

Applications of Linear Algebra and Eigenvalues

Graduate Quantitative Economics and Datascience

Jesse Perla

jesse.perla@ubc.ca

University of British Columbia

Table of contents

- Overview
- Difference Equations
- Unemployment Dynamics
- Present Discounted Values
- (Optional) Matrix Conditioning and Stability

Overview

Motivation and Materials

- In this lecture, we will cover some applications of the tools we developed in the previous lecture
- The goal is to build some useful tools to sharpen your intuition on linear algebra and eigenvalues/eigenvectors, and practice some basic coding

Extra Materials

- Material related to: QuantEcon Python, QuantEcon Data Science, Intro Quantitative
 Economics with Python
- Self-study and Optional Materials:
 - → Geometric Series and Present Values
 - → Portfolio example
 - → Unemployment Dynamics example
 - → Supply and Demand
 - → More on Competitive Equilibrium

Packages

```
import numpy as np
import matplotlib.pyplot as plt
import scipy
from numpy.linalg import cond, matrix_rank, norm
from scipy.linalg import inv, solve, det, eig, lu, eigvals
from scipy.linalg import solve_triangular, eigvalsh, cholesky
```


Difference Equations

Linear Difference Equations as Iterative Maps

- Consider $A:\mathbb{R}^N o \mathbb{R}^N$ as the linear map for the state $x_t \in \mathbb{R}^N$
- An example of a linear difference equation is

$$x_{t+1} = Ax_t$$

where

$$A \equiv \begin{bmatrix} 0.9 & 0.1 \\ 0.5 & 0.8 \end{bmatrix}$$

```
1 A = np.array([[0.9, 0.1], [0.5, 0.8]])

2 x_0 = np.array([1, 1])

3 x_1 = A @ x_0

4 print(f"x_1 = {x_1}, x_2 = {A @ x_1}")
```


Iterating with ho(A)>1

Iterate $x_{t+1} = Ax_t$ from x_0 for t = 100

```
1 x_0 = np.array([1, 1])
2 t = 200
3 x_t = np.linalg.matrix_power(A, t) @ x_0
4 rho_A = np.max(np.abs(eigvals(A)))
5 print(f"rho(A) = {rho_A}")
6 print(f"x_{t} = {x_t}")
```

rho(A) = 1.079128784747792 $x_200 = [3406689.32410673 6102361.18640516]$

- Diverges to $x_{\infty} = \begin{bmatrix} \infty & \infty \end{bmatrix}^T$
- ho=1+0.079 says in the worst case (i.e., $x_t \propto$ the eigenvector associated with $\lambda=1.079$ eigenvalue), expands by 7.9% on each iteration

Iterating with ho(A) < 1

```
1 A = np.array([[0.6, 0.1], [0.5, 0.8]])
2 x_t = np.linalg.matrix_power(A, t) @ x_0
3 rho_A = np.max(np.abs(eigvals(A)))
4 print(f"rho(A) = {rho_A}")
5 print(f"x_{t} = {x_t}")
```

• Converges to $x_{\infty} = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$

Iterating with ho(A)=1

- To make a matrix that has ho(A)=1 reverse eigendecomposition!
- Leave previous eigenvectors in Q, change Λ to force ho(A) directly

```
1  Q = np.array([[-0.85065081, -0.52573111], [0.52573111, -0.85065081]])
2  print(f"check orthogonal: dot(x_1,x_2) approx 0: {np.dot(Q[:,0], Q[:,1])}")
3  Lambda = [1.0, 0.8] # choosing eigenvalue so max_n|lambda_n| = 1
4  A = Q @ np.diag(Lambda) @ inv(Q)
5  print(f"rho(A) = {np.max(np.abs(eigvals(A)))}")
6  print(f"x_{t} = {np.linalg.matrix_power(A, t) @ x_0}")
check orthogonal: dot(x_1,x_2) approx 0: 0.0
rho(A) = 1.0
x_200 = [ 0.27639321 -0.17082039]
```


