
Foundations of Numerical Linear Algebra

Graduate Quantitative Economics and Datascience

Jesse Perla

University of British Columbia

jesse.perla@ubc.ca

1 / 45

mailto:jesse.perla@ubc.ca

Table of contents

Basic Linear Algebra

Solving Linear Systems of Equations

Eigenvalues and Eigenvectors

2 / 45

Going Beyond “reg y x, robust”

Data science, econometrics, and macroeconomics are built on linear algebra.

Numerical linear algebra has all sorts of pitfalls, which become more critical as we scale

up to larger problems.

Speed differences in choosing better algorithms can be orders of magnitude.

Crucial to know what goes on under-the-hood in Stata/R/python packages for applied

work, even if you don’t implement it yourself.

3 / 45

Extra Materials

Material related to: , ,

Self-study and Optional Materials:

→

→

→

→

→ and

→ and

→

QuantEcon Python QuantEcon Data Science Intro Quantitative

Economics with Python

Basics of linear algebra, matrices, norms, and linear independence

Numerical optimization

Systems of Equations

Eigenvectors and eigenvalues

Downloading and manipulating data in Python here

Introductory material on linear algebra more

Matrix decompositions and other topics

4 / 45

https://python.quantecon.org/linear_algebra.html
https://datascience.quantecon.org/scientific/applied_linalg.html
https://intro.quantecon.org/
https://intro.quantecon.org/
https://python.quantecon.org/linear_algebra.html
https://datascience.quantecon.org/scientific/optimization.html
https://python.quantecon.org/linear_algebra.html#solving-systems-of-equations
https://python.quantecon.org/linear_algebra.html#eigenvalues-and-eigenvectors
https://intro.quantecon.org/long_run_growth.html
https://intro.quantecon.org/business_cycle.html
https://intro.quantecon.org/linear_equations.html
https://datascience.quantecon.org/scientific/applied_linalg.html
https://python.quantecon.org/linear_algebra.html#further-topics

Packages

This section uses the following packages:

import numpy as np1
import matplotlib.pyplot as plt2
import scipy3
from numpy.linalg import cond, matrix_rank, norm4
from scipy.linalg import inv, solve, det, eig, lu, eigvals5
from scipy.linalg import solve_triangular, eigvalsh, cholesky6

5 / 45

Basic Computational Complexity

Big-O Notation

For a function and a positive constant , we say is , if there exist

positive constants and such that:

Often crucial to know how problems scale asymptotically (as)

Caution! This is only an asymptotic limit, and can be misleading for small

→ is

→ is

→ For roughly use algorithm, otherwise

𝑓(𝑁) 𝐶 𝑓(𝑁) 𝑂(𝑔(𝑁))

𝐶 𝑁0

0 ≤ 𝑓(𝑁) ≤ 𝐶 ⋅ 𝑔(𝑁) for all 𝑁 ≥ 𝑁0

𝑁 →∞

𝑁

𝑓1(𝑁) = 𝑁 3 +𝑁 𝑂(𝑁 3)

𝑓2(𝑁) = 1000𝑁 2 + 3𝑁 𝑂(𝑁 2)

𝑁 > 1000 𝑓2 𝑓1

6 / 45

Examples of Computational Complexity

Simple examples:

→ is since it requires multiplications and additions

→ for is since it requires dot products, each

𝑥 ⋅ 𝑦 =∑𝑁
𝑛=1 𝑥𝑛𝑦𝑛 𝑂(𝑁) 𝑁

𝐴𝑥 𝐴 ∈ ℝ𝑁×𝑁 ,𝑥 ∈ ℝ𝑁 𝑂(𝑁 2) 𝑁

𝑂(𝑁)

7 / 45

Numerical Precision

Machine Epsilon

For a given datatype, is defined as

Computers have finite precision. 64-bit typical, but 32-bit on GPUs

𝜖 𝜖 = min𝛿>0 {𝛿 : 1 + 𝛿 > 1}

print(f"machine epsilon for float64 = {np.finfo(float).eps}")1
print(f"1 + eps/2 == 1? {1.0 + 1.1e-16 == 1.0}")2
print(f"machine epsilon for float32 = {np.finfo(np.float32).eps}")3

machine epsilon for float64 = 2.220446049250313e-16
1 + eps/2 == 1? True
machine epsilon for float32 = 1.1920928955078125e-07

