

Linear and Nonlinear Dynamics

Graduate Quantitative Economics and Datascience

Jesse Perla

jesse.perla@ubc.ca

University of British Columbia

Table of contents

- Overview
- Fixed Points
- Linear Dynamics and Stability
- Solow-Swan Growth Model
- PageRank and Other Applications

Overview

Motivation and Materials

- In this lecture, we will apply some of our tools to non-linear equations, which come up in macroeconomics, industrial organization, and econometrics
- The primary example is a simple version of the growth models
- We will introduce the idea of a fixed point, which has many applications across fields of economics
- A special emphasis will be placed on analyzing stability which connects to the eigenvalues of the dynamical system

Extra Materials

- Solow-Swan Model (skip 20.3)
- Dynamics and Stability in One Dimension
- Nonlinear Dynamics and Stability
- Review taylor series, just to first order
- More on the Solow Model and Python

Packages

import matplotlib.pyplot as plt
import numpy as np
from numpy.linalg import norm
from scipy.linalg import inv, solve, det, eig, lu, eigvals

Fixed Points

Fixed Points of a Map

Fixed Point

Let $f:S \to S$ where we will assume $S \subseteq \mathbb{R}^N$. Then a fixed point $x^* \in S$ of f is one where

$$x^* = f(x^*)$$

Fixed points may not exist, or could have multiplicity

Fixed Points for Linear Functions

- We have already done this for linear functions.
- Let $f(x) = \begin{bmatrix} 0.8 & 0.2 \\ 0.2 & 0.8 \end{bmatrix} x$
- ullet Then we know that $x^* = egin{bmatrix} 0 & 0 \end{bmatrix}^T$ is a fixed point
- Are there non-trivial others?
 - \rightarrow Could check eigevectors as we did before, $\lambda imes x = Ax$
 - \rightarrow If there is an (λ,x) pair with $\lambda=1$ it is a fixed point

```
1 A = np.array([[0.8, 0.2], [0.2, 0.8]])
2 eigvals, eigvecs = eig(A)
3 print(f"lambda_1={eigvals[0]}, ||x* - A x*||={norm(A @ eigvecs[:,0] - eigvecs[:,0])}")
```

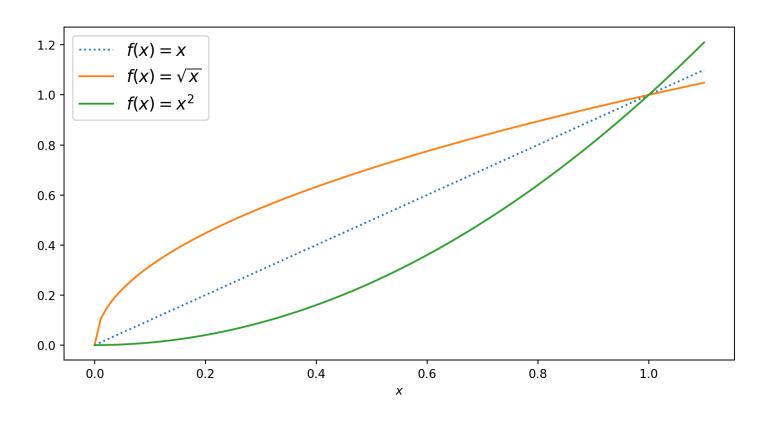
lambda_1=(1+0j), $||x^* - A x^*||=1.1102230246251565e-16$

Fixed Points for Nonlinear Functions

- Consider $f(x) = \sqrt{x}$ and $f(x) = x^2$ for $x \ge 0$
- Trivially $x^* = 0$ is a fixed point of both, but what about others?
- Plot the 45-degree line to see if they cross! Seems $x^*=1$ as well?
 - \rightarrow As we will discuss, though. The shape at $x^*=1$ and $x^*=0$ is very different
 - → Think about what happens if we "perturb" slightly away from that point?

