
Stochastic Processes, Markov Chains, and Expectations

Graduate Quantitative Economics and Datascience

Jesse Perla

University of British Columbia

jesse.perla@ubc.ca

1 / 41

mailto:jesse.perla@ubc.ca

Table of contents

Overview

Stochastic and Markov Processes

Markov Chains

2 / 41

Overview

3 / 41

Summary

Here we build on the previous lecture on probability and distributions to introduce

stochastic processes, Markov processes, and expectations/forecasts

We will introduce,

1. Stochastic Processes a sequence of events where the probability of the next event

depends the past events

2. Markov Processes a stochastic process where the probability of the next event depends

only on the current event

4 / 41

Extra Materials

Intermediate QuantEcon Markov Chains

QuantEcon AR1 Processes

QuantEcon Markov Chains

QuantEcon Simple Markov Chain Example

5 / 41

https://python.quantecon.org/finite_markov.html
https://python.quantecon.org/ar1_processes.html
https://intro.quantecon.org/markov_chains_I.html
https://datascience.quantecon.org/scientific/randomness.html#loan-states

Packages
import matplotlib.pyplot as plt1
import pandas as pd2
import numpy as np3
import scipy.stats4
import seaborn as sns5
from scipy.stats import rv_discrete6
from numpy.linalg import matrix_power7

6 / 41

Stochastic and Markov Processes

7 / 41

Discrete-time Stochastic Process

A stochastic process is a sequence of random variables 1

Events in are subtle to define because they contain nested information

→ e.g. the realized random variable depends on , , and changes the

future random variables , , etc.

→ Similarly, the probability of is effected by the realized and

Intuitively we can work with each and look at conditional distributions by

considering independence, etc.

{𝑋𝑡}
∞

𝑡=0

Ω

𝑋𝑡 𝑋𝑡−1 𝑋𝑡−2

𝑋𝑡+1 𝑋𝑡+2

𝑋𝑡+1 𝑋𝑡 𝑋𝑡−1

{𝑋𝑡}
∞

𝑡=0

1. See formal definition here

8 / 41

https://en.wikipedia.org/wiki/Stochastic_process#Definitions

Information Sets and Forecasts

Expectations and conditional expectations give us notation for making forecasts while

carefully defining information available

→ More general, and not specific to stochastic processes or forecasts

→ Might to “nowcast” or “smooth” to update your previous estimates

To formalize

1. Define information set as the known random variables

2. Provide a random variable that is forecast using the information set

3. Typically, provide a function of the random variable of interest and calculate the

conditional expectation given the information set

9 / 41

Forecasts and Conditional Probability Distributions

Take a stochastic process

Define the information set at as

The conditional probability of given the information set is

→ e.g. the probability of being unemployed, unemployed, or retired next period given

the full workforce history

→ Useful in macroeconomics when you want to formalize expectations of the future,

as well as econometrics when you want to update estimates given different amounts

of observation

{𝑋𝑡}
∞

𝑡=0

𝑡 I𝑡 ≡ {𝑋0,𝑋1,… ,𝑋𝑡}

𝑋𝑡+1 I𝑡

ℙ(𝑋𝑡+1 |𝑋𝑡,𝑋𝑡−1,…𝑋0) ≡ ℙ(𝑋𝑡+1 |I𝑡)

10 / 41

Forecasts and Conditional Expectations

You may instead be interested in a function, , of the random variable (e.g., financial

payoffs, utility, losses in econometrics)

Use the conditional probability of the forecasts for conditional expectations

→ e.g. the expected utility of being unemployed next period given the history of

unemployment; or the expected dividends in a portfolio next period given the history

of dividends

Standard properties of expectations hold conditioning on information sets,

→

→ , i.e., not stochastic if the information set

𝑓(⋅)

𝔼[𝑓(𝑋𝑡+1) |𝑋𝑡,𝑋𝑡−1,…𝑋0] ≡ 𝔼[𝑓(𝑋𝑡+1) |I𝑡]

𝔼[𝐴𝑋𝑡+1 +𝐵𝑌𝑡+1 |I𝑡] = 𝐴𝔼[𝑋𝑡+1 |I𝑡] +𝐵𝔼[𝑌𝑡+1 |I𝑡]

𝔼[𝑋𝑡 |I𝑡] = 𝑋𝑡 𝑋𝑡

11 / 41

Easy Notation for Information Sets

Information sets in stochastic processes are often just a sequence for the entire history.

