
Least Squares, Uniqueness, and Regularization

Graduate Quantitative Economics and Datascience

Jesse Perla

University of British Columbia

jesse.perla@ubc.ca

1 / 39

mailto:jesse.perla@ubc.ca

Table of contents

Overview

Definiteness

Quadratic Forms

Least Squares and the Normal Equations

Regularization

2 / 39

Overview

3 / 39

Motivation

In this section we will use some of the previous tools and discuss concepts on the

curvature of optimization problems

Doing so, we will consider uniqueness in optimization problems in datascience,

economics, and ML

Our key optimization problems to consider will be the quadratic problems than come out

of least squares regressions.

→ This will provide a foundation for understanding nonlinear objectives since we can

think of Hessians are locally quadratic.

4 / 39

Extra Materials

scikit-learn ridge regression

5 / 39

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html

Packages

This section uses the following packages:

import numpy as np1
import matplotlib.pyplot as plt2
import scipy3
from numpy.linalg import cond, matrix_rank, norm4
from scipy.linalg import inv, solve, det, eig, lu, eigvals5
from scipy.linalg import solve_triangular, eigvalsh, cholesky6

6 / 39

First and Second Order Conditions in Optimization

For univariate unconstrained optimization

The FONC was .

→ But this might not be a valid solution! Or there might be many

The second order condition gives us more information and provides sufficient conditions

→ if , then is a local minimum; if , then is a local maximum.

→ if then there may be multiple solutions (locally)

min𝑥 𝑓(𝑥)

𝑓 ′(𝑥) = 0

𝑓 ″(𝑥) > 0 𝑥 𝑓 ″(𝑥) < 0 𝑥

𝑓 ″(𝑥) = 0

7 / 39

Related Univariate Conceptsed

Recall in your math prep that for a univariate function , we have:

→ is convex if for all in the domain.

→ is concave if for all in the domain.

→ is strictly convex if for all in the domain.

→ is strictly concave if for all in the domain.

We will generalize these concepts for thinking about multivariate functions

→ Local behavior, such that , for some “balls”

𝑓(𝑥)

𝑓(𝑥) 𝑓 ″(𝑥) ≥ 0 𝑥

𝑓(𝑥) 𝑓 ″(𝑥) ≤ 0 𝑥

𝑓(𝑥) 𝑓 ″(𝑥) > 0 𝑥

𝑓(𝑥) 𝑓 ″(𝑥) < 0 𝑥

𝑥′ |𝑥− 𝑥′| < 𝜖 𝜖

8 / 39

Definiteness

9 / 39

Reminder: Positive Definite

A = np.array([[3, 1],1
 [1, 2]])2
A_eigs = np.real(eigvals(A)) # symmetric matrices have real eigenvalues3
A_eigs = eigvalsh(A) # specialized for symmetric/hermitian matrices4
print(A_eigs)5
is_positive_definite = np.all(A_eigs > 0)6
is_positive_semi_definite = np.all(A_eigs >= 0) # or eigvals(A) >= -eps7
print(f"pos-def? {is_positive_definite}")8
print(f"pos-semi-def? {is_positive_semi_definite}")9

[1.38196601 3.61803399]
pos-def? True
pos-semi-def? True

10 / 39

Reminder: Positive Definite

A = np.array([[3, -0.5],1
 [-0.1, 2]])2
A_eigs = np.real(eigvals(A)) # symmetric matrices have real eigenvalues3
A_eigs = eigvalsh(A) # specialized for symmetric/hermitian matrices4
print(A_eigs)5
is_positive_definite = np.all(A_eigs > 0)6
is_positive_semi_definite = np.all(A_eigs >= 0) # or eigvals(A) >= -eps7
print(f"pos-def? {is_positive_definite}")8
print(f"pos-semi-def? {is_positive_semi_definite}")9

[1.99009805 3.00990195]
pos-def? True
pos-semi-def? True

11 / 39

Reminder: Positive Semi-Definite Matrices

The simplest positive-semi-definite (but not posdef) matrix is

A_eigs = eigvalsh(np.array([[1, 0],1
 [0, 0]]))2
print(A_eigs)3
is_positive_definite = np.all(A_eigs > 0)4
is_positive_semi_definite = np.all(A_eigs >= 0) # or eigvals(A) >= -eps5
print(f"pos-def? {is_positive_definite}")6
print(f"pos-semi-def? {is_positive_semi_definite}")7

