

Foundations of Numerical Linear Algebra

Graduate Quantitative Economics and Datascience

Jesse Perla

jesse.perla@ubc.ca

University of British Columbia

Table of contents

- Basic Linear Algebra
- Solving Linear Systems of Equations
- Eigenvalues and Eigenvectors

Going Beyond "reg y x, robust"

- Data science, econometrics, and macroeconomics are built on linear algebra.
- Numerical linear algebra has all sorts of pitfalls, which become more critical as we scale up to larger problems.
- Speed differences in choosing better algorithms can be orders of magnitude.
- Crucial to know what goes on under-the-hood in Stata/R/python packages for applied work, even if you don't implement it yourself.

Extra Materials

- Material related to: QuantEcon Python, QuantEcon Data Science, Intro Quantitative
 Economics with Python
- Self-study and Optional Materials:
 - → Basics of linear algebra, matrices, norms, and linear independence
 - → Numerical optimization
 - → Systems of Equations
 - → Eigenvectors and eigenvalues
 - Downloading and manipulating data in Python and here
 - → Introductory material on linear algebra and more
 - → Matrix decompositions and other topics

Packages

This section uses the following packages:

```
import numpy as np
import matplotlib.pyplot as plt
import scipy
from numpy.linalg import cond, matrix_rank, norm
from scipy.linalg import inv, solve, det, eig, lu, eigvals
from scipy.linalg import solve_triangular, eigvalsh, cholesky
```


Basic Computational Complexity

Big-O Notation

For a function f(N) and a positive constant C, we say f(N) is O(g(N)), if there exist positive constants C and N_0 such that:

$$0 \le f(N) \le C \cdot g(N)$$
 for all $N \ge N_0$

- Often crucial to know how problems scale asymptotically (as $N \to \infty$)
- ullet Caution! This is only an asymptotic limit, and can be misleading for small N

$$\rightarrow f_1(N) = N^3 + N \text{ is } O(N^3)$$

$$f_2(N) = 1000N^2 + 3N$$
 is $O(N^2)$

 $_{
ightarrow}$ For roughly N>1000 use f_2 algorithm, otherwise f_1

Examples of Computational Complexity

- Simple examples:
 - $x\cdot y=\sum_{n=1}^N x_ny_n$ is O(N) since it requires N multiplications and additions
 - Ax for $A\in\mathbb{R}^{N imes N}, x\in\mathbb{R}^N$ is $O(N^2)$ since it requires N dot products, each O(N)

Numerical Precision

Machine Epsilon

For a given datatype, ϵ is defined as $\epsilon = \min_{\delta>0} \left\{ \delta : 1 + \delta > 1 \right\}$

• Computers have finite precision. 64-bit typical, but 32-bit on GPUs

```
1 print(f"machine epsilon for float64 = {np.finfo(float).eps}")
2 print(f"1 + eps/2 == 1? {1.0 + 1.1e-16 == 1.0}")
3 print(f"machine epsilon for float32 = {np.finfo(np.float32).eps}")
machine epsilon for float64 = 2.220446049250313e-16
1 + eps/2 == 1? True
machine epsilon for float32 = 1.1920928955078125e-07
```


Basic Linear Algebra

Norms

- ullet Common measure of size is the Euclidean norm, or L^2 norm for $x\in\mathbb{R}^2$
- ullet Complexity is O(N), square N times then N additions

$$||x||_2 = \sqrt{\sum_{n=1}^N x_n^2}$$

```
1 x = np.array([1, 2, 3]) # Calculating different ways (in order of preference)
2 print(np.sqrt(sum(xval**2 for xval in x))) # manual with comprehensions
3 print(np.sqrt(np.sum(np.square(x)))) # broadcasts
4 print(norm(x)) # built-in to numpy norm(x, ord=2) alternatively
5 print(f"||x||_2^2 = {norm(x)**2} = {x.T @ x} = {np.dot(x, x)}")
```

- 3.7416573867739413
- 3.7416573867739413
- 3.7416573867739413

```
| |x| |_{2^2} = 14.0 = 14 = 14
```


Solving Systems of Equations

- Solving Ax = b for x is equivalent $A^{-1}Ax = A^{-1}b$
- Then since $A^{-1}A=I$, and Ix=x, we have $x=A^{-1}b$
- Careful since matrix algebra is not commutative!

```
1 A = np.array([[0, 2], [3, 4]]) # or ((0, 2), (3, 4))
2 b = np.array([2,1]) # Column vector
3 x = solve(A, b) # Solve Ax = b for x
4 x
```

array([-1., 1.])