Hence the time, , is often sufficient

Given for shorthand we can denote

𝑡

I𝑡 ≡ {𝑋0,𝑋1,… ,𝑋𝑡}

𝔼[𝑓(𝑋𝑡+1) |𝑋𝑡,𝑋𝑡−1,…𝑋0] ≡ 𝔼[𝑓(𝑋𝑡+1) |I𝑡]

≡ 𝔼𝑡[𝑓(𝑋𝑡+1)]

12 / 41

Law of Iterated Expectations for Stochastic Processes

Recall that since is known at

The Law of Iterated Expectations can be written as

i.e. if I am forecasting my forecast, I can only use information available today

I𝑡 ⊂ I𝑡+1 𝑋𝑡+1 𝑡+ 1

𝔼 [𝔼[𝑋𝑡+2 |𝑋𝑡+1,𝑋𝑡,𝑋𝑡−1,…] |𝑋𝑡,𝑋𝑡−1,…] = 𝔼[𝑋𝑡+2 |𝑋𝑡,𝑋𝑡−1,…]

𝔼 [𝔼[𝑋𝑡+2 |I𝑡+1] |I𝑡] = 𝔼[𝑋𝑡+2 |I𝑡]

𝔼𝑡[𝔼𝑡+1[𝑋𝑡+2]] = 𝔼𝑡[𝑋𝑡+2]

13 / 41

Markov Processes

(1st-Order) Markov Process: a stochastic process where the conditional probability of

the future is independent of the past given the present

→ Or with information sets:

→ i.e., the present sufficiently summarizes the past for predicting the future

Conditional expectations are are then

ℙ(𝑋𝑡+1 |𝑋𝑡,𝑋𝑡−1,…) = ℙ(𝑋𝑡+1 |𝑋𝑡)

ℙ(𝑋𝑡+1 |I𝑡) = ℙ(𝑋𝑡+1 |𝑋𝑡)

𝔼[𝑓(𝑋𝑡+1) |𝑋𝑡,𝑋𝑡−1,…𝑋0] = 𝔼[𝑓(𝑋𝑡+1) |𝑋𝑡]

14 / 41

Martingales

A stochastic process is a martingale if

Not all martingales are Markov processes, but most of the ones you will encounter are. If

Markov,

{𝑋𝑡}
∞

𝑡=0

𝔼[𝑋𝑡+1 |𝑋𝑡,𝑋𝑡−1,… ,𝑋0] = 𝑋𝑡

𝔼[𝑋𝑡+1 |𝑋𝑡] = 𝑋𝑡, or 𝔼𝑡[𝑋𝑡+1] = 𝑋𝑡

See for a more formal definition with the complete set of requirementshere

15 / 41

https://en.wikipedia.org/wiki/Martingale_(probability_theory)

Random Walks

Let

A simple two-state random walk can be written as the following transition

Markov since summarizes the past. Martingale?

𝑋𝑡 ∈ {−∞,… ,−1, 0, 1,…∞}

ℙ(𝑋𝑡+1 = 𝑋𝑡 + 1 |𝑋𝑡) = ℙ(𝑋𝑡+1 = 𝑋𝑡 − 1 |𝑋𝑡) =
1

2

𝑋𝑡

𝔼(𝑋𝑡+1 |𝑋𝑡) = ℙ(𝑋𝑡+1 = 𝑋𝑡 + 1 |𝑋𝑡) × (𝑋𝑡 + 1)

+ ℙ(𝑋𝑡+1 = 𝑋𝑡 − 1 |𝑋𝑡) × (𝑋𝑡 − 1)

=
1

2
(𝑋𝑡 + 1) +

1

2
(𝑋𝑡 − 1) = 𝑋𝑡

16 / 41

Implementation in Python

Generic code to simulate a random walk with IID steps

def simulate_walk(rv, X_0, T):1
 X = np.zeros((X_0.shape[0], T+1))2
 X[:, 0] = X_03
 for t in range(1, T+1):4
 X[:, t] = X[:, t-1] \5
 +rv.rvs(size=X_0.shape[0])6
 return X7
steps = np.array([-1, 1])8
probs = np.array([0.5, 0.5])9
rv = rv_discrete(values=(steps, probs))10
X_0 = np.array([0.0, 0.0, 0.0])11
X = simulate_walk(rv, X_0, 10)12
plt.figure()13
plt.plot(X.T)14

17 / 41

Visualizing the Distribution of Many Trajectories

 for finite as

But is there a limiting distribution of as ?