[0. 1.]
pos-def? False
pos-semi-def? True

12 / 39

Negative Definite Matrices

Simply swap the inequality. Think of a convex vs. concave function

A = -1 * np.array([[3, -0.5],1
 [-0.1, 2]])2
A_eigs = eigvalsh(A)3
print(A_eigs)4
is_negative_definite = np.all(A_eigs < 0)5
is_negative_semi_definite = np.all(A_eigs <= 0) # or eigvals(A) >= -eps6
print(f"neg-def? {is_negative_definite}, neg-semi-def? {is_negative_semi_definite}")7

[-3.00990195 -1.99009805]
neg-def? True, neg-semi-def? True

13 / 39

Negative Semi-Definite Matrix

Semi-definite, but not definite requires the matrix to not be full rank

At least one zero eigenvalue is necessary and sufficient for a matrix to be singular

A = np.array([[-1, -1],1
 [-1, -1]])2
A_eigs = eigvalsh(A)3
print(A_eigs)4
is_negative_definite = np.all(A_eigs < 0)5
is_negative_semi_definite = np.all(A_eigs <= 0) # or eigvals(A) >= -eps6
print(f"neg-def? {is_negative_definite}, neg-semi-def? {is_negative_semi_definite}")7

[-2. 0.]
neg-def? False, neg-semi-def? True

14 / 39

Quadratic Forms

15 / 39

Quadratic Functions in Higher Dimensions

Recall univariate function for .

General quadratic for requires cross-terms (etc.) and linear

terms (e.g,)

Can be written as for some symmetric matrix , vector ,

and scalar

𝑓(𝑥) = 𝑎
2 𝑥

2 + 𝑏𝑥+ 𝑐 𝑥 ∈ ℝ

𝑥 ∈ ℝ𝑁 𝑎12𝑥1𝑥2, 𝑎11𝑥
2
1

𝑏1𝑥1, 𝑏2𝑥2

𝑓(𝑥) = 1
2 𝑥

⊤𝐴𝑥+ 𝑏⊤𝑥+ 𝑐 𝐴 𝑏

𝑐

16 / 39

Gradients of Quadratic Forms

Univariate: and

Multivariate: and

→ is the gradient vector at

→ is the Hessian matrix at

𝑓 ′(𝑥) ≡ ∇𝑓(𝑥) = 𝑎𝑥+ 𝑏 𝑓 ″(𝑥) ≡ ∇2𝑓(𝑥) = 𝑎

∇𝑓(𝑥) = 𝐴𝑥+ 𝑏 ∇
2𝑓(𝑥) = 𝐴

∇𝑓(𝑥) 𝑥

∇
2𝑓(𝑥) 𝑥

17 / 39

Strict Concavity/Convexity

Quadratic functions have the same curvature everywhere, so not dependent

Univariate:

→ is strict convexity

→ is strict concavity

→ is linear (neither)

Multivariate:

→ is positive definite is strict convexity, is negative definite is strict concavity.

→ is semi-definite weakly convex (maybe strictly in some “directions”)

→ And vice-versa for concavity

Recall that the univariate is nested: with eigenvalue

𝑥

𝑎 > 0

𝑎 < 0

𝑎 = 0

𝐴 𝐴

𝐴

𝐴 = [𝑎] 𝑎

18 / 39

Shape of Positive Definite Function

For

This has a unique minima (at , since no “affine” term,)

𝐴 = [3 1

1 2
]

(0, 0) 𝑏

19 / 39

Shape of Negative Semi-Definite Function

For our

Note that this does not have a unique maximum! All values along a line hold

Minima rather than maxima since negative rather than positive semi-definite

𝐴 = [−1 −1

−1 −1
]

20 / 39

Least Squares and the Normal

Equations

21 / 39

Least Squares

Given a matrix and a vector , we want to find such that

Where is n’th row. Take FOCS and rearrange to get

𝑋 ∈ ℝ
𝑁×𝑀 𝑦 ∈ ℝ𝑁 𝛽 ∈ ℝ𝑀

min
𝛽

||𝑦−𝑋𝛽||2, that is,

min
𝛽

𝑁

∑
𝑛=1

1

𝑁
(𝑦𝑛 −𝑋𝑛 ⋅ 𝛽)2

𝑋𝑛

(𝑋𝑇𝑋)𝛽 = 𝑋𝑇𝑦

22 / 39

Solving the Normal Equations

The is often referred to as the “design matrix”. as the Gram matrix

Can form and and solve .

