−β

|β| < 1

n → ∞ v = y/(1 − β) v

0

11 / 62

Implementing with For Loop
y = 1.01
beta = 0.92
v_iv = 0.8 # initial condition3
v_old = v_iv4
normdiff = Inf5
iter = 16
for i in 1:10007
 v_new = y + beta * v_old # the f(v) map8
 normdiff = norm(v_new - v_old)9
 if normdiff < 1.0E-7 # check convergence10
 iter = i11
 break # converged, exit loop12
 end13
 v_old = v_new # replace and continue14
end15
println("Fixed point = $v_old |f(x) - x| = $normdiff in $iter iterations");16

Fixed point = 9.999999081896231 |f(x) - x| = 9.181037796679448e-8 in 154 iterations

12 / 62

Implementing in Julia with While Loop
v_old = v_iv1
normdiff = Inf2
iter = 13
while normdiff > 1.0E-7 && iter <= 10004
 v_new = y + beta * v_old # the f(v) map5
 normdiff = norm(v_new - v_old)6
 v_old = v_new # replace and continue7
 iter = iter + 18
end9
println("Fixed point = $v_old |f(x) - x| = $normdiff in $iter iterations")10

Fixed point = 9.999999173706609 |f(x) - x| = 9.181037796679448e-8 in 155 iterations

13 / 62

Avoid Global Variables

function v_fp(beta, y, v_iv; tolerance = 1.0E-7, maxiter=1000)1
 v_old = v_iv2
 normdiff = Inf3
 iter = 14
 while normdiff > tolerance && iter <= maxiter5
 v_new = y + beta * v_old # the f(v) map6
 normdiff = norm(v_new - v_old)7
 v_old = v_new8
 iter = iter + 19
 end10
 return (v_old, normdiff, iter) # returns a tuple11
end12
y = 1.013
beta = 0.914
v_star, normdiff, iter = v_fp(beta, y, 0.8)15
println("Fixed point = $v_star |f(x) - x| = $normdiff in $iter iterations")16

Fixed point = 9.999999173706609 |f(x) - x| = 9.181037796679448e-8 in 155 iterations

14 / 62

Use a Higher Order Function and Named Tuple

Why hardcode the mapping? Pass it in as a function

Lets add in keyword arguments and use a named tuple for clarity

function fixedpointmap(f, iv; tolerance = 1.0E-7, maxiter=1000)1
 x_old = iv2
 normdiff = Inf3
 iter = 14
 while normdiff > tolerance && iter <= maxiter5
 x_new = f(x_old) # use the passed in map6
 normdiff = norm(x_new - x_old)7
 x_old = x_new8
 iter = iter + 19
 end10
 return (; value = x_old, normdiff, iter) # A named tuple11
end12

fixedpointmap (generic function with 1 method)

15 / 62

Passing in a Function
y = 1.01
beta = 0.92
v_initial = 0.83
f(v) = y + beta * v # note that y and beta are used in the function!4
sol = fixedpointmap(f, 0.8; tolerance = 1.0E-8) # don't need to pass5
println("Fixed point = $(sol.value) |f(x) - x| = $(sol.normdiff) in $(sol.iter) iterations")6

7
Unpacking notation for the named tuples not sensitive to order8
(; value, iter, normdiff) = fixedpointmap(v -> y + beta * v, # creates an anonymous "closure"9
 v_initial; tolerance = 1.0E-8)10
println("Fixed point = $value |f(x) - x| = $normdiff in $iter iterations")11

Fixed point = 9.999999918629035 |f(x) - x| = 9.041219328764782e-9 in 177 iterations
Fixed point = 9.999999918629035 |f(x) - x| = 9.041219328764782e-9 in 177 iterations

16 / 62

Other Algorithms

VFI is instructive, but not always the fastest

Can also write as a “root finding” problem

→ i.e. so that is the fixed point

→ These can be especially fast if is available

Another is called Anderson Acceleration

→ The fixed-point iteration we have above is a special case

^

f(x) ≡ f(x) − x

^

f(x

∗

) = 0

∇

^

f(⋅)

