
Natural Language Processing and Large Language Models

Graduate Quantitative Economics and Datascience

Jesse Perla

University of British Columbia

jesse.perla@ubc.ca

1 / 44

mailto:jesse.perla@ubc.ca

Table of contents

Overview

Tokens, Vocabulary, and Corpus

Embeddings

Bigger Embeddings

Sequential Data and Token Prediction

2 / 44

Overview

3 / 44

Summary

Discuss text, NLP, and other embeddings

Relate embeddings to transformations like PCA

Use LLMs via the LangChain package

4 / 44

References

These notes are a bare-bones introduction. See references for more

See Melissa Dell’s Survey and

→

→

Deep Learning for Economists Course

Topic and Sentiment Classification

Semantic and Syntactic Similarity

5 / 44

https://arxiv.org/abs/2407.15339
https://econdl.github.io/
https://econdl.github.io/intro/2023/03/22/lecture14.html
https://econdl.github.io/intro/2023/03/02/lecture11.html

API Options for LLMs

There are many ways to access these tools, including vendor-specific APIs and those

which wrap things in as much of a cross-vendor way as possible

A big variation is between LLMs that are hosted and ones that run locally.

Local use of LLM/NLP is often facilitated by the package

→ We will not use this approach here because it requires far more background, but if

you are serious this is useful to know about

Remote use of LLMs can be done with

→ Vendor specific APIs: e.g.,

→ Cross-vendor packages: e.g., which calls out to OpenAI/Gemini/etc.

Hugging Face Transformers

OpenAI

LangChain

6 / 44

https://huggingface.co/docs/transformers/index
https://platform.openai.com/docs/introduction
https://python.langchain.com/docs/get_started/introduction.html

Packages

For this introduction, we will use to call out to OpenAILangChain

from sklearn.manifold import TSNE1
import matplotlib.pyplot as plt2
import numpy as np3
import tiktoken4
from langchain_openai import ChatOpenAI, OpenAIEmbeddings5
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage6

7 / 44

https://python.langchain.com/docs/get_started/introduction.html

OpenAI via LangChain

Sign up for the

→ Sometimes it is free for a limited number of tokens. See for more

Go to the API keys tab and create a key

In your terminal, set OPENAI_API_KEY to this value (see)

OpenAI Platform

pricing

here

8 / 44

https://platform.openai.com/
https://openai.com/api/pricing/
https://platform.openai.com/docs/quickstart?desktop-os=macOS#create-and-export-an-api-key

Creating the LangChain API

Instantiate models once (LangChain will pick up OPENAI_API_KEY from environment

variable)

The model= might be chosen for speed, cost, etc.

Temperature is how random to make the output (0 = deterministic). Will discuss more

later.

openai_embedding_model = "text-embedding-3-large"1
openai_chat_model = "gpt-4o-mini"2
llm = ChatOpenAI(model=openai_chat_model, temperature=0.7)3
embedder = OpenAIEmbeddings(model=openai_embedding_model)4

9 / 44

Tokens, Vocabulary, and Corpus

10 / 44

Tokens and Vocabulary

We can define a vocabulary of possible “tokens” enumerated

→ For NLP, this might be common words, parts of words, and characters.

→ The vocabulary is model and sometimes application specific

A splitter will take an input and break it into pieces

→ e.g., take a sentence and split on the whitespace

A tokenizer will take an input and map it into a sequence of token indices

→ e.g., take a sentence, split on the spaces, and then map to tokens in the vocabulary

The corpus is the set of text/etc. you use

→ In specialized cases you might want to build a custom vocabulary based on how

common certain words are in your corpus

𝐾 𝑘 = 1,… ,𝐾

11 / 44

Example with OpenAI Tokens

When using LLMs this sometimes happens in the background, but other times you may

need more manual control

We can use a package to reverse-engineer what OpenAI does under the hood.