Plot Against 45 degree line

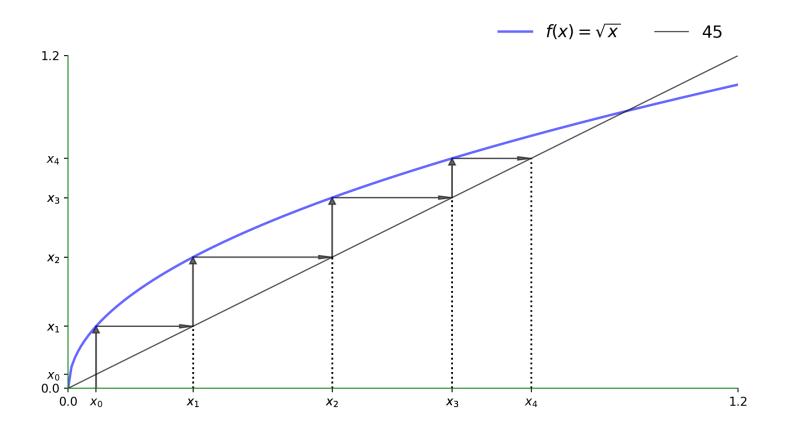
• Consider $f(x) = \sqrt{x}$ and $f(x) = x^2$ for $x \ge 0$



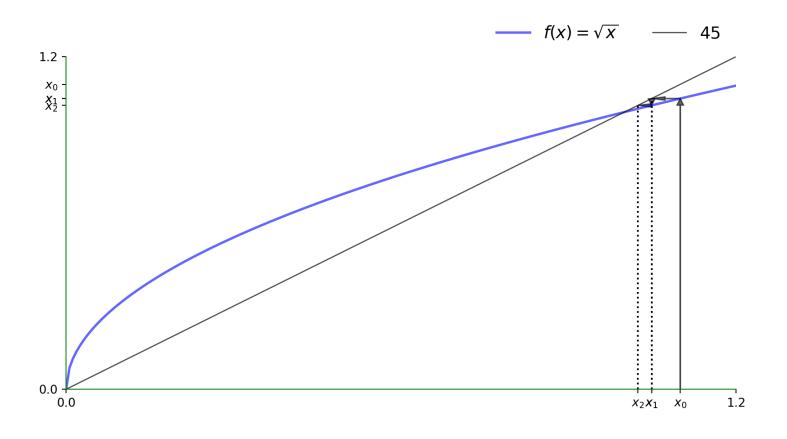
Interpreting Iterations with the 45 degree line

- To use these figures:
 - 1. Start with any point on the x-axis
 - 2. Jump to the $f(\cdot)$ for that point to see where it went
 - 3. Go across to the 45 degree line
 - 4. Then down to the new value
- Repeat! Useful to interpret dynamics as well as various numerical methods
- Gives intuition on speed of convergence/etc. as well

