

### Least Squares, Uniqueness, and Regularization

Graduate Quantitative Economics and Datascience

#### Jesse Perla

jesse.perla@ubc.ca

University of British Columbia



### Table of contents

- Overview
- Definiteness
- Quadratic Forms
- Least Squares and the Normal Equations
- Regularization



# Overview



### Motivation

- In this section we will use some of the previous tools and discuss concepts on the curvature of optimization problems
- Doing so, we will consider uniqueness in optimization problems in datascience, economics, and ML
- Our key optimization problems to consider will be the quadratic problems than come out of least squares regressions.
  - → This will provide a foundation for understanding nonlinear objectives since we can think of Hessians are locally quadratic.



### Extra Materials

• scikit-learn ridge regression



### Packages

This section uses the following packages:

```
import numpy as np
import matplotlib.pyplot as plt
import scipy
from numpy.linalg import cond, matrix_rank, norm
from scipy.linalg import inv, solve, det, eig, lu, eigvals
from scipy.linalg import solve_triangular, eigvalsh, cholesky
```



### First and Second Order Conditions in Optimization

- ullet For univariate unconstrained optimization  $\min_x f(x)$
- The FONC was f'(x) = 0.
  - → But this might not be a valid solution! Or there might be many
- The second order condition gives us more information and provides sufficient conditions
  - $\rightarrow$  if f''(x) > 0, then x is a local minimum; if f''(x) < 0, then x is a local maximum.
  - $\rightarrow$  if f''(x) = 0 then there may be multiple solutions (locally)



### Related Univariate Conceptsed

- ullet Recall in your math prep that for a univariate function f(x), we have:
  - $\rightarrow f(x)$  is **convex** if  $f''(x) \ge 0$  for all x in the domain.
  - $\rightarrow f(x)$  is **concave** if  $f''(x) \leq 0$  for all x in the domain.
  - $\rightarrow f(x)$  is **strictly convex** if f''(x) > 0 for all x in the domain.
  - $\rightarrow f(x)$  is **strictly concave** if f''(x) < 0 for all x in the domain.
- We will generalize these concepts for thinking about multivariate functions
  - $_{
    ightarrow}$  Local behavior, x' such that  $|x-x'|<\epsilon$ , for some  $\epsilon$  "balls"



# Definiteness



### Reminder: Positive Definite

```
[1.38196601 3.61803399]
pos-def? True
pos-semi-def? True
```



### Reminder: Positive Definite

```
[1.99009805 3.00990195]
pos-def? True
pos-semi-def? True
```



### Reminder: Positive Semi-Definite Matrices

• The simplest positive-semi-definite (but not posdef) matrix is

```
[0. 1.]
pos-def? False
pos-semi-def? True
```



### Negative Definite Matrices

• Simply swap the inequality. Think of a convex vs. concave function

```
[-3.00990195 -1.99009805]
neg-def? True, neg-semi-def? True
```



### Negative Semi-Definite Matrix

- Semi-definite, but not definite requires the matrix to not be full rank
- At least one zero eigenvalue is necessary and sufficient for a matrix to be singular

```
[-2. 0.]
neg-def? False, neg-semi-def? True
```



# Quadratic Forms



## Quadratic Functions in Higher Dimensions

- Recall univariate function  $f(x) = \frac{a}{2}x^2 + bx + c$  for  $x \in \mathbb{R}$ .
- General quadratic for  $x\in\mathbb{R}^N$  requires cross-terms  $(a_{12}x_1x_2,a_{11}x_1^2)$  etc.) and linear terms (e.g,  $b_1x_1,b_2x_2$ )
- Can be written as  $f(x) = \frac{1}{2}x^{T}Ax + b^{T}x + c$  for some symmetric matrix A, vector b, and scalar c



### Gradients of Quadratic Forms

- Univariate:  $f'(x) \equiv \nabla f(x) = ax + b$  and  $f''(x) \equiv \nabla^2 f(x) = a$
- Multivariate: abla f(x) = Ax + b and  $abla^2 f(x) = A$ 
  - $\rightarrow \nabla f(x)$  is the gradient vector at x
  - $\rightarrow \nabla^2 f(x)$  is the Hessian matrix at x



### Strict Concavity/Convexity

- ullet Quadratic functions have the same curvature everywhere, so not x dependent
- Univariate:
  - $\rightarrow a > 0$  is strict convexity
  - $\rightarrow a < 0$  is strict concavity
  - $\rightarrow a = 0$  is linear (neither)
- Multivariate:
  - $\rightarrow$  A is positive definite is strict convexity, A is negative definite is strict concavity.
  - $\rightarrow A$  is semi-definite weakly convex (maybe strictly in some "directions")
  - → And vice-versa for concavity
- Recall that the univariate is nested: A = [a] with eigenvalue a



