
Probability and Uncertainty

Graduate Quantitative Economics and Datascience

Jesse Perla

University of British Columbia

jesse.perla@ubc.ca

1 / 71

mailto:jesse.perla@ubc.ca

Table of contents

Overview

Probability

Discrete Distributions

LLN and CLT

Joint Distributions

Conditional Expectations

2 / 71

Overview

3 / 71

Summary

Will provide background on probability, simulation of randomness, independence, and

expectations

4 / 71

Extra Materials

QuantEcon Probability

QuantEcon Meaning of Probability

QuantEcon Distributions and Probabilities

QuantEcon LLN and CLT

5 / 71

https://python.quantecon.org/prob_matrix.html
https://python.quantecon.org/prob_meaning.html
https://intro.quantecon.org/prob_dist.html
https://python.quantecon.org/lln_clt.html

Packages
import matplotlib.pyplot as plt1
import pandas as pd2
import numpy as np3
import scipy.stats4
import seaborn as sns5
from matplotlib.animation import FuncAnimation6
import IPython.display7

6 / 71

Probability

7 / 71

Definitions

To formalize probability always be careful to separate

1. Events i.e., probability space.

2. Probability an events occurs. i.e., probability measure

3. Value or implications of an event. i.e., random variables

8 / 71

Probability Space

Probability space is a :

Set of possible outcomes and is a particular outcome

→ e.g. for unemployed, employed, retired, or dead

Subsets are events

→ e.g. is the event of being employed or unemployed

→ (the \setminus) is event of not being either

The collection of all possible events is where

→ , i.e. we can consider the event of any outcome occurring

→ , i.e. we can consider the event of nothing occurring

(Ω,A)

Ω 𝜔 ∈ Ω

Ω = {𝑈,𝐸,𝑅,𝐷}

𝐴 ⊆ Ω

𝐴 = {𝑈,𝐸}

Ω ∖𝐴 = {𝑅,𝐷}

A 𝐴 ∈ A

Ω ∈ A

∅ ∈ A

9 / 71

Probability Measure

Probability Measure is a function which assigns a numerical value on the likelihood of an

event

For us,

→ e.g. is probability either or

→

Will see denoted as a function, for integrals in advanced uses

→ Overkill for probability spaces with a finite, discrete number of elements

→ Important for probability spaces with a continuous number of elements

→ Essential for stochastic processes (e.g., flipping a coin until heads)

ℙ : A→ [0, 1]

ℙ({𝑈,𝐸}) = 0.7 𝑈 𝐸

ℙ(Ω ∖ {𝑈,𝐸}) = 0.3

𝜇(𝐴)

10 / 71

Random Variables

Random Variable: assigns a numerical value to a particular outcome

, but could be vector or matrix valued

→ e.g. if employed, if unemployed. Useful for doing

counts

Or if employed, if unemployed. Useful

for finding average incomes

Random variables defined on , and inherit the probability measure

→ So can query values like

𝑋(𝜔)

𝑋 : Ω→ ℝ

𝑋(𝜔 = 𝐸) = 1 𝑋(𝜔 = 𝑈) = 0

𝑋(𝜔 = 𝐸) = $40, 000 𝑋(𝜔 = 𝑈) = $15, 000

Ω

ℙ(𝑋 = $40, 000)

11 / 71

Axioms of Probability

Probability measure on probability space must satisfy axioms:

Non-negativity:

Normalization:

Additivity: If , then

These imply other results such as:

ℙ (Ω,A)

ℙ(𝐴) ≥ 0

ℙ(Ω) = 1

𝐴 ∩𝐵 = ∅ ℙ(𝐴 ∪𝐵) = ℙ(𝐴) + ℙ(𝐵)

ℙ(∅) = 0

ℙ(𝐴 ∪𝐵) = ℙ(𝐴) + ℙ(𝐵)− ℙ(𝐴 ∩𝐵)

ℙ(Ω ∖𝐴) = 1− ℙ(𝐴)

12 / 71

Discrete Distributions

13 / 71

Discrete Distributions

A discrete probability spaces have finite (or countable) number of outcomes

When convenient, we can number the outcomes arbitrarily as (or) and

then work with and

Axioms especially simple because we use ,

→ Non-negativity:

→ Normalization:

→ Additivity:

𝑛 = 1,…𝑁 ∞

Ω = {1,…𝑁} 𝜔 ∈ Ω

ℙ(𝜔 = 𝑛) = 𝑝𝑛

𝑝𝑛 ≥ 0
𝑁

∑
𝑛=1

𝑝𝑛 = 1

ℙ(𝐴) = ∑
𝑛∈𝐴

𝑝𝑛

14 / 71

Random Variables

Notation can become a little confusing because we will sometimes use the same index

number for the event and for the random value, but they are separate!

Frequently we will assign the random variable as just that index

→ and then denote

Other times we may want to associate a value with each outcome

→ and then denote

𝑋(𝜔 = 𝑛) = 𝑛 ℙ(𝑋 = 𝑛) = 𝑝𝑛

𝑋(𝜔 = 𝑛) = 𝑥𝑛 ℙ(𝑋 = 𝑥𝑛) = 𝑝𝑛

15 / 71

PDF and CDF

Probability Mass Function (PMF) is the probability of a single outcome for random

variable . Will assume itself has discrete values

Cumulative Distribution Function (CDF) is the probability of all outcomes less than or

equal to a particular outcome.

