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Overview

3 / 34



Motivation and Materials

In this lecture, we will cover some applications of the tools we developed in the previous

lecture

The goal is to build some useful tools to sharpen your intuition on linear algebra and

eigenvalues/eigenvectors, and practice some basic coding
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Extra Materials

Material related to: , , 

Self-study and Optional Materials:

→

→

→

→

→

QuantEcon Python QuantEcon Data Science Intro Quantitative

Economics with Python

Geometric Series and Present Values

Portfolio example

Unemployment Dynamics example

Supply and Demand

More on Competitive Equilibrium

5 / 34

https://python.quantecon.org/linear_algebra.html
https://datascience.quantecon.org/scientific/applied_linalg.html
https://intro.quantecon.org/
https://intro.quantecon.org/
https://intro.quantecon.org/geom_series.html#example-interest-rates-and-present-values
https://datascience.quantecon.org/scientific/applied_linalg.html#portfolios
https://datascience.quantecon.org/scientific/applied_linalg.html#unemployment-dynamics
https://intro.quantecon.org/intro_supply_demand.html
https://intro.quantecon.org/supply_demand_multiple_goods.html


Packages
import numpy as np1
import matplotlib.pyplot as plt2
import scipy3
from numpy.linalg import cond, matrix_rank, norm4
from scipy.linalg import inv, solve, det, eig, lu, eigvals5
from scipy.linalg import solve_triangular, eigvalsh, cholesky6
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Difference Equations
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Linear Difference Equations as Iterative Maps

Consider  as the linear map for the state 

An example of a linear difference equation is

where

𝐴 : ℝ
𝑁
→ ℝ

𝑁
𝑥𝑡 ∈ ℝ

𝑁

𝑥𝑡+1 = 𝐴𝑥𝑡

𝐴 ≡ [0.9 0.1

0.5 0.8
]

A = np.array([[0.9, 0.1], [0.5, 0.8]])1
x_0 = np.array([1, 1])2
x_1 = A @ x_03
print(f"x_1 = {x_1}, x_2 = {A @ x_1}")4

x_1 = [1.  1.3], x_2 = [1.03 1.54]
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Iterating with 

Iterate  from  for 

Diverges to 

 says in the worst case (i.e.,  the eigenvector associated with 

 eigenvalue), expands by  on each iteration

𝜌(𝐴) > 1

𝑥𝑡+1 = 𝐴𝑥𝑡 𝑥0 𝑡 = 100

x_0 = np.array([1, 1])1
t = 2002
x_t = np.linalg.matrix_power(A, t) @ x_03
rho_A = np.max(np.abs(eigvals(A)))4
print(f"rho(A) = {rho_A}")5
print(f"x_{t} = {x_t}")6

rho(A) = 1.079128784747792
x_200 = [3406689.32410673 6102361.18640516]

𝑥∞ = [∞ ∞]𝑇

𝜌 = 1 + 0.079 𝑥𝑡 ∝ 𝜆

= 1.079 7.9%
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Iterating with 

Converges to 

𝜌(𝐴) < 1
A = np.array([[0.6, 0.1], [0.5, 0.8]])1
x_t = np.linalg.matrix_power(A, t) @ x_02
rho_A = np.max(np.abs(eigvals(A)))3
print(f"rho(A) = {rho_A}")4
print(f"x_{t} = {x_t}")5

rho(A) = 0.9449489742783178
x_200 = [6.03450418e-06 2.08159603e-05]

𝑥∞ = [0 0]𝑇
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Iterating with 

To make a matrix that has  reverse eigendecomposition!

Leave previous eigenvectors in , change  to force  directly

𝜌(𝐴) = 1

𝜌(𝐴) = 1

𝑄 Λ 𝜌(𝐴)

Q = np.array([[-0.85065081, -0.52573111], [0.52573111, -0.85065081]])1
print(f"check orthogonal: dot(x_1,x_2) approx 0: {np.dot(Q[:,0], Q[:,1])}")2
Lambda = [1.0, 0.8]  # choosing eigenvalue so max_n|lambda_n| = 13
A = Q @ np.diag(Lambda) @ inv(Q)4
print(f"rho(A) = {np.max(np.abs(eigvals(A)))}")5
print(f"x_{t} = {np.linalg.matrix_power(A, t) @ x_0}")6

check orthogonal: dot(x_1,x_2) approx 0: 0.0
rho(A) = 1.0
x_200 = [ 0.27639321 -0.17082039]
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Unemployment Dynamics
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Dynamics of Employment without Population Growth

