
Latent Variables and Introduction to Unsupervised Learning

Graduate Quantitative Economics and Datascience

Jesse Perla

University of British Columbia

jesse.perla@ubc.ca

1 / 51

mailto:jesse.perla@ubc.ca

Table of contents

Overview

Latent Variables

Principle Components

Auto-Encoders

Discrete Latent Variables

(Optional) Factors within a Portfolio Model

2 / 51

Overview

3 / 51

Motivation and Materials

In this lecture, we will continue with some applications of the tools we developed in the

previous lectures

We introduce , a package for old-school (i.e. not deep learning or neural

networks) ML and data analysis

→ Introduces “unsupervised learning” (i.e., tools to interpret data structure without any

forecasts/predictions)

scikit-learn

4 / 51

https://scikit-learn.org/stable/

Extra Materials

scikit-learn PCA docs

seaborn tutorials

scikit-learn k-means docs

5 / 51

https://scikit-learn.org/stable/modules/decomposition.html#principal-component-analysis-pca
https://seaborn.pydata.org/tutorial/introduction.html
https://scikit-learn.org/stable/modules/clustering.html#k-means

Packages
import numpy as np1
import matplotlib.pyplot as plt2
import scipy3
from numpy.linalg import cond, matrix_rank, norm4
from scipy.linalg import inv, solve, det, eig, lu, eigvals5
from scipy.linalg import solve_triangular, eigvalsh, cholesky6
import seaborn as sns7
import pandas as pd8
from sklearn.decomposition import PCA9
from sklearn.cluster import KMeans10

6 / 51

Latent Variables

7 / 51

Features, Labels, and Latents

Data science and ML often use different terminology than economists:

→ Features are economists explanatory or independent variables. They have the key

source of variation to make predictions and conduct counterfactuals

→ Labels correspond to economists observables or dependent variables

→ Latent Variables are unobserved variables, typically sources of heterogeneity or

which may drive both the dependent and independent variables

Economists will use theory and experience to transform data (i.e., what ML people call

“feature engineering”) for better explanatory power or map to theoretical models

8 / 51

Unsupervised Learning

ML refers to methods using only features as unsupervised learning. The structure of the

underlying data can teach you about its data generating process

Key: uncover and interpret latent variables using statistics coupled with assumptions

from economic theory. There is theory beyond all interpretation

9 / 51

Principle Components

10 / 51

Principle Components and Factor Analysis

Another application of eigenvalues is dimension reduction, which simplifies features by

uncovering latent variables. Unsupervised

One technique is Principle Components Analysis (PCA), which uncovers latent variables

that capture the primary directions of variation in the underlying data

→ May allow mapping data into a lower-dimensional, uncorrelated features

→ Uses Singular Value Decomposition (SVD) - a generalization of eigendecomposition

to non-square matrices

Given a matrix , can we find a lower-dimensional representation

for that captures the most variation in ?

The goal is to invert the data to find the —and provide a mapping to reduce the

dimensionality for future data.

𝑋 ∈ ℝ
𝑁×𝑀

𝑍 ∈ ℝ
𝑁×𝐿

𝐿 <𝑀 𝑋

𝑋 𝑍

11 / 51

Singular Value Decomposition

Many applications of SVD (e.g., least squares, checking rank), in part because it is

especially “numerically stable” (i.e., not sensitive to the roundoff errors we talked about

previously)

One application is to find the latent variables in PCA

PCA can be interpreted with an , but can be more confusing than

just using the SVD directly.

eigendecomposition

12 / 51

https://python.quantecon.org/svd_intro.html#application-principal-components-analysis-pca

SVD

An SVD for any is:

The diagonal elements of are singular values, and there are zeros

everywhere else. If then there singular values ()

→ Those singular values are also the square roots of the eigenvalues of (or

)