𝑋 𝑋

𝑝𝑛 ≡ ℙ(𝑋 = 𝑛)

ℙ(𝑋 ≤ 𝑛) =
𝑛

∑
𝑖=1

𝑝𝑖

16 / 71

Expectation

Expectation of a random variable is the sum of the values weighted by the probabilities.

Continuous uses integrals, or measure theory if “weird”

Especially easy to compute for discrete random variables

Generalized to functions of a random variables

Ω

𝔼[𝑋] =
𝑁

∑
𝑛=1

𝑥𝑛ℙ(𝑋 = 𝑥𝑛)

𝔼[𝑓(𝑋)] =
𝑁

∑
𝑛=1

𝑓(𝑥𝑛)ℙ(𝑋 = 𝑥𝑛)

17 / 71

Expectations and Linear Algebra

Vectors can help with the accounting and notation of expectations. Let

 be the list of values for the random variable

 be the list of probabilities

Then the expectation is (broadcasting across as required)

𝑥 ≡ [𝑥1 𝑥2 … 𝑥𝑁]
⊤

𝑋

𝑝 ≡ [𝑝1 𝑝2 … 𝑝𝑁]
⊤

𝑓(⋅) 𝑥

𝔼[𝑋] =
𝑁

∑
𝑛=1

𝑥𝑛ℙ(𝑋 = 𝑥𝑛) = 𝑝 ⋅ 𝑥 = 𝑝⊤𝑥

𝔼[𝑓(𝑋)] =
𝑁

∑
𝑛=1

𝑓(𝑥𝑛)ℙ(𝑋 = 𝑥𝑛) = 𝑝 ⋅ 𝑓(𝑥) = 𝑝⊤𝑓(𝑥)

18 / 71

Example with a Discrete Distribution

 and

Note that the CDF was easy to calculate as cumulative sums. Interpretable?

Ω = {𝑈,𝐸,𝑅}

ℙ(𝑈) = 0.1,ℙ(𝐸) = 0.8,ℙ(𝑅) = 0.1

𝑋(𝑈) = 15000,𝑋(𝐸) = 40000,𝑋(𝑅) = 10000

𝔼[𝑋] 𝔼[
√
𝑋]

p = np.array([0.1, 0.8, 0.1])1
x = np.array([15000, 40000, 10000])2
def f(x):3
 return np.sqrt(x)4
print(f"E(X) = {p @ x}")5
print(f"E(f(X)) = {p @ f(x)}")6
print(f"CDF(X) = {np.cumsum(p)}")7

E(X) = 34500.0
E(f(X)) = 182.2474487139159
CDF(X) = [0.1 0.9 1.]

19 / 71

Using the discrete_rv

scipy.stats has a discrete_rv type with built-in functions

Might need to start with sorted x values

Useful for working with discrete random variables

p = np.array([0.1, 0.1, 0.8])1
x = np.array([10000, 15000, 40000])2
u = scipy.stats.rv_discrete(3
 values=(x, p))4
samples = u.rvs(size=5)5
print(f"E(X) = {u.mean()}")6
print(f"E(f(X)) = {u.expect(f)}")7
print(f"CDF(X) = {u.cdf(x)}")8
print(f"Samples of X = {samples}")9

E(X) = 34500.0
E(f(X)) = 182.2474487139159
CDF(X) = [0.1 0.2 1.]
Samples of X = [40000 40000 40000 10000 15000]

20 / 71

Histogram 𝑁 = 50

N = 501
samples = u.rvs(size=N)2
ax = sns.histplot(samples,3
 stat="proportion")4

5
Alternative6
Density doesn't add up7
plt.hist(samples_1,8
density=True)9
Or must build barchart10

21 / 71

Histogram 𝑁 = 500

N = 5001
samples = u.rvs(size=N)2
ax = sns.histplot(samples,3
 stat="proportion")4

22 / 71

The Binomial Distribution

For , the binomial distribution is defined by the PMF𝑛 = 1…𝑁

ℙ(𝑋 = 𝑛) = (𝑁
𝑛
)𝜃𝑛(1− 𝜃)𝑁−𝑛

𝔼(𝑋) =
𝑁

∑
𝑛=0

𝑛(𝑁
𝑛
)𝜃𝑛(1− 𝜃)𝑁−𝑛 = 𝑁𝜃

N = 101
θ = 0.52
u = scipy.stats.binom(N, θ)3
print(f"Mean: {u.mean():.2f}")4
print(f"Variance: {u.var():.2f}")5
print(f"Draws of u: {u.rvs(5)}")6

Mean: 5.00
Variance: 2.50
Draws of u: [7 5 5 3 4]

23 / 71

The Binomial Probability Mass Function
grid = np.arange(N+1)1
u_pmf = u.pmf(grid)2

3
fig, ax = plt.subplots()4
ax.plot(grid, u_pmf,5
 linestyle='',6
 marker='o',7
 alpha=0.8, ms=4)8
ax.vlines(grid, 0,9
 u_pmf,10
 lw=0.2)11
ax.set_xticks(grid)12
plt.show()13