Consider an economy where in a given year  of employed workers lose job and 

 of unemployed workers find a job

We start with  employed workers,  unemployed workers,

and no birth or death. Dynamics for the year:

𝛼 = 5% 𝜙

= 10%

𝐸0 = 900, 000 𝑈0 = 100, 000

𝐸𝑡+1 = (1− 𝛼)𝐸𝑡 + 𝜙𝑈𝑡

𝑈𝑡+1 = 𝛼𝐸𝑡 + (1− 𝜙)𝑈𝑡
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Write as Linear System

Use matrices and vectors to write as a linear system

[𝐸𝑡+1

𝑈𝑡+1
]
⏟

𝑋𝑡+1

= [1− 𝛼 𝜙

𝛼 1− 𝜙
]

⏟ ⏟ ⏟__ __

𝐴

[𝐸𝑡

𝑈𝑡
]
⏟

𝑋𝑡
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Simulating

Simulate by iterating  from  until 𝑋𝑡+1 = 𝐴𝑋𝑡 𝑋0 𝑇 = 100

def simulate(A, X_0, T):1
    X = np.zeros((2, T+1))2
    X[:,0] = X_03
    for t in range(T):4
        X[:,t+1] = A @ X[:,t]5
    return X6
X_0 = np.array([900000, 100000])7
A = np.array([[0.95, 0.1], [0.05, 0.9]])8
T = 1009
X = simulate(A, X_0, T)10
print(f"X_{T} = {X[:,T]}")11

X_100 = [666666.6870779  333333.31292209]
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Dynamics of Unemployment
fig, ax = plt.subplots()1
ax.plot(range(T+1), X.T,2
  label=["Employed", "Unemployed"])3
ax.set(xlabel="t",4
  ylabel="Number of Workers",5
  title="Employment Status")6
ax.legend()7
plt.show()8
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Convergence to a Longrun Distribution

Find  by iterating  many times from a ?

→ Check if it has converged with 

→ Is  the same from any ? Will discuss “ergodicity” later

Alternatively, note that this expression is the same as

→ i.e, a  where  is the corresponding eigenvector of 

→ Is  always an eigenvalue? (yes if all  for all )

→ Does ? For any ?

→ Multiple eigenvalues with  multiple 

𝑋∞ 𝑋𝑡+1 = 𝐴𝑋𝑡 𝑋0

𝑋∞ ≈ 𝐴𝑋∞

𝑋∞ 𝑋0

1 × 𝑋̄ = 𝐴𝑋̄

𝜆 = 1 𝑋̄ 𝐴

𝜆 = 1 ∑𝑁

𝑛=1
𝐴𝑛𝑖 = 1 𝑖

𝑋̄ = 𝑋∞ 𝑋0

𝜆 = 1 ⟹ 𝑋̄
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Using the First Eigenvector for the Steady State
Lambda, Q = eig(A)1
print(f"real eigenvalues = {np.real(Lambda)}")2
print(f"eigenvectors in columns of =\n{Q}")3
print(f"first eigenvalue = 1? \4
{np.isclose(Lambda[0], 1.0)}")5
X_bar = Q[:,0] / np.sum(Q[:,0]) * np.sum(X_0)6
print(f"X_bar = {X_bar}\nX_{T} = {X[:,T]}")7

real eigenvalues = [1.   0.85]
eigenvectors in columns of =
[[ 0.89442719 -0.70710678]
 [ 0.4472136   0.70710678]]
first eigenvalue = 1? True
X_bar = [666666.66666667 333333.33333333]
X_100 = [666666.6870779  333333.31292209]
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Using the Second Eigenvalue for the Convergence Speed

The second largest ( ) provides information on the speed of convergence

→  is instantaneous convergence here

→  is no convergence here

We will create a new matrix with the same steady state, different speed

→ To do this, build a new matrix with the same eigenvectors (in particular the same

eigenvector associated with the  eigenvalue)

→ But we will replace the eigenvalues  with 

→ Then we will reconstruct  matrix and simulate again

Intuitively we will see the that the resulting  implies  and  which are larger by the

same proportion

𝜆2 < 1

0

1

𝜆 = 1

[1.0 0.85] [1.0 0.5]

𝐴

𝐴fast 𝛼 𝜙
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Simulating with Different Eigenvalues
Lambda_fast = np.array([1.0, 0.4])1
A_fast = Q @ np.diag(Lambda_fast) @ inv(Q) # same eigenvectors2
print("A_fast =\n", A_fast)3
print(f"alpha_fast/alpha = {A_fast[1,0]/A[1,0]:.2g}, \4
phi_fast/phi = {A_fast[0,1]/A[0,1]:.2g}")5
X_fast = simulate(A_fast, X_0, T)6
print(f"X_{T} = {X_fast[:,T]}")7