Unemployment Dynamics

Dynamics of Employment without Population Growth

- Consider an economy where in a given year lpha=5% of employed workers lose job and $\phi=10\%$ of unemployed workers find a job
- We start with $E_0=900,000$ employed workers, $U_0=100,000$ unemployed workers, and no birth or death. Dynamics for the year:

$$E_{t+1} = (1 - \alpha)E_t + \phi U_t$$

$$U_{t+1} = \alpha E_t + (1 - \phi)U_t$$

Write as Linear System

• Use matrices and vectors to write as a linear system

$$\underbrace{\begin{bmatrix} E_{t+1} \\ U_{t+1} \end{bmatrix}}_{X_{t+1}} = \underbrace{\begin{bmatrix} 1 - \alpha & \phi \\ \alpha & 1 - \phi \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} E_{t} \\ U_{t} \end{bmatrix}}_{X_{t}}$$

Simulating

Simulate by iterating $X_{t+1} = AX_t$ from X_0 until T=100

 $X_{100} = [666666.6870779 \ 333333.31292209]$

Dynamics of Unemployment

```
1 fig, ax = plt.subplots()
  ax.plot(range(T+1), X.T,
    label=["Employed", "Unemployed"])
  ax.set(xlabel="t",
    ylabel="Number of Workers",
    title="Employment Status")
  ax.legend()
  plt.show()
```


Convergence to a Longrun Distribution

- Find X_{∞} by iterating $X_{t+1} = AX_t$ many times from a X_0 ?
 - $_{ o}$ Check if it has converged with $X_{\infty}pprox AX_{\infty}$
 - $_{
 ightarrow}$ Is X_{∞} the same from any X_0 ? Will discuss "ergodicity" later
- Alternatively, note that this expression is the same as

$$1 \times \bar{X} = A\bar{X}$$

- $_{
 ightarrow}$ i.e, a $\lambda=1$ where $ar{X}$ is the corresponding eigenvector of A
- $_{
 ightarrow}$ Is $\lambda=1$ always an eigenvalue? (yes if all $\sum_{n=1}^{N}A_{ni}=1$ for all i)
- \rightarrow Does $\bar{X}=X_{\infty}$? For any X_0 ?
- $_{
 ightarrow}$ Multiple eigenvalues with $\lambda=1\implies$ multiple $ar{X}$

Using the First Eigenvector for the Steady State

```
1 Lambda, Q = eig(A)
2 print(f"real eigenvalues = {np.real(Lambda)}")
3 print(f"eigenvectors in columns of =\n{Q}")
4 print(f"first eigenvalue = 1? \
5 {np.isclose(Lambda[0], 1.0)}")
6 X_bar = Q[:,0] / np.sum(Q[:,0]) * np.sum(X_0)
7 print(f"X_bar = {X_bar}\nX_{T} = {X[:,T]}")
```

```
real eigenvalues = [1. 0.85]
eigenvectors in columns of =
[[ 0.89442719 -0.70710678]
  [ 0.4472136   0.70710678]]
first eigenvalue = 1? True
X_bar = [666666.66666667 333333.3333333]
X_100 = [666666.6870779  333333.31292209]
```


Using the Second Eigenvalue for the Convergence Speed

- ullet The second largest $(\lambda_2 < 1)$ provides information on the speed of convergence
 - → 0 is instantaneous convergence here
 - → 1 is no convergence here
- We will create a new matrix with the same steady state, different speed
 - $_{
 m o}$ To do this, build a new matrix with the same eigenvectors (in particular the same eigenvector associated with the $\lambda=1$ eigenvalue)
 - ightarrow But we will replace the eigenvalues $[1.0 \quad 0.85]$ with $[1.0 \quad 0.5]$
 - ightarrow Then we will reconstruct A matrix and simulate again
- Intuitively we will see the that the resulting $A_{
 m fast}$ implies lpha and ϕ which are larger by the same proportion