→ The number of non-zero singular values is the rank of the matrix

 and are orthogonal matrices

→ is eigenvectors of and is eigenvectors of

𝑋 ∈ ℝ
𝑁×𝑀

𝑋 = 𝑈Σ𝑉 𝑇

Σ ∈ ℝ𝑁×𝑀

𝑀 < 𝑁 𝑀 𝜎1,…𝜎𝑀

𝑋𝑋
𝑇

𝑋
𝑇
𝑋

𝑋

𝑈 ∈ ℝ
𝑁×𝑁

𝑉 ∈ ℝ
𝑀×𝑀

𝑈 𝑋𝑋
𝑇

𝑉 𝑋
𝑇
𝑋

13 / 51

Decomposing the Data

A key result is that we can decompose the data into a sum of outer products of the

eigenvectors and singular values. Assume ordered so that :

Note that

 is the -th column of and is the th column of

So is an matrix but you can show that it is rank-1. i.e., you can

decompose it into the product of two vectors.

𝜎1 ≥ 𝜎2 ≥ … ≥ 𝜎𝑀

𝑋 = 𝑈Σ𝑉
𝑇
=

𝑀

∑
𝑚=1

𝜎𝑚𝑢𝑚𝑣
𝑇

𝑚

𝑢𝑚 ∈ ℝ
𝑁

𝑚 𝑈 𝑣𝑚 ∈ ℝ
𝑀

𝑚 𝑉

𝑢𝑚𝑣
𝑇
𝑚 𝑁 ×𝑀

14 / 51

Interpretation the Scatter (Covariance) Matrix

Assuming the data has been de-meaned already, is the covariance matrix,

otherwise it is called a scatter matrix

The covariance matrix, is a matrix where

Calculates an expression related to the the covariance between features

The eigenvectors of this tell you along which directions is there the most variation

𝑋⊤𝑋

𝑋⊤𝑋 𝑀 ×𝑀

[𝑋⊤𝑋]𝑖𝑗 =
𝑁

∑
𝑘=1

𝑥𝑘𝑖𝑥𝑘𝑗

15 / 51

Interpretation of the Gram Matrix

The Gramian is is a matrix where

i.e., each element measures the similarity between features of the th and th

observations

Inner products are a classic way to measure similarity

→ If is large, then the th and th observations are similar, and it is maximized if

equal.

→ If is zero then the features are as different as possible

This is important in what are called ``Kernel methods’’ which form approximations by

comparing the similarity of observations

𝑋𝑋⊤ 𝑁 ×𝑁

[𝑋𝑋⊤]𝑖𝑗 = 𝑥⊤𝑖 𝑥𝑗

𝑖 𝑗

𝑥𝑇𝑖 𝑥𝑗 𝑖 𝑗

𝑥𝑇𝑖 𝑥𝑗

16 / 51

Interpreting Rank

Intuition: rank if it can be decomposed into the sum of rank-1 matrices

→ Alternatively, can interpret rank of an matrix is if can find a

and such that

Remember: this works for any matrix

𝑟 𝑟

𝑁 ×𝑀 3 𝐴 ∈ ℝ
𝑁×3

𝐵 ∈ ℝ
3×𝑀 𝑋 = 𝐴𝐵

𝑋 ∈ ℝ
𝑁×𝑀

17 / 51

Dimension Reduction

Frequently and the may decay quickly, so we can approximate with

fewer terms by truncating the sum at .

Note that if the data is actually lower-dimensional in a suitable space (e.g.,

) then for , so the truncated sum is exact

𝜎1 ≫ 𝜎𝑀 𝜎𝑚 𝑋

𝐿 <𝑀

𝑋 ≈

𝐿

∑
𝑚=1

𝜎𝑚𝑢𝑚𝑣
𝑇

𝑚

rank(𝑋) = 𝐿

<𝑀 𝜎𝑚 = 0 𝐿 < 𝑚 ≤𝑀

18 / 51

PCA as an Optimal Dimension Reduction

Can prove that if we truncate at , this is the best rank approximation to

according to some formal criteria.