24 / 71

The Binomial Cumulative Distribution Function

ℙ(𝑋 ≤ 𝑛) =
𝑛

∑
𝑖=0

(𝑁
𝑖
)𝜃𝑖(1− 𝜃)𝑁−𝑖

grid = np.arange(N+1)1
u_cdf = u.cdf(grid)2

3
fig, ax = plt.subplots()4
ax.step(grid, u_cdf)5
ax.vlines(grid, 0, u_cdf,6
 lw=0.2)7
ax.set_xticks(grid)8
plt.show()9

25 / 71

Histogram 𝑁 = 50

N = 501
u = scipy.stats.binom(10, 0.5)2
plt.hist(u.rvs(size=N),3
 density=True,4
 align='left')5
plt.show()6

26 / 71

Histogram 𝑁 = 5000

N = 50001
u = scipy.stats.binom(10, 0.5)2
plt.hist(u.rvs(size=N),3
 density=True,4
 align='left')5
plt.show()6

27 / 71

LLN and CLT

28 / 71

Law of Large Numbers (LLN)

A classic LLN is the

Take a sequence of independent, identically distributed random variables with

 and . Then,

→ If is a random variable then is also an RV

→ The law says for any ,

→ Sometimes denoted for “convergence in probability”

Powerful and frequently used, but remember assumptions!

Strong Law of Large Numbers

𝑋1,𝑋2,…

𝔼[𝑋𝑖] = 𝜇 𝕍[𝑋𝑖] = 𝜎
2 <∞

𝑋𝑛 𝑋̄𝑁 ≡
1
𝑁
∑𝑁

𝑖=1𝑋𝑛

𝜖 > 0 lim𝑁→∞ ℙ(|𝑋̄𝑁 − 𝜇| > 𝜖)→ 0

𝑋̄𝑁
𝑝
→ 𝜇

29 / 71

https://en.wikipedia.org/wiki/Law_of_large_numbers#Strong_law

Visualizing the LLN with Gaussian RVs 𝑁 = 20

N = 20 # Number of samples1
mu, sigma = 0, 12
np.random.seed(42)3
samples = np.random.normal(mu, sigma, N)4
sample_means = np.cumsum(samples) / np.arange(1, N + 1)5
plt.scatter(range(1, N + 1), samples, label='Individual Samples', alpha=0.6, s=10)6
plt.plot(range(1, N + 1), sample_means, label='Sample Mean', linewidth=2)7
plt.axhline(mu, color='r', linestyle='--', label='True Mean')8
for n in range(N): # add lines to samples from sample mean9
 plt.plot([n + 1, n + 1], [sample_means[n], samples[n]], color='gray', linewidth=0.5, alpha=0.6)10
plt.xlabel('Sample Number N')11
plt.legend()12
plt.show()13

30 / 71

Visualizing the LLN with Gaussian RVs 𝑁 = 20

31 / 71

Visualizing the LLN with Gaussian RVs 𝑁 = 100

N = 100 # Number of samples1
mu, sigma = 0, 12
np.random.seed(42)3
samples = np.random.normal(mu, sigma, N)4
sample_means = np.cumsum(samples) / np.arange(1, N + 1)5
plt.scatter(range(1, N + 1), samples, label='Individual Samples', alpha=0.6, s=10)6
plt.plot(range(1, N + 1), sample_means, label='Sample Mean', linewidth=2)7
plt.axhline(mu, color='r', linestyle='--', label='True Mean')8
for n in range(N): # add lines to samples from sample mean9
 plt.plot([n + 1, n + 1], [sample_means[n], samples[n]], color='gray', linewidth=0.5, alpha=0.6)10
plt.xlabel('Sample Number N')11
plt.legend()12
plt.show()13

32 / 71

Visualizing the LLN with Gaussian RVs 𝑁 = 100

33 / 71

Pareto Distributions

Pareto distributions are a family of distributions with a power-law tail

Parameterized by with the PDF

The mean is for

The variance is for

(𝑥𝑚,𝛼)

𝑝(𝑥) =
𝛼𝑥𝛼𝑚

𝑥𝛼+1

𝔼[𝑋] = 𝛼𝑥𝑚
𝛼−1 𝛼 > 1

𝕍[𝑋] =
𝛼𝑥2𝑚

(𝛼−1)2(𝛼−2)
𝛼 > 2

A distribution with pdf is power-law if for some as . More formally, if 𝑝(𝑥) 𝑝(𝑥) ∝ 𝑥
−𝛼

𝛼 > 0 𝑥→∞ lim𝑥→∞

log 𝑝(𝑥)
log𝑥 = −𝛼

34 / 71

Visualizing the Sample Means for a Pareto Distribution
N = 100 # Number of samples1
alpha = 1.52
np.random.seed(42)3
dist = scipy.stats.pareto(alpha)4
samples = dist.rvs(size=N)5
sample_means = np.cumsum(samples) / np.arange(1, N + 1)6
plt.scatter(range(1, N + 1), samples, label='Individual Samples', alpha=0.6, s=10)7
plt.plot(range(1, N + 1), sample_means, label='Sample Mean', linewidth=2)8
plt.axhline(dist.mean(), color='r', linestyle='--', label='True Mean')9
for n in range(N): # add lines to samples from sample mean10
 plt.plot([n + 1, n + 1], [sample_means[n], samples[n]], color='gray', linewidth=0.5, alpha=0.6)11
plt.xlabel('Sample Number N')12
plt.legend()13
plt.show()14