17 / 62

Use Packages with Better Algorithms

 has equations for solving equations (and fixed points)

→ e.g., 3 iterations, not 177, for Andersen Acceleration

Uses multi-dimensional maps, so can write in that way rather than scalar

NLsolve.jl

using NLsolve1
best style2
y = 1.03
beta = 0.94
iv = [0.8] # note move to array5
f(v) = y .+ beta * v # note that y and beta are used in the function!6
sol = fixedpoint(f, iv) # uses Anderson Acceleration7
fnorm = norm(f(sol.zero) .- sol.zero)8
println("Fixed point = $(sol.zero) |f(x) - x| = $fnorm in $(sol.iterations) iterations")9

Fixed point = [9.999999999999972] |f(x) - x| = 3.552713678800501e-15 in 3 iterations

18 / 62

https://github.com/JuliaNLSolvers/NLsolve.jl/

Geometric Series and PDVs

19 / 62

Geometric Series

Finite geometric series

Infinite geometric series, requiring

1 + c + c

2

+ c

3

+⋯+ c

T

=

T

∑

t=0

c

t

=

1 − c

T+1

1 − c

|c| < 1

1 + c + c

2

+ c

3

+⋯ =

∞

∑

t=0

c

t

=

1

1 − c

20 / 62

Discounting

In discrete time,

Let be a one-period net nominal interest rate

A one-period gross nominal interest rate is defined as

If the nominal interest rate is percent, then and

t = 0, 1, 2,…

r > 0

R

R = 1 + r > 1

5 r = 0.05 R = 1.05

21 / 62

Interpretation as Prices

The gross nominal interest rate is an exchange rate or relative price of dollars at

between times and . The units of are dollars at time per dollar at time .

When people borrow and lend, they trade dollars now for dollars later or dollars later for

dollars now.

The price at which these exchanges occur is the gross nominal interest rate.

→ If I sell dollars to you today, you pay me dollars tomorrow.

→ This means that you borrowed dollars for me at a gross interest rate and a net

interest rate .

In equilibrium, the prices for borrowing and lending should be related

R

t t + 1 R t + 1 t

x Rx

x R

r

22 / 62

Where do Interest Rates Come From?

More later, but consider connection to a discount factor in consumer

preferences

This represents how much consumers value future consumption tomorrow relative to

today

In some simple cases makes sense

→ Much more later, including how to think about cases with randomness

For now, just use directly as a discount factor, thinking about risk-neutrality

β ∈ (0, 1)

R

−1

= β

R

−1

23 / 62

Accumulation

 tells us how investment of dollar value of an investment accumulate

through time. Compounding

Reinvested in the project (i.e., compounding)

→ thus, dollar invested at time pays interest dollars after one period, so we have

 dollars at time

→ at time we reinvest dollars and receive interest of dollars at time

plus the principal dollars, so we receive dollars at the
end of period

x,xR,xR

2

,⋯ x

1 0 r

r + 1 = R 1

1 1 + r = R rR 2

R rR + R = (1 + r)R = R

2

2

24 / 62

Discounting

 tells us how to discount future dollars to get their values in terms of

today’s dollars.

Tells us how much future dollars are worth in terms of today’s dollars.

Remember that the units of are dollars at per dollar at .