→ Splits on whitespace, tokens may be whole words, subwords, or characters

enc = tiktoken.encoding_for_model(openai_embedding_model)1
print(f"Tokens in vocabulary for {openai_embedding_model}: {enc.n_vocab}")2
print(f"'Hello world' -> {enc.encode('Hello world')}")3
print(f"'hello world' -> {enc.encode('hello world')}")4
print(f"'hello world 67' -> {enc.encode('hello world 67')}")5

Tokens in vocabulary for text-embedding-3-large: 100277
'Hello world' -> [9906, 1917]
'hello world' -> [15339, 1917]
'hello world 67' -> [15339, 1917, 220, 3080]

12 / 44

Tasks with Tokens

Most tasks in NLP involve working with these tokenized inputs. For example,

→ Simple counts of tokens (e.g., bag of words) for comparison

→ Using a sequence of tokens as input to a model to predict the next token (or missing

tokens)

→ Mapping a sequence of tokens into an embedding of the entire sequence for

similarity/classification/etc.

Not specific to text though. Can use with any sequence of discrete or discretized

outcomes

13 / 44

Embedding a Token

The ordering of the tokens from is arbitrary

However, we can assign a real-valued vector to each token

→ This is called an embedding of the token and could capture things like conceptual

similarity between them, etc.

→ The real-valued vectors can then be clustered, classified, etc.

𝑘 = 1,… ,𝐾

14 / 44

Embeddings

15 / 44

What is an Embedding?
resp = llm.invoke([1
 SystemMessage(content="You provide 2 short bullet points, technical answers."),2
 HumanMessage(content="What is an embedding?")3
])4
resp_text = resp.content5
print(resp_text)6

- An embedding is a mathematical representation of items (such as words, sentences, or images) in a continuous vector
space, where similar items are mapped to nearby points in that space.
- Embeddings are commonly used in machine learning and natural language processing to capture semantic meaning and
relationships, enabling algorithms to process and analyze complex data more effectively.

16 / 44

Detour into OpenAI (via LangChain)

Our code uses LangChain message objects to call OpenAI under the hood.

Message roles in LangChain and their OpenAI mapping:

→ SystemMessage → OpenAI “system” role (sets behavior/instructions)

→ HumanMessage → OpenAI “user” role (your prompt/query)

→ AIMessage → OpenAI “assistant” role (model responses)

When building a conversation, you pass the entire message history (system + user +

assistant) to the model each time; the model conditions on this full context.

17 / 44

LLMs are Stateless

When you call llm.invoke([...]) and related APIs you pass the entire history of the

conversation each time.

This lets the model condition on the entire history to have history-contingent answers,

and means it does not keep around a “state” or “memory” of the conversation.

18 / 44

Followup: What does it have to do with Latent Spaces?
resp = llm.invoke([1
 SystemMessage(content="You provide 2 short bullet points, technical answers."),2
 HumanMessage(content="What is an embedding?"),3
 AIMessage(content=resp_text),4
 HumanMessage(content="What is the relationship to latent spaces?")5
])6
print(resp.content)7

- Latent spaces are abstract, lower-dimensional representations of data that capture essential features, often used in
models like autoencoders and generative adversarial networks (GANs), where embeddings can serve as points within this
latent space.
- Both embeddings and latent spaces aim to reduce dimensionality while preserving important information and
relationships, allowing for effective data representation and manipulation in machine learning tasks.

19 / 44

Embeddings Overview

Used loosely and inconsistently, but the spirit is the same

A mapping of some to a latent space

Typically we want that is a continuous vector space of finite dimension

→ Crucially, we can think of distances in that space (e.g.,)

The dimension of may be smaller or larger than

→ If larger, typically in only small regions of the higher-dimensional space.

Often want to preserve norms in cases where the original space itself had a norm

→ e.g., if is small, then is small

𝑥 ∈ X 𝜙(𝑥) ∈ Z

Z

||𝜙(𝑥)− 𝜙(𝑦)||

Z X

||𝑥− 𝑦|| ||𝜙(𝑥)− 𝜙(𝑦)||

20 / 44

Cosine Similarity

Cosine similarity is the “angle” between two vectors in the embedding space

and

𝑧 = 𝜙(𝑥)