8 / 45

Basic Linear Algebra

9 / 45

Norms

Common measure of size is the Euclidean norm, or norm for

Complexity is , square times then additions

𝐿
2

𝑥 ∈ ℝ
2

𝑂(𝑁) 𝑁 𝑁

||𝑥||2 =

√

⎷

√
√
√

𝑁

∑
𝑛=1

𝑥2
𝑛

x = np.array([1, 2, 3]) # Calculating different ways (in order of preference)1
print(np.sqrt(sum(xval**2 for xval in x))) # manual with comprehensions2
print(np.sqrt(np.sum(np.square(x)))) # broadcasts3
print(norm(x)) # built-in to numpy norm(x, ord=2) alternatively4
print(f"||x||_2^2 = {norm(x)**2} = {x.T @ x} = {np.dot(x, x)}")5

3.7416573867739413
3.7416573867739413
3.7416573867739413
||x||_2^2 = 14.0 = 14 = 14

10 / 45

Solving Systems of Equations

Solving for is equivalent

Then since , and , we have

Careful since matrix algebra is not commutative!

𝐴𝑥 = 𝑏 𝑥 𝐴
−1
𝐴𝑥 = 𝐴

−1
𝑏

𝐴−1𝐴 = 𝐼 𝐼𝑥 = 𝑥 𝑥 = 𝐴−1𝑏

A = np.array([[0, 2], [3, 4]]) # or ((0, 2), (3, 4))1
b = np.array([2,1]) # Column vector2
x = solve(A, b) # Solve Ax = b for x3
x4

array([-1., 1.])

11 / 45

Using the Inverse Directly

Can replace the solve with a calculation of an inverse

But it can be slower or less accurate than solving the system directly

A_inv = inv(A)1
A_inv @ b # i.e, A^{-1} * b2

array([-1., 1.])

12 / 45

Linear Combinations

We can think of solving a system as finding the linear combination of columns of that

equal

𝐴

𝑏

b_star = x[0] * A[:, 0] + x[1] * A[:, 1] # using x solution1
print(f"b = {b}, b_star = {b_star}")2

b = [2 1], b_star = [2. 1.]

13 / 45

Column Space and Rank

The column space of a matrix represents all possible linear combinations of its columns.

It forms a basis for the space of solutions when solving systems of linear equations

represented by the matrix

The rank of a matrix is the dimension of its column space

Hence, can solve for any since the column space is the entire space

A = np.array([[0, 2], [3, 4]])1
matrix_rank(A)2

np.int64(2)

𝐴𝑥 = 𝑏 𝑏 ∈ ℝ
2

ℝ
2

14 / 45

Singular Matrices

On the other hand, note

So we can only solve for

A = np.array([[1, 2],1
 [2, 4]])2
matrix_rank(A)3

np.int64(1)

𝐴𝑥 = 𝑏 𝑏 ∝ [1
2
] ∝ [2

4
]

15 / 45

Checking Singularity
A = np.array([[1, 2], [2, 4]])1
An (expensive) way to check if A is singular is if det(A) = 02
print(det(A) == 0.0)3
print(matrix_rank(A) != A.shape[0]) # or check rank4
Check before inverting or use exceptions5
try:6
 inv(A)7
 print("Matrix is not singular (invertible).")8
except np.linalg.LinAlgError:9
 print("Matrix is singular (non-invertible).")10

True
True
Matrix is singular (non-invertible).