35 / 71

Visualizing the Sample Means for a Pareto Distribution

36 / 71

Central Limit Theorem (CLT)

The (CLT) is a classic result in statistics

Again, lets assume we have IID observations with and

Define the sample mean

Then the CLT is

→ That notation means , which roughly means that as

 the CDF are getting closer to each other

Central Limit Theorem

𝔼[𝑋𝑖] = 𝜇 𝕍[𝑋𝑖] = 𝜎
2 <∞

𝑋̄𝑁 ≡ 1
𝑁
∑𝑁

𝑖=1𝑋𝑖

√
𝑛 (𝑋̄𝑛 − 𝜇) 𝑑→N(0,𝜎2)

converges in distribution 𝑛

→∞

37 / 71

https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Convergence_of_random_variables#Convergence_in_distribution

Visualizing the CLT with Exponential Distributions

See for the source.

Exponential distributions for

QuantEcon CLT lecture

𝑝(𝑥) = 𝜆𝑒
−𝜆𝑥

𝜆 = 0.5

distribution = scipy.stats.expon(1/0.5)1
mu, s = distribution.mean(), distribution.std()2
x = np.linspace(0, 15.0, 1000)3
y = distribution.pdf(x)4
plt.plot(x, y)5
plt.xlabel('Value')6
plt.ylabel('Density')7
plt.show()8

38 / 71

https://python.quantecon.org/lln_clt.html#clt

CLT of Exponential to 𝑁 = 100

fig, ax = plt.subplots()1
def update(n):2
 ax.clear()3
 data = distribution.rvs((5000, n))4
 sample_means = data.mean(axis=1)5
 Y = np.sqrt(n) * (sample_means - mu)6
 ax.set_xlim(-3 * s, 3 * s)7
 ax.set_ylim(0, 0.5)8
 ax.hist(Y, bins=60, alpha=0.5,9
 density=True)10
 ax.set_title(f"CLT for $N = {n}$")11
ani = FuncAnimation(fig,update,12
 frames=range(1, 100, 5),13
 interval=500,blit=False, repeat=False)14
plt.close()15
IPython.display.HTML(ani.to_html5_video())16

0:00 / 0:10

39 / 71

CLT of Exponential to 𝑁 = 2000

fig, ax = plt.subplots()1
def update(n):2
 ax.clear()3
 data = distribution.rvs((10000, n))4
 sample_means = data.mean(axis=1)5
 Y = np.sqrt(n) * (sample_means - mu)6
 ax.set_xlim(-3 * s, 3 * s)7
 ax.set_ylim(0, 0.5)8
 ax.hist(Y, bins=60, alpha=0.5, density=True)9
 ax.set_title(f"CLT for $N = {n}$")10
 x = np.linspace(-3 * s, 3 * s, 100)11
 ax.plot(x, scipy.stats.norm.pdf(x, 0, s), 'r-', lw=2, alpha=0.7, label='N(0, 1)') 12
ani = FuncAnimation(fig,update,frames=range(1, 2000, 250), interval=500,blit=False, repeat=False)13
plt.close()14
IPython.display.HTML(ani.to_html5_video())15

40 / 71

CLT of Exponential to 𝑁 = 2000

0:00 / 0:04

41 / 71

Joint Distributions

42 / 71

Joint Probability Distributions

Key concepts are marginal distributions, conditional distributions, independence, and

conditional expectations

Will demonstrate with bivariate discretely valued distributions

→ Similar for multivariate distributions, except we replace sums with sums over

multiple indices

→ Similar for continuous or mixed discrete-continuous distributions, except we replace

sums with integrals

Interpretation of the joint distribution of and is the probability of each pair of

outcomes occurs

→ e.g., prob you get a cash transfer and are unemployed, don’t get a cash transfer and

are unemployed, get a cash transfer and are employed, etc.

𝑋 𝑌

43 / 71

Bivariate Probability Distributions

Let be two discrete random variables that take values:

Then their joint distribution is described by a matrix

Which fulfills the key axioms of probability

𝑋,𝑌

𝑋 ∈ {1,… , 𝐼}, 𝑌 ∈ {1,… ,𝐽}

𝑃 ≡ [ℙ(𝑋 = 𝑖,𝑌 = 𝑗)]𝑖=1…𝐼,𝑗=1,…𝐽 ∈ ℝ
𝐼×𝐽

𝑝𝑖𝑗 ≡ ℙ(𝑋 = 𝑖,𝑌 = 𝑗) ≥ 0
𝐼

∑
𝑖=1

𝐽

∑
𝑗=1

𝑝𝑖𝑗 = 1

44 / 71

Marginal Probability Distributions

The joint distribution induces marginal distributions

The marginal distributions are also probability distributions

→ i.e., and

→ e.g. the probability you were given a conditional cash transfer regardless of your