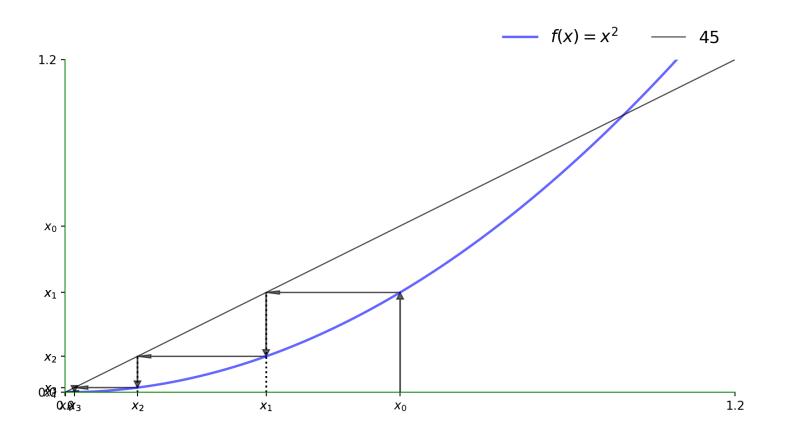
Evaluating the \sqrt{x} near x=0.05>0



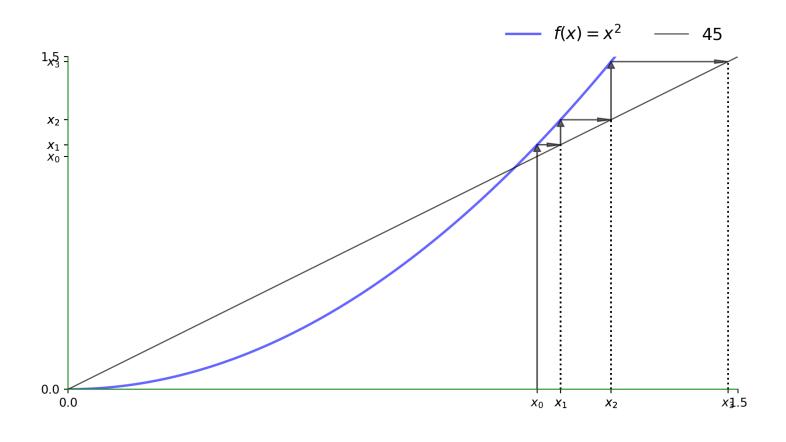
Evaluating the \sqrt{x} near x=1.1>1



Evaluating the x^2 for x=0.6<1



Evaluating the x^2 for x=1.01>1



Linear Dynamics and Stability

Scalar Linear Model

$$x_{t+1} = ax_t + b \equiv f(x_t), \quad \text{given } x_0$$

$$x_1 = ax_0 + b$$

$$x_2 = ax_1 + b = a^2x_0 + ab + b$$
...
$$x_t = a^t x_0 + b \sum_{i=0}^{t-1} a^i = a^t x_0 + b \frac{1 - a^t}{1 - a}$$

$$x^* \equiv \lim_{t \to \infty} x_t = \begin{cases} \frac{b}{1 - a} & \text{if } |a| < 1\\ \text{diverges} & \text{if } |a| > 1 \text{ or } a = 1, b \neq 0\\ \text{indeterminate} & \text{if } a = 1, b = 0 \end{cases}$$

Stability and Jacobians

- Given $f(x_t) = ax_t + b$
 - \rightarrow The Jacobian (derivative since scalar) $abla f(x_t) = a$
- Eigenvalues of a scalar are just the value itself, so can write the condition as
 - $_{
 ightarrow}$ Stable at fixed point x^* if $ho(\nabla f(x^*)) < 1$, where $ho(A) = \max_i |\lambda_i(A)|$ the spectral radius
 - → Saw this as a condition for stability with higher-dimensional linear systems when looking at Present Discounted Values

Linearization and Stability

- ullet Important condition for stability with nonlinear $f(\cdot)$
- Intuition: assume x^* exists and then
 - → Linearize around the steady state and see if it would be locally explosive
 - \to Necessary but not sufficient. $\rho(\nabla f(x^*)) > 1 \implies x^*$ can't be a stable fixed point
- You may see this when working with macro models in Dynare and similar methods in macroeconomics

Linearization

- ullet Assume steady state $x^*=f(x^*)$ exists, with system $x_{t+1}=f(x_t)$
- Take first-order taylor expansion around x^st