16 / 45

Determinant is Not Scale Invariant

Reminder: numerical precision in calculations makes it hard to compare to zero

The determinate is useful but depends on the scale of the matrix

A more robust alternative is the condition number (more next lecture)

eps, K = 1e-8, 1000001
A = np.array([[1, 2], [1 + eps, 2 + eps]])2
print(f"det(A)={det(A):.5g}, det(K*A)={det(K*A):.5g}")3
print(f"cond(A)={cond(A):.5g}, cond(K*A)={cond(K*A):.5g},")4
print(f"det(inv(A))={det(inv(A)):.5g}, cond(inv(A))={cond(inv(A)):.5g}")5

det(A)=-1e-08, det(K*A)=-100
cond(A)=1e+09, cond(K*A)=1e+09,
det(inv(A))=-1e+08, cond(inv(A))=1e+09

17 / 45

Interpreting Condition Numbers

The condition number of the matrix is , which can be shown in

terms of ratio of the largest and smallest eigenvalues

→ for the eigenvalues of . More soon!

Crude intuition: for machine epsilon when calculating some

→ The relative error, is roughly

→ Solving when it amplifies errors in , etc.

→ if errors amplified so the scale of 100% relative error

𝐴 𝜅(𝐴) = ||𝐴|| ⋅ ||𝐴−1||

𝜅(𝐴) = 𝜆max

𝜆min
𝜆 𝐴

𝜖mach 𝑥

||𝑥− 𝑥approx||/||𝑥|| 𝜅(𝐴) ⋅ 𝜖mach

𝐴𝑥 = 𝑏 𝜖mach = 1𝑒−16 𝑏

𝜅(𝐴) ≈ 1𝑒16

18 / 45

Rules of Thumb

Rule of thumb for standard floating points where :

→ well-conditioned

→ fairly well-conditioned

→ moderately ill-conditioned. Take care

→ ill-conditioned and might introduce significant errors, especially in

algorithms which repeatedly use the same calculations

→ very ill-conditioned and likely to introduce significant errors

Choose solution algorithms based on “numerical stability” and “conditioning” when

worried

Much more extreme with 32-bit floats such as when using GPUs.

𝜖mach = 1𝑒−16

𝜅(𝐴) ≈ 1

𝜅(𝐴) < 100

𝜅(𝐴) < 1𝑒5

𝜅(𝐴) < 1𝑒8

𝜅(𝐴) > 1𝑒8

19 / 45

Solving Linear Systems of Equations

20 / 45

Solving Systems with Multiple RHS

Inverse is nice because you can reuse the to solve for many

However, you can do this with solve as well

Or can reuse LR factorizations (discussed next)

𝐴
−1

𝐴𝑥 = 𝑏 𝑏

A = np.array([[0, 2], [3, 4]])1
B = np.array([[2,3], [1,2]]) # [2,1] and [3,2] as columns2
or: B = np.column_stack([np.array([2, 1]),np.array([3,2])])3
X = solve(A, B) # Solve AX = B for X4
print(X)5
print(f"Checking: A*{X[:,0]} = {A@X[:, 0]} = {B[:,0]}, column of B")6

[[-1. -1.33333333]
 [1. 1.5]]
Checking: A*[-1. 1.] = [2. 1.] = [2 1], column of B

21 / 45

LU(P) Decompositions

We can “factor” any square into for triangular and . Invertible can have

, called the LU decomposition. “P” is for partial-pivoting

Singular matrices may not have full-rank or matrices

𝐴 𝑃𝐴 = 𝐿𝑈 𝐿 𝑈

𝐴 = 𝐿𝑈

𝐿 𝑈

A = np.array([[1, 2], [2, 4]])1
P, L, U = lu(A)2
print(f"L*U =\n{L @ U}")3
print(f"P*A =\n{P @ A}")4

L*U =
[[2. 4.]
 [1. 2.]]
P*A =
[[2. 4.]
 [1. 2.]]

22 / 45

P, U, and L

The matrix is a permutation matrix of “pivots” the others are triangular𝑃

print(f"P =\n{P}")1
print(f"L =\n{L}")2
print(f"U =\n{U}")3

P =
[[0. 1.]
 [1. 0.]]
L =
[[1. 0.]
 [0.5 1.]]
U =
[[2. 4.]
 [0. 0.]]