Using the Inverse Directly

- Can replace the **solve** with a calculation of an inverse
- But it can be slower or less accurate than solving the system directly

```
1 A_inv = inv(A)
2 A_inv @ b # i.e, A^{-1} * b
```

array([-1., 1.])

Linear Combinations

We can think of solving a system as finding the linear combination of columns of A that equal b

```
1 b_star = x[0] * A[:, 0] + x[1] * A[:, 1] # using x solution
2 print(f"b = {b}, b_star = {b_star}")
b = [2 1], b_star = [2. 1.]
```


Column Space and Rank

- The column space of a matrix represents all possible linear combinations of its columns.
- It forms a basis for the space of solutions when solving systems of linear equations represented by the matrix
- The rank of a matrix is the dimension of its column space

```
1 A = np.array([[0, 2], [3, 4]])
2 matrix_rank(A)
np.int64(2)
```

Hence, can solve Ax=b for any $b\in\mathbb{R}^2$ since the column space is the entire space \mathbb{R}^2

Singular Matrices

On the other hand, note

np.int64(1)

So we can only solve
$$Ax=b$$
 for $b\propto \begin{bmatrix}1\\2\end{bmatrix} \propto \begin{bmatrix}2\\4\end{bmatrix}$

Checking Singularity

```
1 A = np.array([[1, 2], [2, 4]])
2 # An (expensive) way to check if A is singular is if det(A) = 0
3 print(det(A) == 0.0)
4 print(matrix_rank(A) != A.shape[0]) # or check rank
5 # Check before inverting or use exceptions
6 try:
7    inv(A)
8    print("Matrix is not singular (invertible).")
9 except np.linalg.LinAlgError:
10    print("Matrix is singular (non-invertible).")
```

True True Matrix is singular (non-invertible).

Determinant is Not Scale Invariant

- Reminder: numerical precision in calculations makes it hard to compare to zero
- The determinate is useful but depends on the scale of the matrix
- A more robust alternative is the condition number (more next lecture)

```
1 eps, K = 1e-8, 100000
2 A = np.array([[1, 2], [1 + eps, 2 + eps]])
3 print(f"det(A)={det(A):.5g}, det(K*A)={det(K*A):.5g}")
4 print(f"cond(A)={cond(A):.5g}, cond(K*A)={cond(K*A):.5g},")
5 print(f"det(inv(A))={det(inv(A)):.5g}, cond(inv(A))={cond(inv(A)):.5g}")

det(A)=-1e-08, det(K*A)=-100
```

```
det(A)=-1e-08, det(K*A)=-100

cond(A)=1e+09, cond(K*A)=1e+09,

det(inv(A))=-1e+08, cond(inv(A))=1e+09
```


Interpreting Condition Numbers

- The condition number of the matrix A is $\kappa(A) = ||A|| \cdot ||A^{-1}||$, which can be shown in terms of ratio of the largest and smallest eigenvalues
 - $ightarrow \kappa(A) = rac{\lambda_{\max}}{\lambda_{\min}}$ for λ the eigenvalues of A. More soon!
- ullet Crude intuition: for machine epsilon $\epsilon_{
 m mach}$ when calculating some x
 - \to The relative error, $||x-x_{
 m approx}||/||x||$ is roughly $\kappa(A)\cdot\epsilon_{
 m mach}$
 - $_{
 ightarrow}$ Solving Ax=b when $\epsilon_{
 m mach}=1e^{-16}$ it amplifies errors in b, etc.
 - $_{
 ightarrow}$ if $\kappa(A)pprox 1e^{16}$ errors amplified so the scale of 100% relative error

Rules of Thumb

- Rule of thumb for standard floating points where $\epsilon_{
 m mach} = 1e^{-16}$:
 - $_{ o}$ $\kappa(A) pprox 1$ well-conditioned
 - $\rightarrow \kappa(A) < 100$ fairly well-conditioned
 - $_{
 ightarrow}$ $\kappa(A) < 1e^{5}$ moderately ill-conditioned. Take care
 - $_{
 ightarrow} \kappa(A) < 1e^{8}$ ill-conditioned and might introduce significant errors, especially in algorithms which repeatedly use the same calculations
 - $_{
 ightarrow}$ $\kappa(A)>1e^{8}$ very ill-conditioned and likely to introduce significant errors
- Choose solution algorithms based on "numerical stability" and "conditioning" when worried
- Much more extreme with 32-bit floats such as when using GPUs.