A_fast =
 [[0.8 0.4]
 [0.2 0.6]]
alpha_fast/alpha = 4, phi_fast/phi = 4
X_100 = [666666.66666667 333333.33333333]
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Convergence Dynamics of Unemployment
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Present Discounted Values
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Geometric Series

Assume dividends follow  for  and  is given

, dividends are discounted at factor  then 

More generally if , ,  and , then

where  is the spectral radius

𝑦𝑡+1 = 𝐺𝑦𝑡 𝑡 = 0, 1,… 𝑦0

𝐺 > 0 𝛽 > 1 𝑝𝑡 =∑
∞
𝑠=0 𝛽

𝑠𝑦𝑡+𝑠 =
𝑦𝑡

1−𝛽𝐺

𝑥𝑡+1 = 𝐴𝑥𝑡 𝑥𝑡 ∈ ℝ
𝑁 𝑦𝑡 = 𝐺𝑥𝑡 𝐴 ∈ ℝ𝑁×𝑁

𝑝𝑡 = 𝑦𝑡 + 𝛽𝑦𝑡+1 + 𝛽2𝑦𝑡+2 +… = 𝐺𝑥𝑡 + 𝛽𝐺𝐴𝑥𝑡 + 𝛽2𝐺𝐴𝐴𝑥𝑡 +…

=
∞

∑
𝑠=0

𝛽𝑠𝐺𝐴𝑠𝑦𝑡

= 𝐺(𝐼 − 𝛽𝐴)−1𝑥𝑡 , if 𝜌(𝐴) < 1/𝛽

𝜌(𝐴)
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Discounting and the Spectral Radius

Intuitively, the spectral radius of , the maximum scaling, must be less than discounting

Intuition from univariate:

→ If  then , so must have 

𝐴

𝐺 ∈ ℝ
1×1 eig(𝐺) = 𝐺 |𝛽𝐺| < 1
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PDV Example

Here is an example with . Try with different 1 < 𝜌(𝐴) < 1/𝛽 𝐴

beta = 0.91
A = np.array([[0.85, 0.1], [0.2, 0.9]])2
G = np.array([[1.0, 1.0]]) # row vector3
x_0 = np.array([1.0, 1.0])4
p_t = G @ solve(np.eye(2) - beta * A, x_0)5
#p_t = G @ inv(np.eye(2) - beta * A) @ x_0 # alternative6
rho_A = np.max(np.abs(np.real(eigvals(A))))7
print(f"p_t = {p_t[0]:.4g}, spectral radius = {rho_A:.4g}, 1/beta = {1/beta:.4g}")8

p_t = 24.43, spectral radius = 1.019, 1/beta = 1.111
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(Optional) Matrix Conditioning and
Stability
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Matrix Conditioning

Poorly conditioned matrices can lead to inaccurate or wrong solutions

Tends to happen when matrices are close to singular or when they have very different

scales - so there will be times when you need to rescale your problems

eps = 1e-71
A = np.array([[1, 1], [1 + eps, 1]])2
print(f"A =\n{A}")3
print(f"A^{-1} =\n{inv(A)}")4

A =
[[1.        1.       ]
 [1.0000001 1.       ]]
A^-1 =
[[-9999999.99336215  9999999.99336215]
 [10000000.99336215 -9999999.99336215]]
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Condition Numbers of Matrices

 may say it is “almost” singular, but it is not scale-invariant

 where  is the matrix norm - expensive to calculate in

practice. Connected to eigenvalues 

Scale free measure of numerical issues for a variety of matrix operations

Intuition: if , then  change in  amplifies to a 

error when solving .

See  for example, where inv is a bad idea due to poor conditioning

det(𝐴) ≈ 0

cond(𝐴) ≡ ||𝐴|| ⋅ ||𝐴−1|| || ⋅ ||

cond(𝐴) = | 𝜆𝑚𝑎𝑥
𝜆𝑚𝑖𝑛

|

cond(𝐴) = 𝐾 𝑏→ 𝑏+∇𝑏 𝑏 𝑥→ 𝑥+𝐾∇𝑏

𝐴𝑥 = 𝑏

Matlab Docs on inv

print(f"condition(I) = {cond(np.eye(2))}")1
print(f"condition(A) = {cond(A)}, condition(A^(-1)) = {cond(inv(A))}")2

condition(I) = 1.0
condition(A) = 40000001.962777555, condition(A^(-1)) = 40000002.02779216
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https://www.mathworks.com/help/matlab/ref/inv.html#bu6sfy8-1