employment status

ℙ(𝑋 = 𝑖) =
𝐽

∑
𝑗=1

𝑝𝑖𝑗 = 𝜇𝑖, 𝑖 = 1,… , 𝐼

ℙ(𝑌 = 𝑗) =
𝐼

∑
𝑖=1

𝑝𝑖𝑗 = 𝜈𝑗, 𝑗 = 1,… ,𝐽

𝜇𝑖 ≥ 0 ∑𝐼
𝑖=1 𝜇𝑖 = 1

45 / 71

Conditional Probability

Conditional probabilities are defined according to

 is the event that both and occur, i.e., the intersection

→ e.g. you were given a conditional cash transfer AND you were unemployed

The conditional probability is the probability of given has occurred

→ e.g. the probability you were given a conditional cash transfer given you were

unemployed

ℙ(𝐴 |𝐵) =
ℙ(𝐴 ∩𝐵)

ℙ(𝐵)

𝐴 ∩𝐵 𝐴 𝐵

𝐴 𝐵

46 / 71

Conditional Distributions

For a pair of discrete random variables, we have the conditional distribution

Fix , then the conditional distribution of is a probability distribution.

Trivially positive since . Verify it sums to

ℙ(𝑋 = 𝑖|𝑌 = 𝑗) =
𝑝𝑖𝑗

∑𝐼
𝑖=1 𝑝𝑖𝑗

=
ℙ(𝑋 = 𝑖,𝑌 = 𝑗)

ℙ(𝑌 = 𝑗)

𝑌 = 𝑗 𝑋 |𝑌 = 𝑗

𝑝𝑖𝑗 ≥ 0 1

𝐼

∑
𝑖=1

ℙ(𝑋 = 𝑖 |𝑌 = 𝑗) =
∑𝐼

𝑖=1 𝑝𝑖𝑗

∑𝐼
𝑖=1 𝑝𝑖𝑗

= 1

47 / 71

Law of Total Probability

Law of Total Probability is a useful identity for conditional probabilities

→ Let be a partition of

→ i.e., and for

Then for any event ,

→ e.g. the probability of being unemployed is the probability of being unemployed and

getting a cash transfer plus the probability of being unemployed and not getting a

cash transfer

𝐴1,… ,𝐴𝑁 Ω

Ω = ∪𝑁𝑖=1𝐴𝑖 𝐴𝑖 ∩𝐴𝑗 = ∅ 𝑖 ≠ 𝑗

𝐵

ℙ(𝐵) =
𝑁

∑
𝑖=1

ℙ(𝐵 ∩𝐴𝑖) =
𝑁

∑
𝑖=1

ℙ(𝐵 |𝐴𝑖)ℙ(𝐴𝑖)

48 / 71

Statistical Independence

Random variables and are statistically independent if

i.e., the joint distribution is the product of the marginal distributions

e.g., the probability you were given a conditional cash transfer AND you were unemployed

is probability you were given a conditional cash transfer the probability you were

unemployed

𝑋 ∼ 𝑝 𝑌 ∼ 𝑔

ℙ(𝑋 = 𝑖,𝑌 = 𝑗) = 𝑝𝑖𝑔𝑗, for all 𝑖, 𝑗

×

49 / 71

Conditional Distributions and Independence

When and are independent, use the definitions of conditional and marginal

distributions

- i.e, independent and implies the conditional distributions are the marginals

 and

𝑋 𝑌

ℙ(𝑋 = 𝑖 |𝑌 = 𝑗) =
ℙ(𝑋 = 𝑖,𝑌 = 𝑗)

ℙ(𝑌 = 𝑗)
=

𝑝𝑖𝑔𝑗

∑𝐼
𝑖=1 𝑝𝑖𝑔𝑗

=
𝑝𝑖𝑔𝑗

𝑔𝑗
= 𝑝𝑖

ℙ(𝑌 = 𝑗 |𝑋 = 𝑖) =
ℙ(𝑋 = 𝑖,𝑌 = 𝑗)

ℙ(𝑋 = 𝑖)
=

𝑝𝑖𝑔𝑗

∑𝐽
𝑗=1 𝑝𝑖𝑔𝑗

=
𝑝𝑖𝑔𝑗

𝑝𝑖
= 𝑔𝑗

𝑋 𝑌

ℙ(𝑋 = 𝑖 |𝑌 = 𝑗) = ℙ(𝑋 = 𝑖) ℙ(𝑌 = 𝑗 |𝑋 = 𝑖) = ℙ(𝑌 = 𝑗)

50 / 71

Notation for (Conditional) Independence

Let be random variables

Common notation for independence is

Common notation for conditional independence

Central to causal inference and treatment effects

𝑋,𝑌 ,𝑍

𝑋⟂𝑌

ℙ(𝑋 = 𝑥,𝑌 = 𝑦) = ℙ(𝑋 = 𝑥)ℙ(𝑌 = 𝑦)

𝑋⟂⟂𝑌 |𝑍

ℙ(𝑋 = 𝑥,𝑌 = 𝑦|𝑍 = 𝑧) = ℙ(𝑋 = 𝑥|𝑍 = 𝑧)ℙ(𝑌 = 𝑦|𝑍 = 𝑧)

51 / 71

Classic Example of Conditional Independence

Let be the number of cigarettes smoked per day

Let be the number of years of life remaining

Let be the number of years of smoking

Then

→ i.e., the number of cigarettes smoked per day is independent of the number of years

of life remaining given the number of years of smoking

→ i.e., the number of cigarettes smoked per day is independent of the number of years

of life remaining given the number of years of smoking

𝑋

𝑌

𝑍

𝑋⟂⟂𝑌 |𝑍

52 / 71

Simpson’s “Paradox”

 is a warning on composition effects

Recall the law of total probability

Lets say you see

→ Might suggests positive relationship on and ?