Solving Linear Systems of Equations

Solving Systems with Multiple RHS

- Inverse is nice because you can reuse the A^{-1} to solve Ax=b for many b
- However, you can do this with solve as well
- Or can reuse LR factorizations (discussed next)

LU(P) Decompositions

- We can "factor" any square A into PA=LU for triangular L and U. Invertible can have A=LU, called the LU decomposition. "P" is for partial-pivoting
- ullet Singular matrices may not have full-rank L or U matrices

```
1 A = np.array([[1, 2], [2, 4]])
2 P, L, U = lu(A)
3 print(f"L*U = \n{L @ U}")
4 print(f"P*A = \n{P @ A}")

L*U =
[[2. 4.]
[1. 2.]]
P*A =
[[2. 4.]
[1. 2.]]
```


P, U, and L

The P matrix is a permutation matrix of "pivots" the others are triangular

```
1 print(f"P =\n{P}")
2 print(f"L =\n{L}")
3 print(f"U =\n{U}")

P =
[[0. 1.]
[1. 0.]]
L =
[[1. 0. ]
[0.5 1. ]]
U =
[[2. 4.]
[0. 0.]]
```


LU Decompositions and Systems of Equations

- Pivoting is typically implied when talking about "LU"
- Used in the default solve algorithm (without more structure)
- Solving systems of equations with triangular matrices: for Ax = LUx = b
 - 1. Define y = Ux
 - 2. Solve Ly = b for y and Ux = y for x
- ullet Since both are triangular, process is $O(N^2)$ (but LU itself $O(N^3)$)
- Could be used to find inv
 - \rightarrow A=LU then $AA^{-1}=I=LUA^{-1}=I$
 - $_{
 ightarrow}$ Solve for Y in LY=I, then solve $UA^{-1}=Y$
- Tight connection to textbook Gaussian elimination (including pivoting)

LU for Non-Singular Matrices

```
1 A = np.array([[1, 2], [3, 4]])
2 P, L, U = lu(A)
3 print(f"L*U =\n{L @ U}")
4 print(f"P*A =\n{P @ A}")

L*U =
[[3. 4.]
[1. 2.]]
P*A =
[[3. 4.]
[1. 2.]]
```


L, U, P

Backwards Substitution Example

$$Ux = b$$

$$U \equiv \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}, \quad b = \begin{bmatrix} 7 \\ 2 \end{bmatrix}$$

Solving bottom row for x_2

$$2x_2 = 2, \quad x_2 = 1$$

Move up a row, solving for x_1 , substituting for x_2

$$3x_1 + 1x_2 = 7$$
, $3x_1 + 1 \times 1 = 7$, $x_1 = 2$

Generalizes to many rows. For $oldsymbol{L}$ it is "forward substitution"

Use Triangular Structure if Possible

- ullet Triangular matrices of size N can be solved with back substitution in $O(N^2)$
- ullet Is $O(N^2)$ good or bad? Beats, $O(N^3)$ typical of general methods

Symmetric Matrix Structure

Another common matrix type are symmetric, $A=A^T$

```
1 A = np.array([[1, 2], [2, 5]]) # also posdef, not singular
2 b = np.array([1,4])
3 # With scipy 1.11.3 check with scipy.linalg.issymmetric(A)
4 solve(A, b, assume_a="sym") # could also use "pos" since positive definite
array([-3., 2.])
```


Positive Definite Matrices

- A symmetric matrix A is positive definite if $x^TAx>0$ for all $x\neq 0$
- Useful in many areas, such as covariance matrices. Example

```
1 A = np.array([[1, 2], [2, 5]])
2 x = np.array([0, 1]) # can't really check for all x
3 print(f"x^T A x = {x.T @ A @ x}")
```