𝔼0[𝑋𝑡]→ 0 𝑡 𝑡→∞

𝑋𝑡 𝑋𝑡 →∞

num_trajectories, T = 100, 201
X = simulate_walk(rv, np.zeros(num_trajectories), T)2
percentiles = np.percentile(X, [50, 5, 95], axis=0)3
fig, ax = plt.subplots()4
plt.plot(np.arange(T+1), percentiles[0,:], alpha=0.5, label='Median')5
plt.fill_between(np.arange(T+1), percentiles[1,:], percentiles[2,:],6
 alpha=0.5, label='5th-95th Percentile')7
plt.xlabel('t')8
ax.set_xticks(np.arange(T+1))9
plt.legend()10
plt.grid(True)11

18 / 41

Visualizing the Distribution of Many Trajectories

19 / 41

AR(1) Processes

An auto-regressive process of order 1, AR(1), is the Markov process

→ is the persistence of the process, is the volatility

→ is a random shock, we will assume

Can show and hence

𝑋𝑡+1 = 𝜌𝑋𝑡 + 𝜎𝜖𝑡+1

𝜌 𝜎 ≥ 0

𝜖𝑡+1 N(0, 1)

𝑋𝑡+1 |𝑋𝑡 ∼N(𝜌𝑋𝑡,𝜎2)

𝔼𝑡[𝑋𝑡+1] = 𝜌𝑋𝑡, 𝕍𝑡[𝑋𝑡+1] = 𝜎
2

For much more, see QuantEcon Lectures on AR(1)

20 / 41

https://python.quantecon.org/ar1_processes.html

Stationarity and Unit Roots

Unit roots are a special case of AR(1) processes where

They are important in econometrics because they tell us if processes have permanent or

transitory changes

→ The econometrics of finding whether are subtle and important

Note that if then this is a martingale since

These are an important example of a non-stationary process.

Intuitively: stationary if distribution has well-defined limit as

→ Key requirements: and

𝜌 = 1

𝜌 = 1

𝜌 = 1 𝔼𝑡[𝑋𝑡+1] = 𝑋𝑡

𝑋𝑡 𝑡→∞

lim𝑡→∞ |𝔼[𝑋𝑡]| <∞ lim𝑡→∞𝕍(𝑋𝑡) <∞

See for a rigorous definitions and different types of stationarity and discussion of auto-covariancehere

21 / 41

https://en.wikipedia.org/wiki/Stationary_process

Simulating Unit Root
X_0 = np.array([0.0, 0.0, 0.0])1
rv_epsilon = scipy.stats.norm(loc=0, scale=1) 2
X = simulate_walk(rv_epsilon, X_0, 10)3
plt.figure()4
plt.plot(X.T)5

22 / 41

Visualizing the Distribution of Many Trajectories

23 / 41

Martingales and Arbitrage in Finance

Random Walks are a key model in finance

→ e.g. stock prices, exchange rates, etc.

Central to no-arbitrage pricing, after adjusting to interest rates/risk/etc.

→ e.g. if you could predict the future price of a stock, you could make money by

buying/selling today

→ Martingales have no systematic drift which leads to a key source of arbitrage

(especially with options/derivatives)

Does this prediction hold up in the data? Generally yes, but depends on how you handle

risk/etc.

→ If it were systematically wrong then hedge funds and traders would be far richer

than they are now

24 / 41

Information and Arbitrage

Given all of the information available, the best forecast of the future is the current price.

Plenty of variables in for individuals, including public prices

Does this mean there is never arbitrage?

→ No, just that it may be short-term because prices feed back into

→ So some individuals make short term money given private information, but that

information quickly becomes reflecting in other people’s information sets (typically

through prices)

→ How, and how quickly markets aggregate information is a key question in financial

economics

𝔼[𝑋𝑡+1 |I𝑡] = 𝑋𝑡

I𝑡

I𝑡

25 / 41

Markov Chains

26 / 41

Discrete-Time Markov Chains

A Markov Chain is a Markov process with a finite number of states

→ be a sequence of Markov random variables

→ In discrete time it can be represented by a transition matrix where

We are counting from to for coding convenience in Python. Names of discrete

states are arbitrary!

→ Count from 1 in R, Julia, Matlab, Fortran, instead

𝑋𝑡 ∈ {0,… ,𝑁 − 1}

𝑃

𝑃𝑖𝑗 ≡ ℙ(𝑋𝑡+1 = 𝑗 |𝑋𝑡 = 𝑖)

0 𝑁 − 1

A instead uses a transition rate matrix where is the rate of transitioning from state to

state . All rows such to rather than . Many properties have analogies, for example there is an eigenvalue of rather than an

eigenvalue of

continuous-time Markov Chain Λ Λ𝑖𝑗 = 𝜆𝑖𝑗 𝑖

𝑗 0 1 0

1

27 / 41

https://en.wikipedia.org/wiki/Continuous-time_Markov_chain#:~:text=A%20continuous%2Dtime%20Markov%20chain,probabilities%20of%20a%20stochastic%20matrix.