23 / 45

LU Decompositions and Systems of Equations

Pivoting is typically implied when talking about “LU”

Used in the default solve algorithm (without more structure)

Solving systems of equations with triangular matrices: for

1. Define

2. Solve for and for

Since both are triangular, process is (but LU itself)

Could be used to find inv

→ then

→ Solve for in , then solve

Tight connection to textbook Gaussian elimination (including pivoting)

𝐴𝑥 = 𝐿𝑈𝑥 = 𝑏

𝑦 = 𝑈𝑥

𝐿𝑦 = 𝑏 𝑦 𝑈𝑥 = 𝑦 𝑥

𝑂(𝑁 2) 𝑂(𝑁 3)

𝐴 = 𝐿𝑈 𝐴𝐴−1 = 𝐼 = 𝐿𝑈𝐴−1 = 𝐼

𝑌 𝐿𝑌 = 𝐼 𝑈𝐴−1 = 𝑌

24 / 45

LU for Non-Singular Matrices
A = np.array([[1, 2], [3, 4]])1
P, L, U = lu(A)2
print(f"L*U =\n{L @ U}")3
print(f"P*A =\n{P @ A}")4

L*U =
[[3. 4.]
 [1. 2.]]
P*A =
[[3. 4.]
 [1. 2.]]

25 / 45

L, U, P

print(f"P =\n{P}")1
print(f"L =\n{L}")2
print(f"U =\n{U}")3

P =
[[0. 1.]
 [1. 0.]]
L =
[[1. 0.]
 [0.33333333 1.]]
U =
[[3. 4.]
 [0. 0.66666667]]

26 / 45

Backwards Substitution Example

Solving bottom row for

Move up a row, solving for , substituting for

Generalizes to many rows. For it is “forward substitution”

𝑈𝑥 = 𝑏

𝑈 ≡ [3 1

0 2
] , 𝑏 = [7

2
]

𝑥2

2𝑥2 = 2, 𝑥2 = 1

𝑥1 𝑥2

3𝑥1 + 1𝑥2 = 7, 3𝑥1 + 1 × 1 = 7, 𝑥1 = 2

𝐿

27 / 45

Use Triangular Structure if Possible

Triangular matrices of size can be solved with back substitution in

Is good or bad? Beats, typical of general methods

𝑁 𝑂(𝑁 2)

𝑂(𝑁 2) 𝑂(𝑁 3)

U = np.array([[3, 1],1
 [0, 2]])2
b = np.array([7,2])3
solve(U,b) # works, but internally does an LU which is O(N^3)4
solve_triangular(U, b, lower=False) # fast O(N^2)5

array([2., 1.])

28 / 45

Symmetric Matrix Structure

Another common matrix type are symmetric, 𝐴 = 𝐴
𝑇

A = np.array([[1, 2], [2, 5]]) # also posdef, not singular1
b = np.array([1,4])2
With scipy 1.11.3 check with scipy.linalg.issymmetric(A)3
solve(A, b, assume_a="sym") # could also use "pos" since positive definite4

array([-3., 2.])

29 / 45

Positive Definite Matrices

A symmetric matrix is positive definite if for all

Useful in many areas, such as covariance matrices. Example

Example of a symmetric matrix that is not positive definite

We can check these with eigenvalues

𝐴 𝑥
𝑇
𝐴𝑥 > 0 𝑥 ≠ 0

A = np.array([[1, 2], [2, 5]])1
x = np.array([0, 1]) # can't really check for all x2
print(f"x^T A x = {x.T @ A @ x}")3

x^T A x = 5

A = np.array([[1, 2], [2, 0]])1
print(f"x^T A x = {x.T @ A @ x}") # one counterexample is enough2

x^T A x = 0

30 / 45

Cholesky Decomposition

For symmetric positive definite matrices: ’

Called a Cholesky decomposition: for a lower triangular matrix .

Equivalently, could find A = for an upper triangular matrix

𝐿 = 𝑈
𝑇

𝐴 = 𝐿𝐿𝑇 𝐿

𝑈 𝑇𝑈 𝑈

A = np.array([[1, 2], [2, 5]])1
L = cholesky(A, lower=True) # cholesky also defined for upper=True2
print(L)3
print(f"L*L^T =\n{L @ L.T}")4

[[1. 0.]
 [2. 1.]]
L*L^T =
[[1. 2.]
 [2. 5.]]