If for many then

→ and may have a negative relationship after conditioning on ?

Simpson’s paradox

ℙ(𝑋 = 𝑥|𝑌 = 𝑦) =∑𝑧 ℙ(𝑋 = 𝑥|𝑌 = 𝑦,𝑍

= 𝑧)ℙ(𝑍 = 𝑧|𝑌 = 𝑦)

ℙ(𝑋|𝑌 = 𝑦1) > ℙ(𝑋|𝑌 = 𝑦2)

𝑋 𝑌

ℙ(𝑋|𝑌 = 𝑦1,𝑍 = 𝑧) < ℙ(𝑋|𝑌 = 𝑦2,𝑍 = 𝑧) 𝑧

𝑋 𝑌 𝑍

53 / 71

https://en.wikipedia.org/wiki/Simpson%27s_paradox

UC Berkeley Gender Bias: Overall Data

Total Applicants Admitted Men Applicants Men Admitted Women Applicants Women Admitted

12,763 41% 8,442 44% 4,321 35%

Classic example is the is a classic example of

But if you look at individual departments the results are different

Seemed to show that 4 out of 85 departments had significant bias against women and 6

significant bias against men

But the biggest difference was in which departments women applied to

The following shows the top 6 departments to get a sense of heterogeneity

Berkeley Gender Bias Simpson’s paradox

54 / 71

https://en.wikipedia.org/wiki/Simpson%27s_paradox#UC_Berkeley_gender_bias
https://en.wikipedia.org/wiki/Simpson%27s_paradox

Conditional Probabilities for 6 Largest Departments

Dept All Applicants Admitted Men Applicants Men Admitted Women Applicants Women Admitted

A 933 64% 825 62% 108 82%

B 585 63% 560 63% 25 68%

C 918 35% 325 37% 593 34%

D 792 34% 417 33% 375 35%

E 584 25% 191 28% 393 24%

F 714 6% 373 6% 341 7%

greater number of applicants than other gender and less number of applicants than other gender bold the two “most applied for”

departments for each gender

55 / 71

Explanation Using Conditional Probabilities

Overall, and

But this is different when conditioning on departments!

,

,

“Paradox” because women tend to apply to more competitive departments

ℙ(Admitted | Men) = 0.44 ℙ(Admitted | Women) = 0.35

ℙ(Admitted | Men, A) = 0.62 ℙ(Admitted | Women, A) = 0.82

ℙ(Admitted | Men, B) = 0.63 ℙ(Admitted | Women, B) = 0.68

56 / 71

Does this Old Data Imply There was No Bias?

All data requires assumptions to interpret! Most assumptions are implicit, so you need to

reflect on what assumptions you may have made

This simply corrected for the mechanical composition effect

Interpreting bias better requires reflecting on your “model” and assumptions

→ Is average quality is identical conditional on department and gender? Especially in

1973 when there was enormous selection bias?

→ What if bias leads women to apply to the more competitive departments?

57 / 71

Bayes’ Law

Conditional probability is used for Bayes’ Law:

Sometimes:

 is called the “likelihood”

 is called the “prior”

 is called the “posterior”

 is called the “marginal likelihood”, which normalizes the expression

ℙ(𝐴 |𝐵) =
ℙ(𝐵 |𝐴)ℙ(𝐴)

ℙ(𝐵)

ℙ(𝐵 |𝐴)

ℙ(𝐴)

ℙ(𝐴 |𝐵)

ℙ(𝐵)

58 / 71

Example with Bayes’ Law

 is the event of being unemployed, is the event of getting a cash transfer

 is the probability of being given a cash transfer given you were unemployed

 is the probability of being unemployed within the whole distribution

 is the probability of being unemployed given you were given a cash transfer

 is the probability of being given a cash transfer within the whole distribution

Bayes’ law: probability of being unemployed given you were given a cash transfer

probability of being given cash transfer given you were unemployed probability of

being unemployed

𝐴 𝐵

ℙ(𝐵 |𝐴)

ℙ(𝐴)

ℙ(𝐴 |𝐵)

ℙ(𝐵)

∝

×

59 / 71

Bayes Law with Bivariate Random Variables

For discrete bi-variate random variables, we can write Bayes’ Law as

If and are independent

→

→ Bayes’ Law simplifies to just the marginal distribution

ℙ(𝑋 = 𝑖 |𝑌 = 𝑗) =
ℙ(𝑋 = 𝑖,𝑌 = 𝑗)