→ Intuitively, finds directions of the data that capture the most variation in the

covariance matrix

→ Can prove it is the solution to the optimization problem to explain the most variation

in the data with the lowest dimensionality

𝐿 <𝑀 𝐿 𝑋

See for some intuition on this as an optimization problem.here

19 / 51

https://en.wikipedia.org/wiki/Principal_component_analysis#First_component

Creating a Dataset with Latent Factors

Create a dataset with two latent factors, the first dominating

N = 50 # number of observations1
L, M = 2, 3 # number of latent and observed factors2
Z = np.random.randn(N, L) # latent factors3
F = np.array([[1.0, 0.05], # X_1 = Z_1 + 0.05 Z_24
 [2.0, 0.0], # X_2 = 2 Z_15
 [3.0, 0.1]]) # X_3 = 3 Z_1 + 0.1 Z_26
X = Z @ F.T + 0.1 * np.random.randn(N, M) # added noise7
print(f"Z is {Z.shape}, X is {X.shape}")8

Z is (50, 2), X is (50, 3)

20 / 51

PCA Without Dimension Reduction

See for coding yourself. We will use the package

The explained variance is the fraction of the variance explained by each factor

QuantEcon SVD sklearn

pca = PCA(n_components=3)1
pca.fit(X)2
with np.printoptions(precision=4, suppress=True, threshold=5):3
 print(f"Singular Values (sqrt eigenvalues):\n{pca.singular_values_}")4
 print(f"Explained Variance (ordered):\n{pca.explained_variance_ratio_}")5

Singular Values (sqrt eigenvalues):
[27.3715 0.9661 0.6719]
Explained Variance (ordered):
[0.9982 0.0012 0.0006]

21 / 51

https://python.quantecon.org/svd_intro.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

Dimension Reduction with PCA

pca = PCA(n_components=2) # one less, and correctly specified1
Z_hat = pca.fit_transform(X) # transformed by dropping last factor 2
Scale and sign may not match due to indeterminacy3
print(f"Correlation of Z_1 to Z_hat_1 = {np.corrcoef(Z.T, Z_hat.T)[0,2]}")4
print(f"Correlation of Z_2 to Z_hat_2 = {np.corrcoef(Z.T, Z_hat.T)[1,3]}")5

Correlation of Z_1 to Z_hat_1 = 0.9991096955745299
Correlation of Z_2 to Z_hat_2 = -0.5335921067447037

22 / 51

Interpreting the Results

The first factor in the decomposition is nearly perfectly (positive or negatively) correlated

with the more important latent factor

→ The sign could have gone either way. The key is the shared information

→ How could you have known the sign is indeterminate?

The 2nd factor has a good but not great correlation with the 2nd latent. Why?

The variance decomposition that gave a 3rd factor with non-zero variance

→ We only had two latent variables. Why didn’t it figure it out?

How could you have changed the DGP to make this less successful?

23 / 51

Warning

We have just scratched the surface to build some intuition.

Many missing details and caveats (e.g., you may want to rescale your data, make sure

everything is demeaned if implementing yourself, etc.)

Read up on the documentation and theory before using in practice

Many exist which are more appropriate in particular settingsgeneralizations

24 / 51

https://en.wikipedia.org/wiki/Principal_component_analysis#Generalizations

Auto-Encoders

25 / 51

Auto-Encoders and Dimensionality Reduction

General class of problems which they call auto-encoders in ML/data science

→ Function , the encoder, maps to a latent space , which may be lower-

dimensional

→ Function , the decoder, maps points in the latent space back to

→ and are parameters for and which we are trying to find

Then the goal is to find the and parameters for our encoder, , and decoder, ,

where for as many as possible we have

The may be lower-dimensional, but may be useful regardless

𝑓 𝑋 𝑍

𝑔 𝑍 𝑋

𝜃𝑒 𝜃𝑑 𝑓 𝑔

𝜃𝑒 𝜃𝑑 𝑓 𝑔

𝑋

𝑔(𝑓(𝑥; 𝜃𝑒); 𝜃𝑑) ≈ 𝑥

𝑧 = 𝑓(𝑥; 𝜃𝑒)