# Shape of Positive Definite Function

• For 
$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$$

• This has a **unique minima** (at (0,0), since no "affine" term, b)





## Shape of Negative Semi-Definite Function

• For our 
$$A=\begin{bmatrix} -1 & -1 \ -1 & -1 \end{bmatrix}$$

- Note that this does not have a unique maximum! All values along a line hold
- Minima rather than maxima since negative rather than positive semi-definite





# Least Squares and the Normal Equations



### Least Squares

Given a matrix  $X \in \mathbb{R}^{N \times M}$  and a vector  $y \in \mathbb{R}^N$ , we want to find  $\beta \in \mathbb{R}^M$  such that

$$\min_{\beta} ||y - X\beta||^2$$
, that is,

$$\min_{\beta} \sum_{n=1}^{N} \frac{1}{N} (y_n - X_n \cdot \beta)^2$$

Where  $X_n$  is n'th row. Take FOCS and rearrange to get

$$(X^T X)\beta = X^T y$$



## Solving the Normal Equations

- ullet The X is often referred to as the "design matrix".  $X^TX$  as the Gram matrix
- ullet Can form  $A=X^TX$  and  $b=X^Ty$  and solve Aeta=b.
  - $\rightarrow$  Or invert  $X^TX$  to get

$$\beta = (X^T X)^{-1} X^T y$$

ightarrow Note that  $X^TX$  is symmetric and, if X is full-rank, positive definite



### Solving Regression Models in Practice

- In practice, use the lstsq function in scipy
  - → It uses better algorithms using eigenvectors. More stable (see next lecture on conditioning)
  - → One algorithm uses another factoring, the QR decomposition
  - $_{
    ightarrow}$  There, X=QR for Q orthogonal and R upper triangular. See  $\operatorname{QR}$  Decomposition for more
- Better yet, for applied work use higher-level libraries like statsmodels (integrates well with pandas and seaborn)
  - → See **statsmodels docs** for R-style notation
  - → See QuantEcon OLS Notes for more.



### Example of LLS using Scipy

```
1 N, M = 100, 5
2 X = np.random.randn(N, M)
3 beta = np.random.randn(M)
4 y = X @ beta + 0.05 * np.random.randn(N)
5 beta_hat, residuals, rank, s = scipy.linalg.lstsq(X, y)
6 print(f"beta =\n {beta}\nbeta_hat =\n{beta_hat}")

beta =
[ 1.15674413 -0.58803774 -0.03466201  0.2684993  -1.62037615]
beta_hat =
[ 1.15794374 -0.58378157 -0.03528741  0.26587567 -1.61866435]
```



### Solving using the Normal Equations

Or we can solve it directly. Provide matrix structure (so it can use a Cholesky)

```
1 beta_hat = solve(X.T @ X, X.T @ y, assume_a="pos")
2 print(f"beta =\n {beta}\nbeta_hat =\n{beta_hat}")
beta =
  [ 1.15674413 -0.58803774 -0.03466201 0.2684993 -1.62037615]
beta_hat =
  [ 1.15794374 -0.58378157 -0.03528741 0.26587567 -1.61866435]
```



## Collinearity in "Tall" Matrices

- ullet Tall  $\mathbb{R}^{N imes M}$  "design matrices" have N>M and are "overdetermined"
- The rank of a matrix is full rank if all columns are linearly independent
- ullet You can only identify M parameters with M linearly independent columns

```
1 X = np.array([[1, 2], [2, 5], [3, 7]]) # 3 observations, 2 variables
2 X_col = np.array([[1, 2], [2, 4], [3, 6]]) # all proportional
3 print(f"rank(X) = {matrix_rank(X)}, rank(X_col) = {matrix_rank(X_col)}")
rank(X) = 2 rank(X col) = 1
```



### Collinearity and Estimation

• If X is not full rank, then  $X^TX$  is not invertible. For example:

```
1 print(f"cond(X'*X)={cond(X.T@X)}, cond(X_col'*X_col)={cond(X_col.T@X_col)}")
cond(X'*X)=2819.332978639814, cond(X_col'*X_col)=1.1014450683078442e+16
```

- Note that when you start doing operations on matrices, numerical error creeps in, so you
  will not get an exact number
- The rule-of-thumb with condition numbers is that if it is  $1\times 10^k$  then you lose about k digits of precision. So this effectively means it is singular
- ullet Given the singular matrix, this means a continuum of eta will solve the problem