Stochastic Matrices

 is a if

→ for all , i.e. rows are conditional distributions

Key Property:

→ One (or more) eigenvalue of with associated left-eigenvector

→ Equivalently the right eigenvector with eigenvalue

→ Where we can normalize to

𝑃 stochastic matrix

∑𝑁−1
𝑗=0 𝑃𝑖𝑗 = 1 𝑖

1 𝜋

𝜋𝑃 = 𝜋

= 1

𝑃 ⊤𝜋⊤ = 𝜋
⊤

∑𝑁−1
𝑛=0 𝜋𝑖 = 1

28 / 41

https://en.wikipedia.org/wiki/Stochastic_matrix

Transitions and Conditional Distributions

The summarizes all transitions. Let be the state at time which in general is a

probability distribution with pmf

Can show that the evolution of this distribution is given by

And hence given some we can forecast the distribution of with

→ i.e., using the matrix power we discussed in previous lectures

𝑃 𝑋𝑡 𝑡

𝜋𝑡

𝜋𝑡+1 = 𝜋𝑡 ⋅ 𝑃

𝑋𝑡 𝑋𝑡+𝑗

𝑋𝑡+𝑗 |𝑋𝑡 ∼ 𝜋𝑡 ⋅ 𝑃 𝑗

29 / 41

Stationary Distribution

Take some initial condition, does this converge?

→ Does it exist? Is it unique?

How does it compare to fixed point below, i.e. does for all ?

→ This is the eigenvector associated with the eigenvalue of of

→ Can prove there is always at least one. If more than one, multiplicity

𝑋𝑡

lim
𝑗→∞

𝑋𝑡+𝑗 |𝑋𝑡 = lim
𝑗→∞

𝜋𝑡 ⋅ 𝑃 𝑗 = 𝜋∞?

𝜋 = 𝜋∞ 𝑋𝑡

𝜋 = 𝜋 ⋅ 𝑃

1 𝑃 ⊤

The conditions for stationary distributions, uniqueness, etc. are covered here

30 / 41

https://intro.quantecon.org/markov_chains_II.html

Conditional Expectations

Given the conditional probabilities, expectations are easy

Now assign as a random variable with values and pmf

Define

From definition of conditional expectations

𝑋𝑡 𝑥1,…𝑥𝑁 𝜋𝑡

𝑥 ≡ [𝑥0 … 𝑥𝑁−1]

𝔼[𝑋𝑡+𝑗 |𝑋𝑡] =
𝑁−1

∑
𝑖=0

𝑥𝑖𝜋𝑡+𝑗,𝑖 = (𝜋𝑡 ⋅ 𝑃 𝑗) ⋅ 𝑥

31 / 41

Example of Markov Chain: Employment Status

Employment(E) in state , Unemployment(U) in state

 and

 and

Transition matrix

0 1

ℙ(𝑈 |𝐸) = 𝑎 ℙ(𝐸 |𝐸) = 1− 𝑎

ℙ(𝐸 |𝑈) = 𝑏 ℙ(𝑈 |𝑈) = 1− 𝑏

𝑃 ≡

𝑋𝑡+1=𝐸⏟ 𝑋𝑡+1=𝑈⏟

𝑋𝑡=𝐸 }

𝑋𝑡=𝑈 }
[1− 𝑎 𝑎

𝑏 1− 𝑏
]

32 / 41

Visualizing the Chain

E

1-a

Ua
b

1-b

33 / 41

Transitions and Probabilities

Let , i.e.

The distribution of is then

→ (first element)