→ the units of are dollars at per dollar at

→ the units of are dollars at per dollar at

→ and so on; the units of are dollars at per dollar at

1,R

−1

,R

−2

,⋯

R t + 1 t

R

−1

t t + 1

R

−2

t t + 2

R

−j

t t + j

25 / 62

Asset Pricing

An asset has payments stream of dollars at times

and

→ i.e. grows at percent, discounted at percent

The present value of the asset is

y

t

t = 0, 1, 2,… ,G ≡ 1 + g, g > 0

G < R ≡ 1 + r

y

t

= G

t

y

0

g r

p

0

= y

0

+ y

1

/R + y

2

/(R

2

) +⋯ =

∞

∑

t=0

y

t

(1/R)

t

=

∞

∑

t=0

y

0

G

t

(1/R)

t

=

∞

∑

t=0

y

0

(G/R)

t

=

y

0

1 − G/R

26 / 62

Gordon Formula

For small and , use a Taylor series or to get

Hence,

r g rg ≈ 0

GR

−1

≈ 1 + g − r

p

0

= y

0

/(1 − (1 + g)/(1 + r)) ≈

y

0

r − g

27 / 62

Assets with Finite Lives

Consider an asset that pays for and for

→ i.e., the same process but truncated it periods

The present value is

How large is ?

→ If small, then infinite horizon may be a good approximation

y

t

= 0 t > T y

t

= G

t

y

0

t ≤ T

T

p

0

=

T

∑

t=0

y

t

(1/R)

t

=

T

∑

t=0

y

0

G

t

(1/R)

t

=

T

∑

t=0

y

0

(G/R)

t

= y

0

1 − (G/R)

T+1

1 − G/R

(G/R)

T+1

28 / 62

Is Infinite Horizon a Reasonable Approximation?

Implement these in code to compare

infinite_payoffs(g, r, y_0) = y_0 / (1 - (1 + g) * (1 + r)^(-1))1
function finite_payoffs(T, g, r, y_0)2
 G = 1 + g3
 R = 1 + r4
 return (y_0 * (1 - G^(T + 1) * R^(-T - 1))) / (1 - G * R^(-1))5
end6
@show infinite_payoffs(0.01, 0.05, 1.0)7
@show finite_payoffs(100, 0.01, 0.05, 1.0);8

infinite_payoffs(0.01, 0.05, 1.0) = 26.24999999999994
finite_payoffs(100, 0.01, 0.05, 1.0) = 25.73063957477331

29 / 62

Comparing Different Horizons
g = 0.011
r = 0.052
y_0 = 1.03
T = 1004
broadcast over 0:T5
p_finite = finite_payoffs.(0:T, g, r, y_0)6
p_infinite = infinite_payoffs(g, r, y_0)7
plot(0:T, p_finite,xlabel = "T",8
 label= L"p_0(T)", size = (600,400))9
hline!([p_infinite], linestyle = :dash,10
 label = L"p_0(\infty)")11

30 / 62

Discounting vs. Growth

For , we assumed that , or approximately T = ∞ GR

−1

< 1 g < r

T = 101
y_0 = 1.02
plot(title = L"Present Value $p_0(T)$", legend = :topleft, xlabel = "T")3
plot!(finite_payoffs.(0:T, 0.4, 0.9, y_0),4
 label = L"r=0.9 \gg 0.4 = g")5
plot!(finite_payoffs.(0:T, 0.4, 0.5, y_0), label = L"r=0.5 > 0.4 = g")6
plot!(finite_payoffs.(0:T, 0.4, 0.4001, y_0),7
 label = L"r=0.4001 \approx 0.4 = g")8
plot!(finite_payoffs.(0:T, 0.5, 0.4, y_0), label = L"r=0.4 < 0.5 = g")9

31 / 62

Discounting vs. Growth

32 / 62

Asset Pricing and Fixed Points

33 / 62

Rewriting our Problem

Lets write a version of the model for arbitrary and relabel

The asset price, starting at any

y

t

β ≡ 1/R

p

t

t

p

t

=

∞

∑

j=0

β

j

y

t+j

p

t

= y

t

+ βy

t+1

+ β

2

y

t+2

+ β

3

y

t+3

+⋯

= y

t

+ β (y

t+1

+ βy

t+2

+ β

2

y

t+2

⋯)