Simulating with Different Eigenvalues

```
1 Lambda_fast = np.array([1.0, 0.4])
2 A_fast = Q @ np.diag(Lambda_fast) @ inv(Q) # same eigenvectors
3 print("A_fast = \n", A_fast)
4 print(f"alpha_fast/alpha = {A_fast[1,0]/A[1,0]:.2g}, \
5 phi_fast/phi = {A_fast[0,1]/A[0,1]:.2g}")
6 X_fast = simulate(A_fast, X_0, T)
7 print(f"X_{T} = {X_fast[:,T]}")

A_fast =
[[0.8 0.4]
[0.2 0.6]]
alpha_fast/alpha = 4, phi_fast/phi = 4
X_100 = [666666.66666667 3333333.33333333]
```


Convergence Dynamics of Unemployment

Present Discounted Values

Geometric Series

- ullet Assume dividends follow $y_{t+1}=Gy_t$ for t=0,1,... and y_0 is given
- G>0, dividends are discounted at factor $\beta>1$ then $p_t=\sum_{s=0}^\infty \beta^s y_{t+s}=rac{y_t}{1-\beta G}$
- More generally if $x_{t+1} = Ax_t$, $x_t \in \mathbb{R}^N$, $y_t = Gx_t$ and $A \in \mathbb{R}^{N \times N}$, then

$$\begin{split} p_t &= y_t + \beta y_{t+1} + \beta^2 y_{t+2} + \dots = G x_t + \beta G A x_t + \beta^2 G A A x_t + \dots \\ &= \sum_{s=0}^{\infty} \beta^s G A^s y_t \\ &= G (I - \beta A)^{-1} x_t \quad , \text{ if } \rho(A) < 1/\beta \end{split}$$

• where ho(A) is the spectral radius

Discounting and the Spectral Radius

- ullet Intuitively, the spectral radius of A, the maximum scaling, must be less than discounting
- Intuition from univariate:
 - \rightarrow If $G \in \mathbb{R}^{1 imes 1}$ then $\mathrm{eig}(G) = G$, so must have $|\beta G| < 1$

PDV Example

Here is an example with $1 < \rho(A) < 1/\beta$. Try with different A

```
beta = 0.9
A = np.array([[0.85, 0.1], [0.2, 0.9]])
G = np.array([[1.0, 1.0]]) # row vector

x_0 = np.array([1.0, 1.0])

p_t = G @ solve(np.eye(2) - beta * A, x_0)

#p_t = G @ inv(np.eye(2) - beta * A) @ x_0 # alternative

rho_A = np.max(np.abs(np.real(eigvals(A))))

print(f"p_t = {p_t[0]:.4g}, spectral radius = {rho_A:.4g}, 1/beta = {1/beta:.4g}")
```

 $p_t = 24.43$, spectral radius = 1.019, 1/beta = 1.111

(Optional) Matrix Conditioning and Stability

Matrix Conditioning

- Poorly conditioned matrices can lead to inaccurate or wrong solutions
- Tends to happen when matrices are close to singular or when they have very different scales so there will be times when you need to rescale your problems

Condition Numbers of Matrices

- $\operatorname{det}(A) pprox 0$ may say it is "almost" singular, but it is not scale-invariant
- $\operatorname{cond}(A) \equiv ||A|| \cdot ||A^{-1}||$ where $||\cdot||$ is the matrix norm expensive to calculate in practice. Connected to eigenvalues $\operatorname{cond}(A) = |\frac{\lambda_{max}}{\lambda_{min}}|$
- Scale free measure of numerical issues for a variety of matrix operations
- Intuition: if $\operatorname{cond}(A) = K$, then $b \to b + \nabla b$ change in b amplifies to a $x \to x + K \nabla b$ error when solving Ax = b.
- See Matlab Docs on inv for example, where inv is a bad idea due to poor conditioning

```
1 print(f"condition(I) = {cond(np.eye(2))}")
2 print(f"condition(A) = {cond(A)}, condition(A^(-1)) = {cond(inv(A))}")
condition(I) = 1.0
condition(A) = 40000001.962777555, condition(A^(-1)) = 40000002.02779216
```