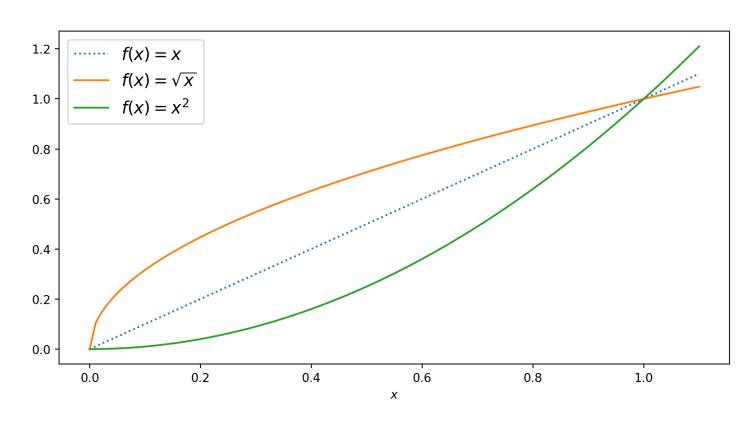
$$\begin{aligned} x_{t+1} &= f(x^*) + \nabla f(x^*)(x_t - x^*) + \text{second order and smaller terms} \\ x_{t+1} - x^* &\approx \nabla f(x^*)(x_t - x^*) \\ \hat{x}_{t+1} &\approx \nabla f(x^*) \hat{x}_t \end{aligned}$$

- Where the last formulation is common in macroeconomics and time-series econometrics. $\hat{x}_t \equiv x_t x^*$ is the **deviation from the steady state**
 - → For the linear case, these would all be exact as there are no higher-order terms

Quality of Linearization

- Gives approximate dynamics for a perturbation close to the steady state
 - $_ op$ May have good approximation far away from x^* if $f(\cdot)$ is close to linear
 - ightarrow May have terrible approximations close to x^* if $f(\cdot)$ highly nonlinear/asymmetric
 - → Often log-linearization is used instead, which expresses in percent deviation

Plot Against 45 degree line Reminder



Stability of \sqrt{x} and x^2

- ullet Recall that both had fixed points at $x^*=0$ and $x^*=1$
- Lets check derivatives! Let $f_1(x) = \sqrt{x}$ and $f_2(x) = x^2$
 - ightarrow $abla f_1x=rac{1}{2\sqrt{x}}$ and $abla f_2(x)=2x$
- Check spectral radius of the Jacobians (trivial since univariate) at the fixed points:
 - ightarrow At $x^*=0$, $abla f_1(0)=\infty$ and $abla f_2(0)=0$
 - ightarrow At $x^*=1$, find $abla f_1(1)=rac{1}{2}$ and $abla f_2(1)=2$
- Interpretation:
 - \to $f_1(x)$ is locally explosive at $x^*=0$ and locally stable at $x^*=1$
 - $_{ o}$ $f_2(x)$ is locally stable at $x^*=0$ and locally explosive at $x^*=1$

Solow-Swan Growth Model

Model of Growth and Capital

- An early growth model of economic growth is the Solow-Swan model
- Simple model. Details of the derivation for self-study/macro classes:
 - $\rightarrow k_t$ by capital per worker and y_t is total output per worker
 - $ightarrow lpha \in (0,1)$ be a parameter which governs the marginal product of capital
 - $\delta \in (0,1)$ is the depreciation rate (i.e., fraction of machines breaking each year)
 - $\rightarrow A > 0$ is a parameter which governs the total factor productivity (TFP)
 - $s \in (0,1)$ is the fraction of output used for investment and savings

Capital Dynamics

Then capital dynamics follow a nonlinear difference equation with steady state

$$\begin{aligned} y_t &= A k_t^\alpha \\ k_{t+1} &= s y_t + (1-\delta) k_t = s A k_t^\alpha + (1-\delta) k_t \equiv g(k_t) \quad \text{ given } k_0 \\ k^* &\equiv \left(\frac{sA}{\delta}\right)^{\frac{1}{1-\alpha}} \end{aligned}$$