= y

t

+ β

∞

∑

j=0

β

j

y

t+j+1

= y

t

+ βp

t+1

34 / 62

Recursive Formulation

In the simple case of , recursive equation is

→ We could also check that fulfills this equation

→ There are be other which fulfill it, but we won’t explore that here

In cases where the price is time-invariant, write this as a fixed point

y

t

= ȳ

p

t

= ȳ + βp

t+1

p

t

=

ȳ

1−β

p

t

p = ȳ + βp ≡ f(p)

35 / 62

Recursive Interpretation

The price is the sum of

→ The payoffs you get that period

→ The discounted price of how much you can sell it next period

The is the forecast of the price tomorrow

→ Here we are assuming the forecasts are perfect, as is known

More generally, want expected price tomorrow using some probabilities

p

t

= y

t

+ βp

t+1

p

t

p

t+1

{y

t

}

∞

t=0

36 / 62

Solving Numerically
y_bar = 1.01
beta = 0.92
iv = [0.8]3
f(p) = y_bar .+ beta * p4
sol = fixedpoint(f, iv) # uses Anderson Acceleration5
@show y_bar/(1 - beta), sol.zero;6

(y_bar / (1 - beta), sol.zero) = (10.000000000000002, [9.999999999999972])

37 / 62

A More Complicated Example

Instead , asset may pay or

→ You don’t know the payoff until occurs

→ You need to assign some probabilities of each occurring. e.g., equal

As with the previous example, lets assume you hold onto the asset only a single period,

then sell it

→ Naturally, the value of the asset to both you and others depends on

→ We will see much more in

Hint: in future lectures will use mathematical expectations

ȳ y

L

y

H

y

t+1

t + 1

y

t+1

future lectures

p

t

= y

t

+ βE [p

t+1

]

38 / 62

https://julia.quantecon.org/multi_agent_models/markov_asset.html

Recursive Formulation

Assume two prices: and for the asset depending on the

Stack and

→ We will see later how to write as a mathematical expectation

We could solve this as a linear equation, but lets use a fixed point

p

L

p

H

y

t

p

L

= y

L

+ β [0.5p

L

+ 0.5p

H

]

p

H

= y

H

+ β [0.5p

L

+ 0.5p

H

]

p ≡ []

⊤

p

L

p

H

y ≡ []

⊤

y

L

y

H

p = y + β []p ≡ f(p)

0.5 0.5

0.5 0.5

39 / 62

Solving Numerically with a Fixed Point
y = [0.5, 1.5] #y_L, y_H1
beta = 0.92
iv = [0.8, 0.8]3
A = [0.5 0.5; 0.5 0.5]4
sol = fixedpoint(p -> y .+ beta * A * p, iv) # f(p) := y + beta A p5
p_L, p_H = sol.zero # can unpack a vector6
@show p_L, p_H, sol.iterations7
p = y + beta A p => (I - beta A) p = y => p = (I - beta A)^{-1} y8
@show (I - beta * A) \ y; # or $inv(I - beta * A) * y9

(p_L, p_H, sol.iterations) = (9.500000000000028, 10.500000000000028, 4)
(I - beta * A) \ y = [9.499999999999996, 10.499999999999996]

40 / 62

Keynesian Multipliers

41 / 62

Model without Prices

: consumption, : investment, : government expenditures, national income

Prices don’t adjust/exit to clear markets

→ Excess supply of labor and capital (unemployment and unused capital)

→ Prices and interest rates fail to adjust to make aggregate supply equal demand

(e.g., prices and interest rates are frozen)

→ National income entirely determined by aggregate demand,

c i g y

↑ c ⟹ ↑ y

42 / 62

Simple Model

Assume: consume a fixed fraction of the national income

→ is the marginal propensity to consume (MPC)

→ is the marginal propensity to save

→ Modern macro would have adjust to reflect prices, consumer preferences, etc. and

add in prices/production functions

Leads to three equations in this basic model

→ An accounting identity for the national income, the investment choice, and the

consumer choice above

0 < b < 1 y

t

b

1 − b

b

43 / 62

Equations

National income is an accounting identity: the sum of consumption, investment, and

government expenditures is the national income

Investment private + government investment. Assume it is fixed here at and . Embeds

behavioral assumptions?