31 / 45

Solving Positive Definite Systems
A = np.array([[1, 2], [2, 5]])1
b = np.array([1,4])2
print(solve(A, b, assume_a="pos")) # uses cholesky internally3

4
L = cholesky(A, lower=True)5
y = solve_triangular(L, b, lower=True)6
x = solve_triangular(L.T, y, lower=False)7
print(x)8

[-3. 2.]
[-3. 2.]

32 / 45

Cholesky for Covariance Matrices

Covariance matrices are positive-definite, semi-definite if degenerate

Key property of Gaussian random variables:

→ for

→ for where

That is, is the Cholesky decomposition of the covariance matrix

𝑋 ∼ 𝑁(𝜇, Σ) 𝜇 ∈ ℝ
𝑁 , Σ ∈ ℝ𝑁×𝑁

𝑋 = 𝜇+𝐴𝑍 𝑍 ∼ 𝑁(0𝑁 , 𝐼𝑁) 𝐴𝐴
𝑇 = Σ

𝐴

33 / 45

Matrices as Linear Transformations

Recall: for we should think of a for as a linear

transformation from to

→ Definition of Linear: for scalar

Similarly, the then goes from to

→ If the matrix is square and invertible, we can go back and forth without losing

information (i.e., bijective). Otherwise we may be projected onto a lower-dimensional

“manifold”.

𝑥 ∈ ℝ𝑁 𝑓(𝑥) = 𝐴𝑥 𝐴 ∈ ℝ𝑀×𝑁

ℝ
𝑁

ℝ
𝑀

𝑓(𝑎𝑥1 + 𝑏𝑥2) = 𝑎𝑓(𝑥1) + 𝑏𝑓(𝑥2) 𝑎, 𝑏

𝑦 = 𝑓(𝑥) = 𝐴𝑥 𝑓−1(𝑦) = 𝐴−1𝑦 ℝ
𝑀

ℝ
𝑁

34 / 45

Norms and Linear Transformations

The vector norm is an important feature in many applications

→ Hence frequently comes up in Quantitative Economics and

Datascience

→ e.g. linear regression is written as minimizing a vector norm

Matrix structure or decompositions of help us better understand the mapping

||𝑥||2

||𝑓(𝑥)||2 = ||𝐴𝑥||2

min
𝛽

||𝑦−𝑋𝛽||2

𝐴 𝑓(𝑥)

35 / 45

Orthogonal Matrices

A square matrix is orthogonal if: , and hence

→ For orthogonal , is interpreted as rotating without stretching

→ then is rotating back

→ Columns are orthonormal: then

→ for and

→ Rotation means the length doesn’t change:

→ Transformations which preserve norms are central in many applications within data

science, ML, and economics - especially in high-dimensions

𝑄 𝑄−1 = 𝑄𝑇 𝑄𝑇𝑄 = 𝑄𝑄𝑇 = 𝐼

𝑄 𝑓(𝑥) = 𝑄𝑥 𝑥

𝑦 = 𝑓(𝑥) = 𝑄𝑥 𝑓−1(𝑦) = 𝑄−1𝑦 = 𝑄𝑇𝑦 𝑦

𝑄 = [𝑞1| … |𝑞𝑁]

𝑞𝑖 ⋅ 𝑞𝑗 = 0 𝑖 ≠ 𝑗 𝑞𝑖 ⋅ 𝑞𝑖 = 1

||𝑄𝑥||2 = ||𝑥||2

36 / 45

Eigenvalues and Eigenvectors

37 / 45

Eigenvalues and Eigenvectors

For a square , an eigenvector and eigenvalue satisfy

 has eigenvalue/eigenvector pairs, possible multiplicity of

Intuition: is a direction and says how much it “stretches”

𝐴 𝑥 𝜆

𝐴𝑥 = 𝜆𝑥

𝐴 ∈ ℝ𝑁×𝑁 𝑁 𝜆

𝑥 𝐴𝑥 ∝ 𝑥 𝜆

38 / 45

Properties of Eigenvalues and Eigenvectors

For any eigenvector and scalar then as well

Symmetric matrices have real eigenvalues and orthogonal eigenvectors. i.e.