Example with Interpolation

Consider fitting data  and  with an -degree polynomial

That is, find  such that

Which we can then use as  to interpolate between the points

𝑥 ∈ ℝ𝑁+1 𝑦 ∈ ℝ𝑁+1 𝑁

𝑐 ∈ ℝ𝑁+1

𝑐0 + 𝑐1𝑥1 + 𝑐2𝑥
2
1 +…+ 𝑐𝑁𝑥

𝑁
1 = 𝑦1

… = …

𝑐0 + 𝑐1𝑥𝑁 + 𝑐2𝑥
2
𝑁 +…+ 𝑐𝑁𝑥

𝑁
𝑁 = 𝑦𝑁

𝑃(𝑥) =∑𝑁
𝑛=0 𝑐𝑛𝑥

𝑛
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Writing as a Linear System

Define a matrix of all of the powers of the  values

Then solve for  as the solution (where  is invertible if  are unique)

𝑥

𝐴 ≡
⎡

⎣

⎢
⎢

1 𝑥0 𝑥2
0

… 𝑥𝑁
0

⋮ ⋮ ⋮ ⋮ ⋮
1 𝑥𝑁 𝑥2𝑁 … 𝑥𝑁𝑁

⎤

⎦

⎥
⎥

𝑐 𝐴 𝑥𝑛

𝐴𝑐 = 𝑦
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Solving an Example

Let’s look at the numerical error here from the interpolation using the inf-norm, i.e., ||𝑥||∞
= max𝑛 |𝑥𝑛|

N = 51
x = np.linspace(0.0, 10.0, N + 1)2
y = np.exp(x)  # example function to interpolate3
A = np.array([[x_i**n for n in range(N + 1)] for x_i in x])  # or np.vander4
c = solve(A, y)5
c_inv = inv(A) @ y6
print(f"error = {norm(A @ c - y, np.inf)}, \7
error using inv(A) = {norm(A @ c_inv - y, np.inf)}")8
print(f"cond(A) = {cond(A)}")9

error = 1.574562702444382e-11, error using inv(A) = 1.1932570487260818e-09
cond(A) = 564652.3214000753
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Things Getting Poorly Conditioned Quickly
N = 101
x = np.linspace(0.0, 10.0, N + 1)2
y = np.exp(x)  # example function to interpolate3
A = np.array([[x_i**n for n in range(N + 1)] for x_i in x])  # or np.vander4
c = solve(A, y)5
c_inv = inv(A) @ y # Solving with inv(A) instead of solve(A, y)6
print(f"error = {norm(A @ c - y, np.inf)}, \7
error using inv(A) = {norm(A @ c_inv - y, np.inf)}")8
print(f"cond(A) = {cond(A)}")9

error = 5.334186425898224e-10, error using inv(A) = 6.22717197984457e-06
cond(A) = 4462824600195.809
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Matrix Inverses Fail Completely for 𝑁 = 20

N = 201
x = np.linspace(0.0, 10.0, N + 1)2
y = np.exp(x)  # example function to interpolate3
A = np.array([[x_i**n for n in range(N + 1)] for x_i in x])  # or np.vander4
c = solve(A, y)5
c_inv = inv(A) @ y # Solving with inv(A) instead of solve(A, y)6
print(f"error = {norm(A @ c - y, np.inf)}, \7
error using inv(A) = {norm(A @ c_inv - y, np.inf)}")8
print(f"cond(A) = {cond(A):.4g}")9

error = 8.36735125631094e-10, error using inv(A) = 1419.6725472353137
cond(A) = 2.938e+24
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Moral of this Story

Use solve, which is faster and can often solve ill-conditioned problems. Rarely use inv,

and only when you know the problem is well-conditioned

Check conditioning of matrices when doing numerical work as an occasional diagnostic,

as it is a good indicator of potential problems and collinearity

For approximation, never use a monomial basis for polynomials

→ Prefer polynomials like Chebyshev, which are designed to be as orthogonal as

possible

N = 401
x = np.linspace(-1, 1, N+1)  # Or any other range of x values2
A = np.array([[np.polynomial.Chebyshev.basis(n)(x_i) for n in range(N+1)] for x_i in x])3
A_monomial = np.array([[x_i**n for n in range(N + 1)] for x_i in x])  # or np.vander4
print(f"cond(A) = {cond(A):.4g}, cond(A_monomial) = {cond(A_monomial):.4g}")5

cond(A) = 3.64e+09, cond(A_monomial) = 5.311e+17
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