→ Or invert to get

→ Note that is symmetric and, if is full-rank, positive definite

𝑋 𝑋𝑇𝑋

𝐴 = 𝑋𝑇𝑋 𝑏 = 𝑋𝑇𝑦 𝐴𝛽 = 𝑏

𝑋𝑇𝑋

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦

𝑋𝑇𝑋 𝑋

23 / 39

Solving Regression Models in Practice

In practice, use the lstsq function in scipy

→ It uses better algorithms using eigenvectors. More stable (see next lecture on

conditioning)

→ One algorithm uses another factoring, the QR decomposition

→ There, for orthogonal and upper triangular. See

for more

Better yet, for applied work use higher-level libraries like statsmodels (integrates well

with pandas and seaborn)

→ See for R-style notation

→ See for more.

𝑋 = 𝑄𝑅 𝑄 𝑅 QR Decomposition

statsmodels docs

QuantEcon OLS Notes

24 / 39

https://python.quantecon.org/qr_decomp.html
https://www.statsmodels.org/dev/example_formulas.html
https://python.quantecon.org/ols.html

Example of LLS using Scipy
N, M = 100, 51
X = np.random.randn(N, M)2
beta = np.random.randn(M)3
y = X @ beta + 0.05 * np.random.randn(N)4
beta_hat, residuals, rank, s = scipy.linalg.lstsq(X, y)5
print(f"beta =\n {beta}\nbeta_hat =\n{beta_hat}")6

beta =
 [1.15674413 -0.58803774 -0.03466201 0.2684993 -1.62037615]
beta_hat =
[1.15794374 -0.58378157 -0.03528741 0.26587567 -1.61866435]

25 / 39

Solving using the Normal Equations

Or we can solve it directly. Provide matrix structure (so it can use a Cholesky)

beta_hat = solve(X.T @ X, X.T @ y, assume_a="pos")1
print(f"beta =\n {beta}\nbeta_hat =\n{beta_hat}")2

beta =
 [1.15674413 -0.58803774 -0.03466201 0.2684993 -1.62037615]
beta_hat =
[1.15794374 -0.58378157 -0.03528741 0.26587567 -1.61866435]

26 / 39

Collinearity in “Tall” Matrices

Tall “design matrices” have and are “overdetermined”

The rank of a matrix is full rank if all columns are linearly independent

You can only identify parameters with linearly independent columns

ℝ
𝑁×𝑀

𝑁 >𝑀

𝑀 𝑀

X = np.array([[1, 2], [2, 5], [3, 7]]) # 3 observations, 2 variables1
X_col = np.array([[1, 2], [2, 4], [3, 6]]) # all proportional2
print(f"rank(X) = {matrix_rank(X)}, rank(X_col) = {matrix_rank(X_col)}")3

rank(X) = 2, rank(X_col) = 1

27 / 39

Collinearity and Estimation

If is not full rank, then is not invertible. For example:

Note that when you start doing operations on matrices, numerical error creeps in, so you

will not get an exact number

The rule-of-thumb with condition numbers is that if it is then you lose about

digits of precision. So this effectively means it is singular

Given the singular matrix, this means a continuum of will solve the problem

𝑋 𝑋
𝑇
𝑋

print(f"cond(X'*X)={cond(X.T@X)}, cond(X_col'*X_col)={cond(X_col.T@X_col)}")1

cond(X'*X)=2819.332978639814, cond(X_col'*X_col)=1.1014450683078442e+16

1 × 10
𝑘

𝑘

𝛽

28 / 39

lstsq Solves it? Careful on Interpretation!

Since is singular, we cannot use solve(X.T@X, y)

But what about lstsq methods?