Consumption , i.e. “behavior”, not accounting. Lag on last periods

income/output

y

t

= c

t

+ i

t

+ g

t

i g

c

t

= by

t−1

44 / 62

Dynamics of Income and Consumption

Substituting the consumption equation into the national income equation

Iterative backwards to a ,

y

t

= c

t

+ i + g

y

t

= by

t−1

+ i + g

y

t

= b(by

t−2

+ i + g) + i + g

y

t

= b

2

y

t−2

+ b(i + g) + (i + g)

y

0

y

t

=

t−1

∑

j=0

b

j

(i + g) + b

t

y

0

=

1 − b

t

1 − b

(i + g) + b

t

y

0

45 / 62

Keynesian Multiplier

Take limit as to get

Define the Keynesian multiplier is

→ More consumption delivers higher income, which delivers more consumption,

compounding…

→ implies . Same with

Is this correct (or useful) of a model?

→ Probably not…gives intuition for more believable models

→ Lets us practice difference equations

t → ∞

lim

t→∞

y

t

=

1

1 − b

(i + g)

1/(1 − b)

i → i +Δ y → y +Δ/(1 − b) g

46 / 62

Iterating the Difference Equations

y

t

= by

t−1

+ i + g

function calculate_y(i, b, g, T, y_0)1
 y = zeros(T + 1)2
 y[1] = i + b * y_0 + g3
 for t in 2:(T + 1)4
 y[t] = b * y[t - 1] + i + g5
 end6
 return y7
end8
y_limit(i, b, g) = (i + g) / (1 - b)9

y_limit (generic function with 1 method)

47 / 62

Plotting Dynamics
i_0 = 0.31
g_0 = 0.32
b = 2/3 # = MPC out of income3
y_0 = 04
T = 1005
plot(0: T,calculate_y(i_0, b, g_0, T, y_0);6
 title = "Aggregate Output",7
 size=(600,400), xlabel = L"t",8
 label = L"y_t")9
hline!([y_limit(i_0, b, g_0)];10
 linestyle = :dash,11
 label = L"y_{\infty}")12

48 / 62

MPCs

Suggests that national output, is increasing in MPC, , due to multiplier

To increase the longrun size of economy, decrease the savings rate ()!

y

t

b

1 − b

bs = round.([1 / 3, 2 / 3, 5 / 6, 0.9], digits = 2)1
plt = plot(title = "Changing Consumption as a Fraction of Income",2
 xlabel = L"t", ylabel = L"y_t", legend = :topleft)3
[plot!(plt, 0:T, calculate_y(i_0, b, g_0, T, y_0), label = L"b = %$b")4
 for b in bs]5
plt6

49 / 62

MPCs

50 / 62

Can Governments (Magically) Expand Output?

Remember the limitation is that demand is too low and there is excess supply of labor

and/or capital

What if the government increases by ?

→

Assume we start at the for the

→ Then we simulate dynamics for a permanent change to

g Δ

y → y +Δ/(1 − b)

y

∞

g = 0.3

g

1

= 0.4

51 / 62

Plotting Dynamics for Government Intervention
y_lim = y_limit(i_0, b, g_0)1
Delta_g = 0.12
y_1 = calculate_y(i_0, b,3
 g_0 + Delta_g,4
 T, y_lim) 5
plot(0: T, y_1, title = "Aggregate Output",6
 size=(600,400), xlabel = L"t",7
 label = L"y_t")8

52 / 62

Convergence and Uniqueness

53 / 62

Fixed Point Theory

Fixed points, which will come about across a variety of places in economics

→ Nash Equilibria, which requires fixed points of set-valued functions

→ General Equilibrium

→ Dynamic Programming - e.g., decision problems of macro agents

Frequently in quantitative macro you will rewrite problems as fixed points in order to

demonstrate uniqueness, convergence, and use fixed-point algorithms to solve

54 / 62

Convergence

For , take the limit for some ,

→ Does this limit exist for all ? (i.e, globally convergent)

→ Does it exist “local” to any ? (i.e., locally convergent)

v

n+1

= f(v

n

) v

0

v

1

= f(v

0

)

v

2

= f(v

1

) = f(f(v

0

))

…

lim

n→∞

v

n

= f(f(… f((v

0

))))

?