𝑧
′ = 𝜙(𝑥′)

sim(𝑧, 𝑧′) =
𝑧 ⋅ 𝑧

′

||𝑧||||𝑧′||

21 / 44

Interpretation of Cosine Similarity

Interpretation: If and are

1. close in the embedding space, then the cosine similarity is close to 1

2. orthogonal, then the cosine similarity is 0

3. opposite, then the cosine similarity is -1

Norm comparison instead? Works but not invariant to scaling

𝑧 𝑧
′

||𝑧− 𝑧
′||

22 / 44

Implementation of Cosine Similarity
def cos_sim(a, b):1
 denom = np.linalg.norm(a) * np.linalg.norm(b)2
 return np.dot(a, b) / denom3
print(f"cos_sim([1, 0], [0, 1]) = {cos_sim(np.array([1, 0]), np.array([0, 1]))}")4
print(f"cos_sim([1, 0], [0, 2]) = {cos_sim(np.array([1, 0]), np.array([0, 2]))}")5
print(f"cos_sim([1, 0], [1, 0]) = {cos_sim(np.array([1, 0]), np.array([1, 0]))}")6
print(f"cos_sim([1, 0], [2, 0]) = {cos_sim(np.array([1, 0]), np.array([2, 0]))}")7
print(f"cos_sim([1, 0], [-2, 0]) = {cos_sim(np.array([1, 0]), np.array([-2, 0]))}")8

cos_sim([1, 0], [0, 1]) = 0.0
cos_sim([1, 0], [0, 2]) = 0.0
cos_sim([1, 0], [1, 0]) = 1.0
cos_sim([1, 0], [2, 0]) = 1.0
cos_sim([1, 0], [-2, 0]) = -1.0

23 / 44

Using LangChain OpenAI Embeddings
embed_bank = embedder.embed_query("bank")1
embed_banks = embedder.embed_query("banks")2
embed_river = embedder.embed_query("river")3
embed_money = embedder.embed_query("money")4
print(f"sim(bank, banks) = {cos_sim(embed_bank, embed_banks):.4f}")5
print(f"sim(bank, river) = {cos_sim(embed_bank, embed_river):.4f}")6
print(f"sim(bank, money) = {cos_sim(embed_bank, embed_money):.4f}")7
print(f"sim(river, money) = {cos_sim(embed_river, embed_money):.4f}")8

sim(bank, banks) = 0.7882
sim(bank, river) = 0.4143
sim(bank, money) = 0.4347
sim(river, money) = 0.3747

24 / 44

Where Did the Embedding Come From?

OpenAI’s text embeddings (e.g., text-embedding-3-large) are trained with self-

supervised objectives to produce general-purpose semantic vectors.

Conceptually, a representation map is learned so that cosine similarity reflects

semantic relatedness.

Always check provider docs for the training objective and intended use; not all

embeddings are suitable for every task.

𝜙(𝑥)

25 / 44

Bigger Embeddings

26 / 44

Bag of Words

Words usually occur in sentences, paragraphs, etc.

Instead of embedding a single word, we can embed a block of text.

Simple starting point: compare the relative frequency of words

1. Turn the text into blocks of tokens with unique identifiers

2. Filter out tokens that are not useful (e.g., “the”, “a”, etc.)

3. Count the frequency of each token

4. The embedding is the vector of the frequency of each token

Many issues with this, but crucially it does not capture any sense of context dependent

meaning of words, and is invariant to word order

27 / 44

Sentence Embeddings with LLMs

Encode an entire sentence into a single embedding and compare for similarity

Note that the 2nd and 3rd are the most similar, and the 1st and 3rd the least.

e_1 = embedder.embed_query("The man bites the dog")1
e_2 = embedder.embed_query("The dog chased the man")2
e_3 = embedder.embed_query("The man was chased by the dog")3
print(f"sim(e_1, e_2) = {cos_sim(e_1, e_2):.4f}")4
print(f"sim(e_1, e_3) = {cos_sim(e_1, e_3):.4f}")5
print(f"sim(e_2, e_3) = {cos_sim(e_2, e_3):.4f}")6

sim(e_1, e_2) = 0.5414
sim(e_1, e_3) = 0.5226
sim(e_2, e_3) = 0.7911

28 / 44

Be Cautious, Interpretation is Tricky

Note that sim(e_3, e_4) > sim(e_3, e_2) even though they seem to have the exact

opposite meaning!