 $x^T A x = 5$

Example of a symmetric matrix that is not positive definite

```
1 A = np.array([[1, 2], [2, 0]])
2 print(f"x^T A x = {x.T @ A @ x}") # one counterexample is enough
```

 $X^T A X = 0$

We can check these with eigenvalues

Cholesky Decomposition

- ullet For symmetric positive definite matrices: $L=U^{T,}$
- ullet Called a Cholesky decomposition: $A=LL^T$ for a lower triangular matrix L.
- ullet Equivalently, could find A = $U^T U$ for an upper triangular matrix U

```
1 A = np.array([[1, 2], [2, 5]])
2 L = cholesky(A, lower=True) # cholesky also defined for upper=True
3 print(L)
4 print(f"L*L^T =\n{L @ L.T}")

[[1. 0.]
[2. 1.]]
L*L^T =
[[1. 2.]
[2. 5.]]
```


Solving Positive Definite Systems

```
1 A = np.array([[1, 2], [2, 5]])
2 b = np.array([1,4])
3 print(solve(A, b, assume_a="pos")) # uses cholesky internally
4
5 L = cholesky(A, lower=True)
6 y = solve_triangular(L, b, lower=True)
7 x = solve_triangular(L.T, y, lower=False)
8 print(x)
```

```
[-3. 2.]
[-3. 2.]
```


Cholesky for Covariance Matrices

- Covariance matrices are positive-definite, semi-definite if degenerate
- Key property of Gaussian random variables:

$$\to X \sim N(\mu, \Sigma)$$
 for $\mu \in \mathbb{R}^N, \Sigma \in \mathbb{R}^{N imes N}$

$$_{
ightarrow}$$
 $X=\mu+AZ$ for $Z\sim N(0_N,I_N)$ where $AA^T=\Sigma$

ullet That is, A is the Cholesky decomposition of the covariance matrix

Matrices as Linear Transformations

- Recall: for $x\in\mathbb{R}^N$ we should think of a f(x)=Ax for $A\in\mathbb{R}^{M imes N}$ as a linear transformation from \mathbb{R}^N to \mathbb{R}^M
 - \rightarrow Definition of Linear: $f(ax_1+bx_2)=af(x_1)+bf(x_2)$ for scalar a,b
- ullet Similarly, the y=f(x)=Ax then $f^{-1}(y)=A^{-1}y$ goes from \mathbb{R}^M to \mathbb{R}^N
 - → If the matrix is square and invertible, we can go back and forth without losing information (i.e., bijective). Otherwise we may be projected onto a lower-dimensional "manifold".

Norms and Linear Transformations

- The vector norm $||x||_2$ is an important feature in many applications
 - \rightarrow Hence $||f(x)||_2 = ||Ax||_2$ frequently comes up in Quantitative Economics and Datascience
 - → e.g. linear regression is written as minimizing a vector norm

$$\min_{eta} ||y - Xeta||_2$$

ullet Matrix structure or decompositions of A help us better understand the f(x) mapping

Orthogonal Matrices

- ullet A square matrix Q is **orthogonal** if: $Q^{-1}=Q^T$, and hence $Q^TQ=QQ^T=I$
 - ightarrow For orthogonal Q, f(x)=Qx is interpreted as rotating x without stretching

$$y=f(x)=Qx$$
 then $f^{-1}(y)=Q^{-1}y=Q^Ty$ is rotating y back

ightarrow Columns are orthonormal: $Q=[q_1| \quad ... \quad |q_N]$ then

$$q_i \cdot q_j = 0$$
 for $i
eq j$ and $q_i \cdot q_i = 1$

- \rightarrow Rotation means the length doesn't change: $||Qx||_2 = ||x||_2$
- → Transformations which preserve norms are central in many applications within data science, ML, and economics - especially in high-dimensions

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors

ullet For a square A, an eigenvector x and eigenvalue λ satisfy

$$Ax = \lambda x$$

- ullet $A \in \mathbb{R}^{N imes N}$ has N eigenvalue/eigenvector pairs, possible multiplicity of λ
- Intuition: x is a direction $Ax \propto x$ and λ says how much it "stretches"