for eigenvectors. Complex in general

Singular if and only if it has an eigenvalue of zero

Positive (semi)definite if and only if all eigenvalues are strictly (weakly) positive

Diagonal matrix has eigenvalues as its diagonal

Triangular matrix has eigenvalues as its diagonal

𝑥 𝑐 𝑐𝑥 ∝ 𝐴𝑥

𝑥1 ⋅ 𝑥2 = 0

𝑥1 ≠ 𝑥2

39 / 45

Positive Definite and Eigenvalues

You cannot check for all . Check if “stretching” is positive𝑥𝑇𝐴𝑥 > 0 𝑥

A = np.array([[3, 1], [2, 1]])1
A_eigs = np.real(eigvals(A)) # symmetric matrices have real eigenvalues2
A_eigs = eigvalsh(A) # specialized for symmetric/hermitian matrices3
print(A_eigs)4
is_positive_definite = np.all(A_eigs > 0)5
is_positive_semi_definite = np.all(A_eigs >= 0) # or eigvals(A) >= -eps6
print(f"pos-def? {is_positive_definite}")7
print(f"pos-semi-def? {is_positive_semi_definite}")8

[-0.23606798 4.23606798]
pos-def? False
pos-semi-def? False

40 / 45

Positive Semi-Definite Matrices May Have a Zero Eigenvalue

The simplest positive-semi-definite (but not posdef) matrix is

A_eigs = eigvalsh(np.array([[1, 0], [0, 0]]))1
print(A_eigs)2
is_positive_definite = np.all(A_eigs > 0)3
is_positive_semi_definite = np.all(A_eigs >= 0) # or eigvals(A) >= -eps4
print(f"pos-def? {is_positive_definite}")5
print(f"pos-semi-def? {is_positive_semi_definite}")6

[0. 1.]
pos-def? False
pos-semi-def? True

41 / 45

Eigen Decomposition

For square, symmetric, non-singular matrix factor into

 is a matrix of eigenvectors, is a diagonal matrix of paired eigenvalues

For symmetric matrices, the eigenvectors are orthogonal and which

form an orthonormal basis

Orthogonal matrices can be thought of as rotations without stretching

More general matrices all have a Singular Value Decomposition (SVD)

With symmetric , an interpretation of is that we can first rotate into the basis,

then stretch by , then rotate back

𝐴

𝐴 = 𝑄Λ𝑄−1

𝑄 Λ

𝑄−1𝑄 = 𝑄𝑇𝑄 = 𝐼

𝐴 𝐴𝑥 𝑥 𝑄

Λ

42 / 45

Eigendecompositions and Matrix Powers

Can be used to find for large (e.g. for Markov chains)

→ , i.e. for times

→ then where is just the pointwise power

Related tools such as SVD can help with dimensionality reduction

𝐴𝑡 𝑡

𝑃 𝑡 𝑃 ⋅ 𝑃 ⋅… ⋅ 𝑃 𝑡

𝑃 = 𝑄Λ𝑄−1 𝑃 𝑡
= 𝑄Λ𝑡𝑄−1 Λ

𝑡

43 / 45

Spectral/Eigendecomposition of Symmetric Matrix Example
A = np.array([[2, 1], [1, 3]])1
Lambda, Q = eig(A)2
print(f"eigenvectors are column-by-column in Q =\n{Q}")3
print(f"eigenvalues are in Lambda = {Lambda}")4
print(f"Q Lambda Q^T =\n{Q @ np.diag(np.real(Lambda)) @ Q.T}")5

eigenvectors are column-by-column in Q =
[[-0.85065081 -0.52573111]
 [0.52573111 -0.85065081]]
eigenvalues are in Lambda = [1.38196601+0.j 3.61803399+0.j]
Q Lambda Q^T =
[[2. 1.]
 [1. 3.]]

44 / 45

Spectral Radius is Maximum Absolute Eigenvalue

If any are can see this would explode

Useful for seeing if iteration from a explodes

The spectral radius of matrix is

𝜆 ∈ Λ > 1

𝑥𝑡+1 = 𝐴𝑥𝑡 𝑥0

𝐴

𝜌(𝐴) = max
𝜆∈Λ

|𝜆|

45 / 45