Why? There are many embeddings (e.g. bag of words) which make these close, and

others where they are far apart. Hard to know without a sense of how it was trained.

e_1 = embedder.embed_query("The man bites the dog")1
e_2 = embedder.embed_query("The dog chased the man")2
e_3 = embedder.embed_query("The man was chased by the dog")3
e_4 = embedder.embed_query("The man chased the dog")4
print(f"sim(e_1, e_2) = {cos_sim(e_1, e_2):.4f}")5
print(f"sim(e_1, e_3) = {cos_sim(e_1, e_3):.4f}")6
print(f"sim(e_2, e_3) = {cos_sim(e_2, e_3):.4f}")7
print(f"sim(e_3, e_4) = {cos_sim(e_3, e_4):.4f}")8

sim(e_1, e_2) = 0.5414
sim(e_1, e_3) = 0.5226
sim(e_2, e_3) = 0.7911
sim(e_3, e_4) = 0.8598

29 / 44

Clustering/Visualization

Since embeddings provide a measure of similarity/distance, we can cluster it into groups

or use other tools to find interpretations

There are various algorithms to cluster based on representations, and find the closest

elements within the set of data for a new element

One approach for visualization: come up with a lower-dimensional embedding which

approximately preserves local neighborhoods in 2D/3D as in t-SNE (t-Distributed

Stochastic Neighbor Embedding)

30 / 44

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

Get Some Random Embeddings
Sample a small list of common words and embed them via OpenAIEmbeddings1
sampled_tokens = [2
 "bank", "river", "money", "finance", "water", "dog", "cat", "animal", "pet", "tree",3
 "forest", "city", "village", "road", "car", "bus", "train", "doctor", "nurse", "hospital",4
 "school", "student", "teacher", "book", "library", "music", "guitar", "piano", "art", "painting",5
 "computer", "algorithm", "data", "model", "economics", "market", "price", "inflation", "policy",6
 "riverbank", "beach", "mountain", "valley", "ocean", "lake", "software", "hardware", "network", "cloud"7
]8
embeddings = embedder.embed_documents(sampled_tokens) # list[list[float]]9
embeddings = np.array(embeddings)10
print(f"collected {embeddings.shape[0]} embeddings of dimension {embeddings.shape[1]}")11

collected 49 embeddings of dimension 3072

31 / 44

Visualize with t-SNE

tsne = TSNE(n_components=2, random_state=0) # approx with 2D embedding1
embeddings_2d = tsne.fit_transform(embeddings)2
Plot the t-SNE results3
plt.figure()4
for i, token in enumerate(sampled_tokens):5
 x, y = embeddings_2d[i]6
 plt.scatter(x, y)7
 plt.text(x+0.1, y+0.1, token, fontsize=9)8
plt.title('t-SNE visualization of OpenAI text embeddings')9
plt.xlabel('Dimension 1')10
plt.ylabel('Dimension 2')11
plt.show()12

32 / 44

Visualize with t-SNE

33 / 44

Sequential Data and Token

Prediction

34 / 44

Distribution of Tokens

In many cases, data has an inherent sequential ordering. e.g. time series, language, etc.

Consider conditional probabilities over . Generically call these “tokens”

Objects of interest: for for a sequence of length sampled from some

population distribution

We may want to condition on the past to predict the next token, condition on the entire

sequence to predict missing ones, etc.

𝑥𝑡 ∈ {1,…𝐾}

𝑥1,𝑥2,… ,𝑥𝑇 𝑇

35 / 44

Multinomial Logit/Softmax

Often want to map a latent space to a probability distribution over outcomes

Given a set of outcomes, define the logit/softmax mapping a vector to a

probability distribution over outcomes as

Typically this is combined with a mapping of a latent space, , with some matrix

 so that is a probability distribution over outcomes

𝐾

𝐾 𝑦 ∈ ℝ𝐾

𝐾

softmax(𝑦)𝑖 =
𝑒𝑦𝑖

∑𝐾
𝑗=1 𝑒

𝑦𝑗
, 𝑖 = 1,… ,𝐾

𝑧 ∈ ℝ𝐿

𝑊 ∈ ℝ𝐾×𝐿 softmax(𝑊𝑧) 𝐾

ℙ (𝑥 = 𝑘 | 𝑧) = softmax(𝑊𝑧)𝑘

36 / 44

Token Prediction from Conditional Probabilities

Given a sequence , model the conditional distribution:

→ Where in the background these are done with marginal and conditional probabilities

sampling the population distribution

Basic strategy for sequence models:

1. Do an embedding for each token

2. Map those embeddings to some combined representation,

3. Map that with to get probabilities over for

4. Fit with methods such as maximum likelihood given the multinomial logit structure

𝑥1,𝑥2,… ,𝑥𝑡−1

ℙ(𝑥𝑡|𝑥𝑡−1,𝑥𝑡−2,… ,𝑥1)

𝜙1(𝑥𝑡)

𝜙2(𝜙1(𝑥1),… ,𝜙1(𝑥𝑡−1))

softmax 𝑘 = 1,… ,𝐾 𝑥𝑡

37 / 44

Provide Conditioning Tokens in the Prompt

See Melissa Dell’s lecture and Prompting Prompts for Economists

resp = llm.invoke([1
 SystemMessage(content="You provide 2 short bullet points, technical answers."),2
 HumanMessage(content="What is an embedding?")3
])4
resp_text = resp.content5
print(resp_text)6

38 / 44

https://www.dropbox.com/scl/fi/e8rnp61e9mv6es455f91c/lecture_prompting.pdf?rlkey=8mj1y59l3tjod34tp5vgk8akv&e=1&dl=0
https://sites.google.com/view/lastunen/ai-for-economists?authuser=0

Provide Conditioning Tokens in the Prompt
- An embedding is a representation of discrete objects, such as words or items, in a continuous vector space, allowing
for mathematical operations and capturing semantic relationships.
- It is commonly used in machine learning and natural language processing (NLP) to facilitate tasks like similarity
measurement and clustering by translating high-dimensional data into lower-dimensional spaces.

39 / 44

Reminder: Concatenating Results
resp = llm.invoke([1
 SystemMessage(content="You provide 2 short bullet points, technical answers."),2
 HumanMessage(content="What is an embedding?"),3
 AIMessage(content=resp_text),4
 HumanMessage(content="What is the relationship to latent spaces?")5
])6
print(resp.content)7

40 / 44

Reminder: Concatenating Results
- Embeddings can be considered a type of representation within a latent space, where the latent space captures the
underlying structure and relationships of the data in a compressed format.
- Latent spaces are often learned through techniques like autoencoders or generative models, where embeddings serve as
points in this space, reflecting the intrinsic properties of the original data.

41 / 44

Mental Model of Sequential Generation

1. Start with a set of tokens, (include EVERYTHING)

2. Condition on those tokens to find the distribution

3. Sample from that to get the token

“Temperature” setting mechanically increases/decreases the randomness for the

logit (e.g., rescales)

4. Add its own generated token to the set of tokens,

5. Condition on those tokens to find the distribution

6. Repeat until it hits a special “done” token (itself predicted) or reaches a maximum length

𝑥1,𝑥2,… ,𝑥𝑡−1

ℙ(𝑥𝑡|𝑥𝑡−1,𝑥𝑡−2,… ,𝑥1)

𝑥𝑡

𝑊𝑧

𝑥1,𝑥2,… ,𝑥𝑡−1,𝑥𝑡

ℙ(𝑥𝑡+1|𝑥𝑡,𝑥𝑡−1,… ,𝑥1)

42 / 44

Cardinality of the Estimated Conditional Distribution

ChatGPT and others generate text token-by-token auto-regressively

No directly Markov. possible sequences of tokens of length

Modest sized LLMs in 2025 might support with tokens

→ Estimating a conditional PMF

→ And growing. Many recent models have supports tokens for context (i.e.,

conditioning) and for “output”

𝐾
𝑇

𝐾 𝑇

𝑇 = 4, 000 𝐾 = 50, 000

ℙ : 50, 000 × 50, 0004,000 → [0, 1]

128𝑘

16𝑘

43 / 44

How Can This Possibly Work?

It sometimes feels like it has compressed and memorized the entire internet

We don’t always know the parameterization or number of tokens in the training data

(remember, this largely uses MLE to train) but OpenAI’s GPT-3 was disclosed

→ The is approximated by approximating 175 billion parameters

→ Trained on 300 billion tokens from close to a terabyte of cleaned text

Which is an absurdly small amount of data given the cardinality of

→ Paraphrasing Mikhail Belkin: this is like estimating the Library of Congress with a

molecule of ink.

ℙ(⋅|⋅)

ℙ

44 / 44