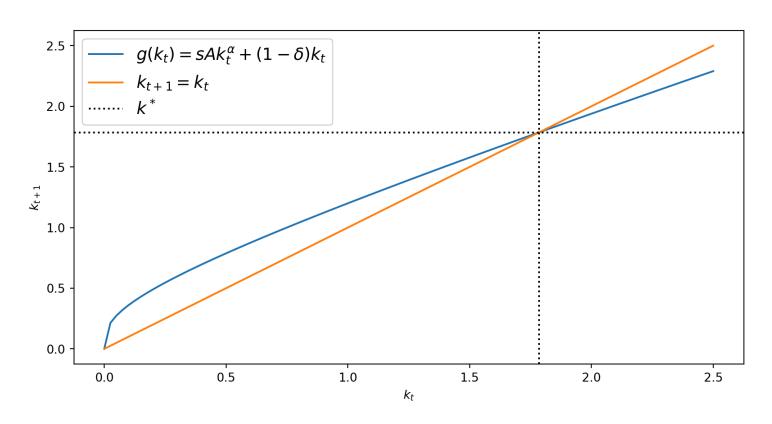
Implementing the Solow-Swan Model

```
1 A, s, alpha, delta = 2, 0.3, 0.3, 0.4
2 def y(k):
3    return A*k**alpha
4  # "closure" binds y, A, s, alpha, delta
5 def g(k):
6    return s*y(k) + (1-delta)*k
7

8  k_star = (s*A/delta)**(1/(1-alpha))
9  k_0 = 0.25
10 print(f"k_1 = g(k_0) = {g(k_0):.3f},\
11  k_2 = g(g(k_0)) = {g(g(k_0)):.3f}")
12 print(f"k_star = {k_star:.3f}")
```

```
k_1 = g(k_0) = 0.546, k_2 = g(g(k_0)) = 0.828
k_{star} = 1.785
```


Plotting k_t vs. k_{t+1} verifies our k^*



Jacobian of g at the steady state

$$\nabla g(k^*) = \alpha s A k^{*\alpha - 1} + 1 - \delta, \quad \text{substitute for } k^*$$

$$= \alpha s A \frac{\delta}{sA} + 1 - \delta = \alpha \delta + 1 - \delta$$

$$= 1 - (1 - \alpha)\delta < 1$$

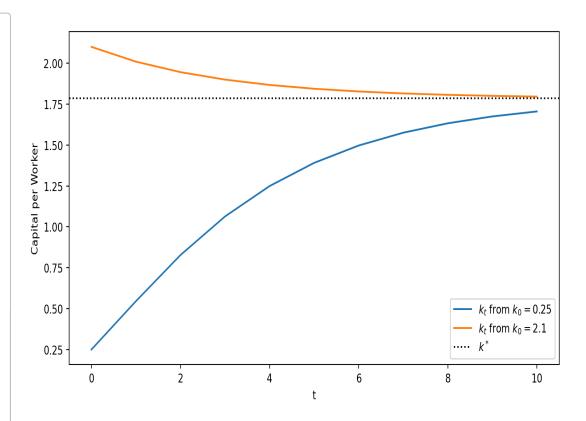
- Key requirements were $\alpha \in (0,1)$ and $\delta \in (0,1)$
- The spectral radius of a scalar is just that value itself.
- ullet The spectral radius of $||\nabla g(k^*)|| < 1$, a necessary condition for k^* stable
- **Aside:** macroeconomics, industrial organization, etc. this is related to contraction mappings and Blackwell's condition