≡ v

∗

v

0

v

0

55 / 62

Uniqueness

For , are there multiple fixed points?

→ i.e., for some goes to and for some goes to

Uniqueness should be interpreted in terms of economics

→ Maybe non-uniqueness is interesting and leads to multiple equilibria (e.g., theories

of growth where you can get stuck in a bad equilibria)

→ Other times it says we wrote down the wrong model

v

n+1

= f(v

n

)

v

0

v

∗

1

v

0

v

∗

2

56 / 62

Fixed Point Theorems

A variety of fixed point theorems exist to show when solutions exist, and when solutions

are unique

For us, we can look at an especially simple one which provides necessary and sufficient

conditions for convergence and uniqueness

→

→ Useful because the proof is constructive (i.e., suggests algorithm)

→ Gives us intuition on contraction mappings

Lets stay in 1-dimensions , but can be generalized

Banach’s fixed-point theorem

f : R → R

57 / 62

https://en.wikipedia.org/wiki/Banach_fixed-point_theorem

Contraction Mappings

A contraction mapping is a function such that for some and all

→ i.e., if I apply to two points, the distance between the two points shrinks by a

factor of

f 0 < β < 1 x, y ∈ X

|f(x) − f(y)| ≤ β|x − y|

f

β

58 / 62

Banach’s Fixed Point Theorem

If is a contraction mapping, then has a unique fixed point

Moreover, for any , the sequence defined by converges to

More generally: true on any on a complete metric space, but we won’t need to generalize

f f x

∗

x

0

x

0

,x

1

,… x

n+1

= f(x

n

)

x

∗

59 / 62

Sketch of Proof

The proof is constructive, and gives us a way to find the fixed point

Start with and define

Then, for

Since , the right hand side converges to zero as , independent of

Hence the goes to zero, so as

→ More subtle for fancier spaces , but the same idea

x

0

∈ R x

n+1

= f(x

n

)

n ≥ 1

|x

n+1

− x

n

| = |f(x

n

) − f(x

n−1

)| ≤ β|x

n

− x

n−1

| = β|f(x

n−1

) − f(x

n−2

)|

≤ β

2

|x

n−1

− x

n−2

| ≤ ⋯ ≤ β

n

|x

1

− x

0

|

0 < β < 1 n → ∞ x

0

|x

n+1

− x

n

| x

n

= x

n+1

→ x

∗

n → ∞

X

60 / 62

Proving Contraction Mappings

I won’t ask you to do proofs in this class, but useful to see how you might do it

Given this, a crucial tool is to be able to prove that a particular is a contraction mapping

Various ways to do this, and we will see connections to the gradient,

One useful theorem are called

Sometimes it is easy to just apply the definition of contraction mappings directly

f

∇f(⋅)

Blackwell’s Sufficiency Conditions

61 / 62

https://users.econ.umn.edu/~tkehoe/classes/BlackwellsConditions.pdf

Example for Linear Functions

Let for

Substitute into the the definition of contraction mapping directly

→ So is a contraction mapping iff

→ Consequently, has a unique fixed point,

The multidimensional generalization of this checks the maximum absolute eigenvalue

f(x) = a + bx a, b ∈ R

|f(x) − f(y)| = |a + bx − (a + by)| = |b||x − y| ≤ β|x − y|

f β ≡ |b| < 1

f x

∗

= a + bx

∗

62 / 62