Properties of Eigenvalues and Eigenvectors

- ullet For any eigenvector x and scalar c then $cx \propto Ax$ as well
- Symmetric matrices have real eigenvalues and orthogonal eigenvectors. i.e. $x_1\cdot x_2=0$ for $x_1\neq x_2$ eigenvectors. Complex in general
- Singular if and only if it has an eigenvalue of zero
- Positive (semi)definite if and only if all eigenvalues are strictly (weakly) positive
- Diagonal matrix has eigenvalues as its diagonal
- Triangular matrix has eigenvalues as its diagonal

Positive Definite and Eigenvalues

You cannot check $x^T A x > 0$ for all x. Check if "stretching" is positive

```
1 A = np.array([[3, 1], [2, 1]])
2 # A_eigs = np.real(eigvals(A)) # symmetric matrices have real eigenvalues
3 A_eigs = eigvalsh(A) # specialized for symmetric/hermitian matrices
4 print(A_eigs)
5 is_positive_definite = np.all(A_eigs > 0)
6 is_positive_semi_definite = np.all(A_eigs >= 0) # or eigvals(A) >= -eps
7 print(f"pos-def? {is_positive_definite}")
8 print(f"pos-semi-def? {is_positive_semi_definite}")
```

```
[-0.23606798 4.23606798]
pos-def? False
pos-semi-def? False
```


Positive Semi-Definite Matrices May Have a Zero Eigenvalue

The simplest positive-semi-definite (but not posdef) matrix is

```
1 A_eigs = eigvalsh(np.array([[1, 0], [0, 0]]))
2 print(A_eigs)
3 is_positive_definite = np.all(A_eigs > 0)
4 is_positive_semi_definite = np.all(A_eigs >= 0) # or eigvals(A) >= -eps
5 print(f"pos-def? {is_positive_definite}")
6 print(f"pos-semi-def? {is_positive_semi_definite}")
```

```
[0. 1.]
pos-def? False
pos-semi-def? True
```


Eigen Decomposition

ullet For square, symmetric, non-singular matrix A factor into

$$A = Q\Lambda Q^{-1}$$

- ullet Q is a matrix of eigenvectors, Λ is a diagonal matrix of paired eigenvalues
- For symmetric matrices, the eigenvectors are orthogonal and $Q^{-1}Q=Q^TQ=I$ which form an orthonormal basis
- Orthogonal matrices can be thought of as rotations without stretching
- More general matrices all have a Singular Value Decomposition (SVD)
- With symmetric A, an interpretation of Ax is that we can first rotate x into the Q basis, then stretch by Λ , then rotate back

Eigendecompositions and Matrix Powers

- Can be used to find A^t for large t (e.g. for Markov chains)
 - $\rightarrow P^t$, i.e. $P \cdot P \cdot ... \cdot P$ for t times
 - $_{
 ightarrow}$ $P=Q\Lambda Q^{-1}$ then $P^t=Q\Lambda^tQ^{-1}$ where Λ^t is just the pointwise power
- Related tools such as SVD can help with dimensionality reduction

Spectral/Eigendecomposition of Symmetric Matrix Example

```
1 A = np.array([[2, 1], [1, 3]])
2 Lambda, Q = eig(A)
3 print(f"eigenvectors are column-by-column in Q =\n{Q}")
4 print(f"eigenvalues are in Lambda = {Lambda}")
5 print(f"Q Lambda Q^T =\n{Q @ np.diag(np.real(Lambda)) @ Q.T}")
eigenvectors are column-by-column in Q =
[[-0.85065081 -0.52573111]
[ 0.52573111 -0.85065081]]
eigenvalues are in Lambda = [1.38196601+0.j 3.61803399+0.j]
Q Lambda Q^T =
[[2. 1.]
[1. 3.]]
```


Spectral Radius is Maximum Absolute Eigenvalue

- If any $\lambda \in \Lambda$ are > 1 can see this would explode
- Useful for seeing if iteration $x_{t+1} = Ax_t$ from a x_0 explodes
- ullet The **spectral radius** of matrix A is

$$\rho(A) = \max_{\lambda \in \Lambda} |\lambda|$$