### **lstsq** Solves it? Careful on Interpretation!

- Since  $X_{col}^T X_{col}$  is singular, we cannot use solve(X.T@X, y)
- But what about lstsq methods?
- As you will see, this gives an answer. Interpretation is hard
- The key is that in the case of non-full rank, you cannot identify individual parameters
  - → Related to "Identification" in econometrics
  - → Having low residuals is not enough

```
1 y = np.array([5.0, 10.1, 14.9])
2 beta_hat, residuals, rank, s = scipy.linalg.lstsq(X_col, y)
3 print(f"beta_hat_col = {beta_hat}")
4 print(f"rank={rank}, cols={X.shape[1]}, norm(X*beta_hat_col-y)={norm(residuals)}")
beta_hat_col = [0.99857143 1.99714286]
rank=1, cols=2, norm(X*beta_hat_col-y)=0.0
```



### Fat Design Matrices

- ullet Fat  $\mathbb{R}^{N imes M}$  "design matrices" have N < M and are "underdetermined"
- Less common in econometrics, but useful to understand the structure
- A continuum  $\beta \in \mathbb{R}^{M-\mathrm{rank}(X)}$  solve this problem

```
1 X = np.array([[1, 2, 3], [0, 5, 7]]) # 2 rows, 3 variables
2 y = np.array([5, 10])
3 beta_hat, residuals, rank, s = scipy.linalg.lstsq(X, y)
4 print(f"beta_hat = {beta_hat}, rank={rank}, ? residuals = {residuals}")
```



### Which Solution?

- Residuals are zero here because there are enough parameters to fit perfectly (i.e., it is underdetermined)
- Given the multiple solutions, the **lstsq** is giving

$$\min_{\beta} ||\beta||_2^2 \text{ s.t. } X\beta = y$$

- i.e., the "smallest" coefficients which interpolate the data exactly
- ullet Which trivially fulfills the OLS objective:  $\min_eta ||y-Xeta||_2^2$



# Careful Interpreting Underdetermined Solutions

- Useful and common in ML, but be very careful when interpreting for economics
  - → Tight connections to Bayesian versions of statistical tests
  - → But until you understand econometrics and "identification" well, stick to full-rank matrices
  - → **Advanced topics:** search for "Regularization", "Ridgeless Regression" and "Benign Overfitting in Linear Regression."



# Regularization



### Recall a Positive Semi-Definite Function

• For our 
$$A=\begin{bmatrix}1&1\\1&1\end{bmatrix}$$
 . Multiple minima along a line!

eigenvalues of A: [2. 0.]





# Fudge the Diagonal?

- ullet Replace with  $A=A+\lambda I$  for  $\lambda$  very small (e.g., 1E-5)
- Now unique minima at (0,0)

eigenvalues of A: [2.00001e+00 1.00000e-05]





### Motivating this Fudge

- Previously solved  $\min_x \{x^\top Ax\}$ , which only has a unique solution if A is positive definite.
- Replace with

$$\min_{x} \left\{ x^{\top} A x + \lambda ||x||_{2}^{2} \right\}$$

- $\rightarrow$  i.e., penalize solutions by the euclidean length of x, called a "ridge" term
- $\rightarrow$  Could instead penalize by different norms, e.g.  $||x||_1$  is called LASSO
- What are the first order conditions? Lets look at least squares



### Ridge Regression

More generally, for OLS think of the following

$$\min_{\boldsymbol{\beta}} \left\{ ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_2^2 \right\}$$

Take the FOCs and rearrange to get

$$(X^{\top}X + \lambda I)\beta = X^{\top}y$$

- $\to$  Note: if  $X^{ op}X$  is not full rank (i.e., has a zero eigenvalue) then the addition of the  $\lambda$  term helps make things strictly positive definite
- → Sometimes you need to do this to overcome nearly collinear data or numerical approximations, even when it should be technically positive definite



## Ridgeless Regression

- Recall statement that lstsq will return some solution even if not full rank.
- We said that in the case where the data could be fit exactly
  - $_{
    ightarrow}$  One can interpret the solution as  $\min_{eta} ||eta||_2^2 ext{ s.t. } Xeta=y$
  - $\rightarrow$  Interpretation: this is the **min-norm** solution which fits the data with the "smallest"  $\beta$
- Can show this is the limit of a ridge regression (i.e., "ridgeless")

$$\lim_{\lambda \to 0} \min_{\beta} \left\{ ||y - X\beta||_2^2 + \lambda ||\beta||_2^2 \right\}$$



### Regularization in ML

- In ML, with rich data sources there are often many possible ways to explain the data
- Economists often avoid this like the plague, and make assumptions to ensure perfect identification
  - → Identification arguments ensure positive definiteness of OLS, etc.
- As data becomes richer, it becomes hard to write down models with only a single explanation
  - → Regularization lets you bias your solution towards ones with certain properties
- There are Bayesian interpretations of all of these approaches