→ Can use to forecast probability of employment periods in future

Can also use our conditional expectations to calculate expected income

→ Define income in E state as and in the U

→

𝜋0 ≡ [1 0]⊤ ℙ(𝑋0 = 𝐸) = 1

𝑋1 𝜋1 = 𝜋0 ⋅ 𝑃

ℙ(𝑋1 = 𝐸 |𝑋0 = 𝐸) = 𝜋11

𝑗

100, 000 20, 000

𝑥 ≡ [100, 000 20, 000]⊤

𝔼[𝑋𝑡+𝑗 |𝑋𝑡 = 𝐸] = ([1 0] ⋅ 𝑃 𝑗) ⋅ 𝑥

34 / 41

Coding Markov Chain in Python

We can make simulation easier if turn rows into conditional distributions

Count states from to make coding easier, i.e. and 0 𝐸 = 0 𝑈 = 1

a, b = 0.05, 0.11
P = np.array([[1-a, a], # P(X | E)2
 [b, 1-b]]) # P(X | U)3
N = P.shape[0]4
P_rv = [rv_discrete(values=(np.arange(0,N),5
 P[i,:])) for i in range(N)]6
X_0 = 0 # i.e. E7
X_1 = P_rv[X_0].rvs() # draw index | X_0 8
print(f"X_0 = {X_0}, X_1 = {X_1}")9
T = 1010
X = np.zeros(T+1, dtype=int)11
X[0] = X_012
for t in range(T):13
 X[t+1] = P_rv[X[t]].rvs() # draw given X_t14
print(f"X_t indices =\n {X}")15

X_0 = 0, X_1 = 0
X_t indices =
 [0 0 0 0 0 0 0 0 0 0 0]

35 / 41

Simulating Many Trajectories
def simulate_markov_chain(P, X_0, T):1
 N = P.shape[0]2
 num_chains = X_0.shape[0]3
 P_rv = [rv_discrete(values=(np.arange(0,N),4
 P[i,:])) for i in range(N)]5
 X = np.zeros((num_chains, T+1), dtype=int)6
 X[:,0] = X_07
 for t in range(T):8
 for n in range(num_chains):9
 X[n, t+1] = P_rv[X[n, t]].rvs()10
 return X11
X_0 = np.zeros(100, dtype=int) # 100 people start employed12
T = 4013
X = simulate_markov_chain(P, X_0, T)14
Map indices to RV values15
values = np.array([100000.00, 20000.00]) # map state to value16
X_values = values[X] # just indexes by the X17

18
Plot means19

36 / 41

Simulating Many Trajectories

37 / 41

Visualizing the Distribution of Many Trajectories
Count the occurrences of each unique value at each time step1
unique_values = np.unique(X_values)2
counts = np.array([[np.sum(X_values[:, t] == val) for val in unique_values] for t in range(T)])3

4
Create the stacked bar chart5
fig, ax = plt.subplots()6
bottoms = np.zeros(T)7
for i, val in enumerate(unique_values):8
 ax.bar(range(T), counts[:, i], bottom=bottoms, label=str(val))9
 bottoms += counts[:, i]10

11
Labels and title12
ax.set_xlabel('Time')13
ax.set_ylabel('Count')14
ax.set_title('Proportion of Each Value at Each Time')15
ax.legend(title='Value')16
plt.show()17

38 / 41

Visualizing the Distribution of Many Trajectories

39 / 41

Stationary Distribution

Recall different ways to think about steady states

→ Left-eigenvector:

→ Limiting distribution:

Can show that the stationary distribution is

𝜋 = 𝜋𝑃

lim𝑇→∞ 𝜋0𝑃
𝑇

𝜋 = [𝑏

𝑎+𝑏

𝑎

𝑎+𝑏
]

eigvals, eigvecs = np.linalg.eig(P.T)1
pi_bar = eigvecs[:, np.isclose(eigvals, 1)].flatten().r2
pi_bar = pi_bar / pi_bar.sum()3
pi_0 = np.array([1.0, 0.0])4
pi_inf = pi_0 @ matrix_power(P, 100)5
print(f"pi_bar = {pi_bar}")6
print(f"pi_inf = {pi_inf}")7

pi_bar = [0.66666667 0.33333333]
pi_inf = [0.6666667 0.3333333]

40 / 41

Expected Income

Recall that 𝔼[𝑋𝑡+𝑗 |𝑋𝑡 = 𝐸] = ([1 0] ⋅ 𝑃 𝑗) ⋅ 𝑥

def forecast_distributions(P, pi_0, T):1
 N = P.shape[0]2
 pi = np.zeros((T+1, N))3
 pi[0, :] = pi_04
 for t in range(T):5
 pi[t+1, :] = pi[t, :] @ P6
 return pi7
x = np.array([100000.00, 20000.00])8
pi_0 = np.array([1.0, 0.0])9
T = 2010
pi = forecast_distributions(P, pi_0, T)11
E_X_t = np.dot(pi, x)12
E_X_bar = pi_bar @ x13
plt.plot(np.arange(0, T+1), E_X_t)14
plt.axhline(E_X_bar, color='r',15
 linestyle='--')16
plt.show()17

41 / 41