Simulation

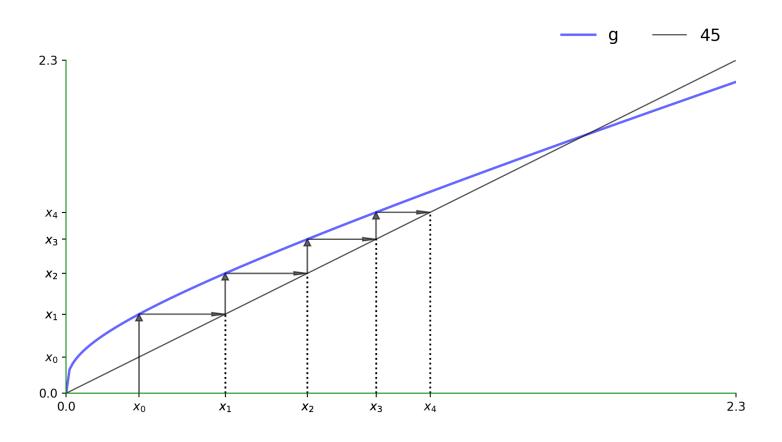
 $X_{10} = [1.70531835]$

Capital Transition from $k_0 < k^st$ and $k_0 > k^st$

```
1 X_1 = simulate(g, X_0, T) # use with our g
2 X_2 = simulate(g, np.array([2.1]), T)
3 fig, ax = plt.subplots()
4 ax.plot(range(T+1), X_1.T,
     label=r"$k_t$ from <math>$k_0 = 0.25$")
6 ax.plot(range(T+1), X_2.T,
     label=r"$k_t$ from $k_0 = 2.1$")
   ax.set(xlabel="t", ylabel="Capital per Worker")
   ax.axhline(y=k_star, linestyle=':',
     color='black', label=r"$k^*$")
10
11 ax.legend()
12 plt.show()
```



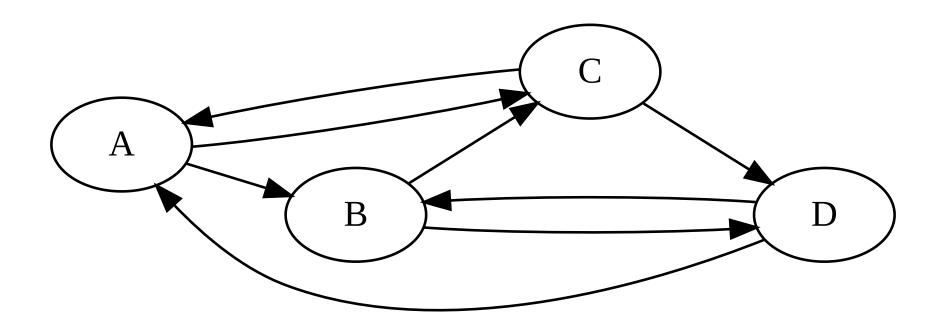
Trajectories Using the 45 degree Line



PageRank and Other Applications

Network of Web Pages

ullet Consider A,B,C,D as a set of web pages with links given below



Create an Adjacency Matrix

- ullet We can summarize the network of web pages with ullet or ullet if there is a link between two pages. Pages won't link to themselves
- This is in (arbitrary) order: A, B, C, D

$$M = egin{pmatrix} 0 & 1 & 1 & 0 \ 0 & 0 & 1 & 1 \ 1 & 0 & 0 & 1 \ 1 & 1 & 0 & 0 \end{pmatrix}$$

PageRank Algorithm

One interpretation of this is that you can

- Start on some page
- With equal probability click on all pages linked at that page
- Keep doing this process and then determine what fraction of time you spend on each page

Probabilistic Interpretation

Alternatively,

- Start with a probability distribution, r_t that you will be on any given page (i.e. $r_{nt} \geq 0$ and $\sum_{n=1}^4 r_{nt} = 1$)
- Iterate the process to see the probability distribution after you click the next links
- Repeat until the probability distribution doesn't change.

Adjacency Matrix to Probabilities

• To implement, we want to put the same probability on going to any link for a given page (i.e. each row)

$$S = egin{pmatrix} 0 & 0.5 & 0.5 & 0 \ 0 & 0 & 0.5 & 0.5 \ 0.5 & 0 & 0 & 0.5 \ 0.5 & 0.5 & 0 & 0 \end{pmatrix}$$

Probabilities Evolution

- Now, we can see what happens after we click on a page
- ullet For a given r_t distribution of probabilities across page, I can see the new probabilities distribution as

$$r_{t+1} = S^{\top} r_t$$

Motivation to learn more probability and Markov Chains (next set of lectures)

Fixed Points and Eigenvectors

- What is a fixed point of this process?
- ullet Eigenvector of $S^ op$ associated with $\lambda=1$ eigenvalue!
- The real PageRank is a little more subtle (adds in dampening) but the same basic idea
- Learn numerical algebra to use in practice. It is infeasible to actually compute the eigenvector of a huge matrix with a decomposition.