Example with Interpolation

- Consider fitting data $x \in \mathbb{R}^{N+1}$ and $y \in \mathbb{R}^{N+1}$ with an N-degree polynomial
- That is, find $c \in \mathbb{R}^{N+1}$ such that

$$c_0 + c_1 x_1 + c_2 x_1^2 + \dots + c_N x_1^N = y_1$$

$$\dots = \dots$$

$$c_0 + c_1 x_N + c_2 x_N^2 + \dots + c_N x_N^N = y_N$$

• Which we can then use as $P(x) = \sum_{n=0}^N c_n x^n$ to interpolate between the points

Writing as a Linear System

ullet Define a matrix of all of the powers of the x values

$$A \equiv egin{bmatrix} 1 & x_0 & x_0^2 & ... & x_0^N \ dots & dots & dots & dots \ 1 & x_N & x_N^2 & ... & x_N^N \end{bmatrix}$$

ullet Then solve for c as the solution (where A is invertible if x_n are unique)

$$Ac = y$$

Solving an Example

• Let's look at the numerical error here from the interpolation using the inf-norm, i.e., $||x||_{\infty}$ $= \max_n |x_n|$

```
1 N = 5
2 x = np.linspace(0.0, 10.0, N + 1)
3 y = np.exp(x) # example function to interpolate
4 A = np.array([[x_i**n for n in range(N + 1)] for x_i in x]) # or np.vander
5 c = solve(A, y)
6 c_inv = inv(A) @ y
7 print(f"error = {norm(A @ c - y, np.inf)}, \
8 error using inv(A) = {norm(A @ c_inv - y, np.inf)}")
9 print(f"cond(A) = {cond(A)}")
```

error = 1.574562702444382e-11, error using inv(A) = 1.1932570487260818e-09 cond(A) = 564652.3214000753

Things Getting Poorly Conditioned Quickly

```
1 N = 10
2 x = np.linspace(0.0, 10.0, N + 1)
3 y = np.exp(x) # example function to interpolate
4 A = np.array([[x_i**n for n in range(N + 1)] for x_i in x]) # or np.vander
5 c = solve(A, y)
6 c_inv = inv(A) @ y # Solving with inv(A) instead of solve(A, y)
7 print(f"error = {norm(A @ c - y, np.inf)}, \
8 error using inv(A) = {norm(A @ c_inv - y, np.inf)}")
9 print(f"cond(A) = {cond(A)}")
```

error = 5.334186425898224e-10, error using inv(A) = 6.22717197984457e-06 cond(A) = 4462824600195.809

Matrix Inverses Fail Completely for N=20

```
1 N = 20
2 x = np.linspace(0.0, 10.0, N + 1)
3 y = np.exp(x) # example function to interpolate
4 A = np.array([[x_i**n for n in range(N + 1)] for x_i in x]) # or np.vander
5 c = solve(A, y)
6 c_inv = inv(A) @ y # Solving with inv(A) instead of solve(A, y)
7 print(f"error = {norm(A @ c - y, np.inf)}, \
8 error using inv(A) = {norm(A @ c_inv - y, np.inf)}")
9 print(f"cond(A) = {cond(A):.4g}")
```

error = 8.36735125631094e-10, error using inv(A) = 1419.6725472353137 cond(A) = 2.938e+24

Moral of this Story

- Use **solve**, which is faster and can often solve ill-conditioned problems. Rarely use **inv**, and only when you know the problem is well-conditioned
- Check conditioning of matrices when doing numerical work as an occasional diagnostic, as it is a good indicator of potential problems and collinearity
- For approximation, never use a monomial basis for polynomials
 - → Prefer polynomials like Chebyshev, which are designed to be as orthogonal as possible

```
1 N = 40
2 x = np.linspace(-1, 1, N+1) # Or any other range of x values
3 A = np.array([[np.polynomial.Chebyshev.basis(n)(x_i) for n in range(N+1)] for x_i in x])
4 A_monomial = np.array([[x_i**n for n in range(N + 1)] for x_i in x]) # or np.vander
5 print(f"cond(A) = {cond(A):.4g}, cond(A_monomial) = {cond(A_monomial):.4g}")
```

 $cond(A) = 3.64e+09, cond(A_monomial) = 5.311e+17$