26 / 51

Optimization Problem for an Auto-encoder

If we had a distribution for then can solve

But typically in practice we replace expectation with empirical distribution

𝑥

min
𝜃𝑒,𝜃𝑑

𝔼||𝑔(𝑓(𝑥; 𝜃𝑒); 𝜃𝑑)− 𝑥||22

{𝑥1,…𝑥𝑁}

min
𝜃𝑒,𝜃𝑑

1

𝑁

𝑁

∑
𝑛=1

||𝑔(𝑓(𝑥𝑛; 𝜃𝑒); 𝜃𝑑)− 𝑥𝑛||
2
2

27 / 51

PCA as a Linear Auto-Encoder

Let and where . If , “reconstruction

error” is .

In more advanced machine learning examples, intuition seems to come up frequently.

Related to embeddings, which come up with NLP, networks, etc.

𝑓(𝑥) =𝑊 𝑇𝑥 𝑔(𝑧) =𝑊𝑧 𝑊 ∈ ℝ
𝑀×𝐿 𝑥 ≈𝑊𝑊 𝑇𝑥

||𝑥− 𝑥||22

min
𝑊

1

𝑁

𝑁

∑
𝑛=1

||𝑊

𝑧𝑛=𝑓(𝑥𝑛;𝑊)

⏞𝑊 𝑇𝑥𝑛 − 𝑥𝑛||
2
2, with 𝑊 𝑇𝑊 = 𝐼

28 / 51

Connection to PCA

From a SVD of where are the eigenvectors. Assuming is sorted largest

to smallest.

→ If we are using components, then we truncate by taking the first columns of

and

→ Then let

With this, is an low-dimensional approximation to that minimizes the

reconstruction error

𝑋 = 𝑈Σ𝑉 𝑇 𝑉 Σ

𝐿 𝐿 𝑉

Σ

𝑊 ⊤ = Σ1:𝐿𝑉
⊤

1:𝐿

𝑓(𝑥) =𝑊 ⊤𝑥 𝑥

29 / 51

Discrete Latent Variables

30 / 51

Discrete Latent Variables

PCA was a way to uncover continuous latent variables or find low-dimensional

continuous approximations

But latent variables may be discrete (e.g., types of people, firms)

Hidden discrete variables require assigning observations to groups

31 / 51

Clustering

Clustering lets you take a set of observations with (potentially) variables (i.e., features)

and try to assign a discrete latent variable to each observation

→ Theory may or may not help us know the number of groups

→ While some are statistical and probabilistic, most methods assign a single latent

type rather than a distribution

→ Choosing the number of groups to assign to is a challenge that requires theory and

regularization - which we will avoid here

→ Instead, just as with PCA we will choose the number of groups ad-hoc rather than in

a disciplined way

32 / 51

Partitioning Sets

Let with the individual observations

Assume that each has a latent discrete then we can assign each

observation to one group

→ where each is in exactly one (i.e. a partition)

The goal is to find the partition which is the most likely to assign each the correct

latent variable

An alternative interpretation is to think of this as a dimension-reduction technique that

reduces complicated data into a low-dimensional discrete variable

In economics, we will sometimes cluster on some observations to reduce the dimension,

then leave others continuous

𝑋 ∈ ℝ
𝑁×𝑀

𝑥1,…𝑥𝑁 ∈ ℝ
𝑀

𝑥𝑛 𝑘 ∈ {1,…𝐾}

𝐒 ≡ {𝑆1,… ,𝑆𝐾} 𝑛 = 1,…𝑁 𝑆𝑘

𝑥𝑛

𝑘

33 / 51

k-means Clustering

Consider if the with should have similar

→ Group observations that are close or similar to each other

→ As always in linear algebra, close suggests using a norm. The Euclidean norm in the