ℙ(𝑌 = 𝑗)
=

ℙ(𝑌 = 𝑗 |𝑋 = 𝑖)ℙ(𝑋 = 𝑖)

ℙ(𝑌 = 𝑗)

𝑋 𝑌

ℙ(𝑌 = 𝑗 |𝑋 = 𝑖) = ℙ(𝑌 = 𝑗)

ℙ(𝑋 = 𝑖 |𝑌 = 𝑗) = ℙ(𝑋 = 𝑖)

60 / 71

Calculating Marginal Distributions

Lets create a bivariate with and

Use matrix to calculate and

ℙ(𝑋 = 𝑖,𝑌 = 𝑗) 𝐼 = 5 𝐽 = 4

𝑃 ℙ(𝑋 = 𝑖) ℙ(𝑌 = 𝑗)

np.set_printoptions(precision=3)1
P = np.array([[0.05, 0.07, 0.02, 0.01],2
 [0.04, 0.1, 0.06, 0.03],3
 [0.08, 0.09, 0.07, 0.04],4
 [0.02, 0.03, 0.02, 0.01],5
 [0.09, 0.08, 0.04, 0.05]])6

7
print(f"sum = 1? {np.isclose(P.sum(), 1.0)}")8
print(f"p_ij >= 0? {np.all(P >= 0)}")9
margin_x = P.sum(axis=1) # sum over j10
margin_y = P.sum(axis=0) # sum over i11
print(f"P(X=i) = {margin_x}")12
print(f"Sum_i P(X=i) = {margin_x.sum()}")13
print(f"P(Y=j) = {margin_y}")14
print(f"Sum_j P(Y=j) = {margin_y.sum()}")15

sum = 1? True
p_ij >= 0? True
P(X=i) = [0.15 0.23 0.28 0.08 0.26]
Sum_i P(X=i) = 0.9999999999999999
P(Y=j) = [0.28 0.37 0.21 0.14]
Sum_j P(Y=j) = 1.0

61 / 71

Calculating Conditional Distributions

Now use to calculate , etc.𝑃 ℙ(𝑋 = 𝑖 |𝑌 = 𝑗)

print(f"P(X=i|Y=1)=\n{P[:,0] / margin_y[0]}\,")1
cond_x_y = np.row_stack(2
 [P[:,i] / margin_y[i] for i in range(4)])3
or (P / margin_y[np.newaxis, :]).T4
cond_y_x = np.row_stack(5
 [P[j,:] / margin_x[j] for j in range(5)])6
or (P.T / margin_x[np.newaxis, :]).T7
print(f"P(X=i|Y=2)=\n{cond_x_y[:, 1]}")8
print(f"sum_i P(X=i|Y=2)=\9
{cond_x_y[1,:].sum():.2f}")10
print(f"P(Y=j|X=1)=\n{cond_y_x[:, 0]}")11

P(X=i|Y=1)=
[0.179 0.143 0.286 0.071 0.321]\,
P(X=i|Y=2)=
[0.143 0.27 0.286 0.214]
sum_i P(X=i|Y=2)=1.00
P(Y=j|X=1)=
[0.333 0.174 0.286 0.25 0.346]

62 / 71

Check Bayes’ Law

ℙ(𝑋 = 1 |𝑌 = 2) =
ℙ(𝑌 = 2 |𝑋 = 1)ℙ(𝑋 = 1)

ℙ(𝑌 = 2)

x = 11
y = 22
p_y_x = cond_y_x[x-1, y-1]3
p_x = margin_x[x-1]4
p_y = margin_y[y-1]5
p_x_y = cond_x_y[y-1, x-1]6
p_bayes = p_y_x * p_x / p_y7
print(f"P(Y={y}|X={x}) = {p_y_x:.2g}")8
print(f"P(X={x}) = {p_x:.2g}")9
print(f"P(Y={y}) = {p_y:.2g}")10
print(f"P(X={x}|Y={y})={p_x_y:.2g}")11
print(f"P(Y={y}|X={x})P(X={x})\12
/P(Y={y})={p_bayes:.2g}")13

P(Y=2|X=1) = 0.47
P(X=1) = 0.15
P(Y=2) = 0.37
P(X=1|Y=2)=0.19
P(Y=2|X=1)P(X=1)/P(Y=2)=0.19

63 / 71

Conditional Expectations

64 / 71

Conditional Expectation

Recall: is itself a probability distribution if we vary

A conditional expectation is an expectation using the conditional probability distribution.

For a discrete random variable and ,

If and are independent then

→ Recall that

→ Which implies

→ That the expected value of is the same regardless of the value of

ℙ(𝑋 = 𝑖 |𝑌 = 𝑗) 𝑗

𝑋 𝑌

𝔼[𝑋 |𝑌 = 𝑗] =
𝐼

∑
𝑖=1

𝑖ℙ(𝑋 = 𝑖 |𝑌 = 𝑗)

𝑋 𝑌

ℙ(𝑋 = 𝑖 |𝑌 = 𝑗) = ℙ(𝑋 = 𝑖)

𝔼[𝑋 |𝑌 = 𝑗] = 𝔼[𝑋]