As you will see, this gives an answer. Interpretation is hard

The key is that in the case of non-full rank, you cannot identify individual parameters

→ Related to “Identification” in econometrics

→ Having low residuals is not enough

𝑋
𝑇

𝑐𝑜𝑙
𝑋𝑐𝑜𝑙

y = np.array([5.0, 10.1, 14.9])1
beta_hat, residuals, rank, s = scipy.linalg.lstsq(X_col, y)2
print(f"beta_hat_col = {beta_hat}")3
print(f"rank={rank}, cols={X.shape[1]}, norm(X*beta_hat_col-y)={norm(residuals)}")4

beta_hat_col = [0.99857143 1.99714286]
rank=1, cols=2, norm(X*beta_hat_col-y)=0.0

29 / 39

Fat Design Matrices

Fat “design matrices” have and are “underdetermined”

Less common in econometrics, but useful to understand the structure

A continuum solve this problem

ℝ
𝑁×𝑀

𝑁 <𝑀

𝛽 ∈ ℝ𝑀−rank(𝑋)

X = np.array([[1, 2, 3], [0, 5, 7]]) # 2 rows, 3 variables1
y = np.array([5, 10])2
beta_hat, residuals, rank, s = scipy.linalg.lstsq(X, y)3
print(f"beta_hat = {beta_hat}, rank={rank}, ? residuals = {residuals}")4

beta_hat = [0.8 0.6 1.], rank=2, ? residuals = []

30 / 39

Which Solution?

Residuals are zero here because there are enough parameters to fit perfectly (i.e., it is

underdetermined)

Given the multiple solutions, the lstsq is giving

i.e., the “smallest” coefficients which interpolate the data exactly

Which trivially fulfills the OLS objective:

min
𝛽

||𝛽||22 s.t. 𝑋𝛽 = 𝑦

min𝛽 ||𝑦−𝑋𝛽||
2
2

31 / 39

Careful Interpreting Underdetermined Solutions

Useful and common in ML, but be very careful when interpreting for economics

→ Tight connections to Bayesian versions of statistical tests

→ But until you understand econometrics and “identification” well, stick to full-rank

matrices

→ Advanced topics: search for “Regularization”, “Ridgeless Regression” and “Benign

Overfitting in Linear Regression.”

32 / 39

Regularization

33 / 39

Recall a Positive Semi-Definite Function

For our . Multiple minima along a line!𝐴 = [1 1

1 1
]

eigenvalues of A: [2. 0.]

34 / 39

Fudge the Diagonal?

Replace with for very small (e.g.,)

Now unique minima at

𝐴 = 𝐴+ 𝜆𝐼 𝜆 1𝐸 − 5

(0, 0)

eigenvalues of A: [2.00001e+00 1.00000e-05]

35 / 39

Motivating this Fudge

Previously solved , which only has a unique solution if is positive

definite.

Replace with

→ i.e., penalize solutions by the euclidean length of , called a “ridge” term

→ Could instead penalize by different norms, e.g. is called LASSO

What are the first order conditions? Lets look at least squares

min𝑥 {𝑥⊤𝐴𝑥} 𝐴

min
𝑥

{𝑥⊤𝐴𝑥+ 𝜆||𝑥||22}

𝑥

||𝑥||1

36 / 39

Ridge Regression

More generally, for OLS think of the following

Take the FOCs and rearrange to get

→ Note: if is not full rank (i.e., has a zero eigenvalue) then the addition of the

term helps make things strictly positive definite

→ Sometimes you need to do this to overcome nearly collinear data or numerical

approximations, even when it should be technically positive definite

min
𝛽

{||𝑦−𝑋𝛽||22 + 𝜆||𝛽||22}

(𝑋⊤𝑋 + 𝜆𝐼)𝛽 = 𝑋⊤𝑦

𝑋⊤𝑋 𝜆

37 / 39

Ridgeless Regression

Recall statement that lstsq will return some solution even if not full rank.

We said that in the case where the data could be fit exactly

→ One can interpret the solution as

→ Interpretation: this is the min-norm solution which fits the data with the “smallest”

Can show this is the limit of a ridge regression (i.e., “ridgeless”)

min𝛽 ||𝛽||
2
2 s.t. 𝑋𝛽 = 𝑦

𝛽

lim
𝜆→0

min
𝛽

{||𝑦−𝑋𝛽||22 + 𝜆||𝛽||22}

38 / 39

Regularization in ML

In ML, with rich data sources there are often many possible ways to explain the data

Economists often avoid this like the plague, and make assumptions to ensure perfect

identification

→ Identification arguments ensure positive definiteness of OLS, etc.

As data becomes richer, it becomes hard to write down models with only a single

explanation

→ Regularization lets you bias your solution towards ones with certain properties

There are Bayesian interpretations of all of these approaches

39 / 39