 dimensional feature space is a good baseline

Objective function of k-means: choose the partition which minimizes the norm

between observations within each group

→ Normalize by group size to avoid distorting the objective function due to

different group sizes

𝑛 ∈ 𝑆𝑘 𝑥𝑛

𝑀

𝐒

|𝑆𝑘|

34 / 51

Formal Optimization Problem

Formally,

Using standard Euclidean norm between two elements in

min
𝐒

𝐾

∑
𝑘=1

1

|𝑆𝑘|
∑

𝑥𝑛,𝑥𝑛′∈𝑆𝑘

||𝑥𝑛 − 𝑥𝑛′ ||22

𝑆𝑘

||𝑥𝑛 − 𝑥𝑛′ ||22 =
𝑀

∑
𝑚=1

(𝑥𝑛𝑚 − 𝑥𝑛′𝑚)
2

35 / 51

k-means Objective Function

Can prove that the previous objective is equivalent to minimizing the sum of the squared

distances from the group ’s mean

Where the mean of group is standard, and across all features

Avoid different scales so isn’t dominated by one feature

𝑘

min
𝐒

𝐾

∑
𝑘=1

∑
𝑛∈𝑆𝑘

||𝑥𝑛 − 𝑥𝑘||
2
2

𝑘 𝑚

𝑥𝑘 ≡
1

|𝑆𝑘|
∑
𝑥𝑛∈𝑆𝑘

𝑥𝑛

𝑥𝑘

36 / 51

Generating Data with Latent Groups

Generate data with 2 features and 2 latent groups and see how k-means does

First, put the data in a dataframe

mu_1 = np.array([0.0, 0.0]) # mean of k=11
mu_2 = np.array([1.0, 1.0]) # mean of k=22
sigma = np.array([[0.2, 0], [0, 0.2]]) # use same variance3
N = 100 # observations4
X_1 = np.random.multivariate_normal(mu_1, sigma, N)5
X_2 = np.random.multivariate_normal(mu_2, sigma, N)6
df_1 = pd.DataFrame({"f1": X_1[:, 0], "f2": X_1[:, 1], "k": 1})7
df_2 = pd.DataFrame({"f1": X_2[:, 0], "f2": X_2[:, 1], "k": 2})8
df = pd.concat([df_1, df_2], ignore_index=True)9

37 / 51

Plotting Code with Seaborn
fig, ax = plt.subplots()1
sns.scatterplot(data=df, x="f1", y="f2",2
 hue="k", ax=ax)3
ax.set(xlabel="Feature 1", ylabel="Feature 2",4
 title="Latent Groups")5
plt.show()6

38 / 51

k-means to Recover the Latent Groups

Run k-means with 2 clusters and check the results

If correlation is close to 1 then successfully recovered the latent groups

If the correlation is close to -1 then it was successful. The latent groups numbers are

ordered arbitrarily, just as was

ˆ𝑘

𝑘

kmeans = KMeans(n_clusters=2, random_state=0)1
k_hat = kmeans.fit_predict(df[["f1", "f2"]])2
df["k_hat"] = k_hat + 13
corr = df["k"].corr(df["k_hat"])4
print(f"Correlation between k and k_hat:{corr:.2f}")5

Correlation between k and k_hat:-0.84

39 / 51

Confusion Matrix

from sklearn.metrics import confusion_matrix1
2

compute confusion matrix3
cm = confusion_matrix(df["k"], df["k_hat"])4

5
plot confusion matrix6
sns.heatmap(cm, annot=True, cmap='Blues')7
plt.xlabel('Predicted k')8
plt.ylabel('True k')9
plt.title('Confusion Matrix')10
plt.show()11

40 / 51

Potentially Swap and Compare

Label ordering arbitary, so “confusion matrix might require reordering to compare

ˆ𝑘

if df['k'].corr(df['k_hat']) < 0.5:1
 df['k_hat'] = df['k_hat'].replace({1: 2, 2: 1})2
 print(f"Correlation now {df['k'].corr(df['k_hat'])}")3

4
df['Cluster'] = df.apply(lambda x: rf"$k=\hat{{k}}={{{x['k']:.0g}}}$"5
 if x['k'] == x['k_hat'] else r'$k \neq \hat{k}$',6
 axis=1)7