𝑋 𝑌

65 / 71

Key Properties of Expectations

Let and be scalar/vector/matrix constants, and and are scalar/vector/matrix

random variables

Expectations are linear operators, which gives us some useful properties

→

 in general

→ But if and are independent, then

 in geneal

→ Unless is linear or if is degenerate (i.e., a constant)

Jensen’s Inequality: If is a convex function, then

𝐴 𝐵 𝑋 𝑌

𝔼[𝐴𝑋 +𝐵𝑌] = 𝐴𝔼[𝑋] +𝐵𝔼[𝑌]

𝔼[𝑋𝑌] ≠ 𝔼[𝑋]𝔼[𝑌]

𝑋 𝑌 𝔼[𝑋𝑌] = 𝔼[𝑋]𝔼[𝑌]

𝔼[𝑓(𝑋)] ≠ 𝑓(𝔼[𝑋])

𝑓(⋅) 𝑋

𝑓(⋅) 𝔼[𝑓(𝑋)] ≥ 𝑓(𝔼[𝑋])

66 / 71

Law of Total Expectations

Let be a partition of . For any random variable ,

Law of Total Expectations

e.g. the expected value of income is the expected value of income given you were

unemployed times the probability of being unemployed plus the expected value of

income given you were employed times the probability of being employed

{𝐴1,… ,𝐴𝑁} Ω 𝑋

𝔼[𝑋] =
𝑁

∑
𝑖=1

𝔼[𝑋 |𝐴𝑖]ℙ(𝐴𝑖)

Related decomposition is the : Law of Total Variances 𝕍[𝑋] = 𝔼[𝕍[𝑌 |𝑋]] + 𝕍[𝔼[𝑌 |𝑋]]

67 / 71

https://en.wikipedia.org/wiki/Law_of_total_variance

Conditional Expectations and Iterated Expectations

Same properties all hold e.g.

Conditional expectations are themselves random variables if the conditional is. e.g.

 is a random variable in

Law of Iterated Expectations

→ The expected value of is the average of the conditional expectations of given

 over the distribution of

→ Similarly for conditionals:

𝔼[𝐴𝑋 +𝐵𝑌 |𝑍] = 𝐴𝔼[𝑋 |𝑍] +𝐵𝔼[𝑌 |𝑍]

𝔼[𝑋 |

𝑌] 𝑌

𝔼 [𝔼[𝑋 |𝑌]] = 𝔼[𝑋]

𝑋 𝑋

𝑌 𝑌

𝔼 [𝔼[𝑋 |𝑌 ,𝑍] |𝑍] = 𝔼[𝑋 |𝑍]

68 / 71

Calculating Conditional Expectations

Assign an RV to each state then find 𝔼[𝑋 |𝑌 = 1]

P = np.array([[0.05, 0.07, 0.02, 0.01],1
 [0.04, 0.1, 0.06, 0.03],2
 [0.08, 0.09, 0.07, 0.04],3
 [0.02, 0.03, 0.02, 0.01],4
 [0.09, 0.08, 0.04, 0.05]])5
margin_x = P.sum(axis=1)6
margin_y = P.sum(axis=0)7
cond_x_y = (P / margin_y[np.newaxis, :]).T8
cond_y_x = (P.T / margin_x[np.newaxis, :]).T9
Give RV values to states10
vals_x = np.arange(P.shape[0]) + 111
vals_y = np.arange(P.shape[1]) + 112

13
print("E(X | Y = 1) =",14
 np.sum([vals_x[i]*cond_x_y[0,i]15
 for i in range(0,5)]))16

E(X | Y = 1) = 3.2142857142857144

69 / 71

Conditional Expectations and the Law of Iterated Expectations
E_x_y = np.array([1
 np.sum([vals_x[i]*cond_x_y[j,i]2
 for i in range(0,5)])3
 for j in range(0,4)])4
E_y_x = np.array([5
 np.sum([vals_y[j]*cond_y_x[i,j]6
 for j in range(0,4)])7
 for i in range(0,5)]) 8
Or use np broadcasting with *9
E_x_y = np.sum(vals_x * cond_x_y, axis=1)10
E_y_x = np.sum(vals_y * cond_y_x, axis=1)11
print("E(X | Y = j) =", E_x_y)12
print("E(Y | X = i) =", E_y_x)13
print(f"E(X) = {vals_x @ margin_x:.3g},\14
 E(E(X|Y)) = {E_x_y @ margin_y}")15

E(X | Y = j) = [3.214 2.865 3. 3.429]
E(Y | X = i) = [1.933 2.348 2.25 2.25 2.192]
E(X) = 3.07, E(E(X|Y)) = 3.07

70 / 71

Tips for using Numpy Broadcasting

1. Don’t

Loops, list comprehensions (e.g., [x[i, i+1] for i in range(5)]), or a

combination are usually clearer and often fast enough

2. Write the slow version first

3. Ask Github Copilot or ChatGPT to do a numpy broadcasting version

4. Test it for a few values! Easy to make mistakes

5. For more advanced usage you may be working in a ML library. If so, then packages such

as of helpjax.vmap torch.vmap

71 / 71

https://jax.readthedocs.io/en/latest/jax-101/03-vectorization.html
https://pytorch.org/docs/master/generated/torch.func.vmap.html#torch.func.vmap