Correlation now 0.8427009716003864

41 / 51

Plotting the Uncovered Latent Groups
fig, ax = plt.subplots(figsize=(6, 4))1
sns.scatterplot(data=df, x="f1", y="f2",2
 hue="Cluster", ax=ax)3
ax.set(xlabel="Feature 1", ylabel="Feature 2",\4
 title="k-means Recovered Groups")5
plt.show()6

42 / 51

(Optional) Factors within a Portfolio
Model

43 / 51

Simulation

In the previous lecture we introduced code for simulation

def simulate(A, X_0, T):1
 X = np.zeros((2, T+1))2
 X[:,0] = X_03
 for t in range(T):4
 X[:,t+1] = A @ X[:,t]5
 return X6

44 / 51

A Portfolio Example

Two assets pay dividends following from

Portfolio has shares of each asset and you discount at rate

𝑑𝑡 ≡ [𝑑1𝑡 𝑑2𝑡]
𝑇

𝑑𝑡+1 = 𝐴𝑑𝑡 𝑑0

𝐺 ≡ [𝐺1 𝐺2] 𝛽

A = np.array([[0.6619469, 0.49646018],[0.5840708, 0.4380531]])1
G = np.array([[10.0, 4.0]]) 2
d_0 = np.array([1.0, 1.0])3
T, beta = 10, 0.94
p_0 = G @ solve(np.eye(2) - beta * A, d_0)5
d = simulate(A, d_0, T)6
y = G @ d # total dividends from portfolio7
print(f"Portfolio value at t=0 is {p_0[0]:.5g}, total dividends at time {T} is {y[0,T]:.5g}")8

Portfolio value at t=0 is 1424.5, total dividends at time 10 is 36.955

45 / 51

Dividends Seem to Grow at a Similar Rate?

46 / 51

Digging Deeper

Let’s do an eigendecomposition to analyze the factors

The first eigenvector is 1.1, but the second is very close to zero!

→ (In fact, I rigged it to be zero by constructing from a , so this is all numerical

copy/paste errors)

Suggests that maybe only one latent factor driving both and ?

Of course, you may have noticed that the columns in the matrix looked collinear, which

was another clue.

Lambda, Q = eig(A)1
print(np.real(Lambda))2

[1.10000000e+00 -2.65486733e-09]

Λ

𝑑1𝑡 𝑑2𝑡

47 / 51

Evolution Matrix is Very Simple with

If we stack columns then,

𝜆2 = 0

𝑄 ≡ [𝑞1 𝑞2]

𝐴 = 𝑄Λ𝑄−1 = 𝑄 [𝜆1 0

0 0
]𝑄−1 = 𝜆1𝑞1𝑞

−1
1

lambda_1 = np.real(Lambda[0])1
q_1 = np.reshape(Q[:,0], (2,1))2
q_1_inv = np.reshape(inv(Q)[0,:], (1,2))3
norm(A - lambda_1 * q_1 @ q_1_inv) # pretty close to zero!4

np.float64(2.663274500543771e-09)

48 / 51

Transforming to the Latent State

Recall: can be interpreted as:

→ Transformation to latent space, scaling, transform back

We can demonstrate this in our example:

→ Transforming to using

→ Evolving from with , or

→ Transforming back with

→ Checking if it aligns with the

𝐴 = 𝑄Λ𝑄−1

𝑑0 ℓ0 𝑞−1
1

ℓ𝑡 ℓ0 ℓ𝑡+1 = 𝜆1ℓ𝑡 ℓ𝑡 = 𝜆
𝑡
1ℓ0

𝑞1

𝑑𝑡

49 / 51

Implementation

Let’s see if these line up perfectly

l_0 = lambda_1 * q_1_inv @ d_0 # latent space1
l = l_0 * np.power(lambda_1, np.arange(0, T)) # powers2
d_hat = q_1 * l # back to original space3
Missing d_0 since doing A * d_0 iterations4
print(f"norm = {norm(d[:,1:] - d_hat)}")5
y_hat = G @ d_hat6

norm = 2.3494410875961204e-10

50 / 51

Total Dividends and the Latent Variable

51 / 51

