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Overview
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Motivation and Materials

In this lecture, we will apply some of our tools to non-linear equations, which come up in

macroeconomics, industrial organization, and econometrics

The primary example is a simple version of the growth models

We will introduce the idea of a fixed point, which has many applications across fields of

economics

A special emphasis will be placed on analyzing stability - which connects to the

eigenvalues of the dynamical system

4 / 41



Extra Materials

 (skip 20.3)

Review , just to first order

Solow-Swan Model

Dynamics and Stability in One Dimension

Nonlinear Dynamics and Stability

taylor series

More on the Solow Model and Python
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https://intro.quantecon.org/solow.html
https://intro.quantecon.org/scalar_dynam.html
https://intro.quantecon.org/scalar_dynam.html
https://en.wikipedia.org/wiki/Linearization#Multivariable_functions
https://python-programming.quantecon.org/python_oop.html#example-the-solow-growth-model


Packages
import matplotlib.pyplot as plt1
import numpy as np2
from numpy.linalg import norm3
from scipy.linalg import inv, solve, det, eig, lu, eigvals4
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Fixed Points
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Fixed Points of a Map

Fixed Point

Let  where we will assume . Then a fixed point  of  is one where

Fixed points may not exist, or could have multiplicity

𝑓 : 𝑆 → 𝑆 𝑆 ⊆ ℝ𝑁 𝑥∗ ∈ 𝑆 𝑓

𝑥∗ = 𝑓(𝑥∗)
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Fixed Points for Linear Functions

We have already done this for linear functions.

Let 

Then we know that  is a fixed point

Are there non-trivial others?

→ Could check eigevectors as we did before, 

→ If there is an  pair with  it is a fixed point

𝑓(𝑥) = [0.8 0.2

0.2 0.8
]𝑥

𝑥∗ = [0 0]𝑇

𝜆× 𝑥 = 𝐴𝑥

(𝜆,𝑥) 𝜆 = 1

A = np.array([[0.8, 0.2], [0.2, 0.8]])1
eigvals, eigvecs = eig(A)2
print(f"lambda_1={eigvals[0]}, ||x* - A x*||={norm(A @ eigvecs[:,0] - eigvecs[:,0])}")3

lambda_1=(1+0j), ||x* - A x*||=1.1102230246251565e-16
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Fixed Points for Nonlinear Functions

Consider  and  for 

Trivially  is a fixed point of both, but what about others?

Plot the 45-degree line to see if they cross! Seems  as well?

→ As we will discuss, though. The shape at  and  is very different

→ Think about what happens if we “perturb” slightly away from that point?

𝑓(𝑥) =
√
𝑥 𝑓(𝑥) = 𝑥2 𝑥 ≥ 0

𝑥∗ = 0

𝑥∗ = 1

𝑥∗ = 1 𝑥∗ = 0
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Plot Against 45 degree line

Consider  and  for 𝑓(𝑥) =
√
𝑥 𝑓(𝑥) = 𝑥2 𝑥 ≥ 0
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Interpreting Iterations with the 45 degree line

To use these figures:

1. Start with any point on the x-axis

2. Jump to the  for that point to see where it went

3. Go across to the 45 degree line

4. Then down to the new value

Repeat! Useful to interpret dynamics as well as various numerical methods

Gives intuition on speed of convergence/etc. as well

𝑓(⋅)

See  for base codeQuantEcon Scalar dynamics
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https://intro.quantecon.org/scalar_dynam.html


Evaluating the  near 
√
𝑥 𝑥 = 0.05 > 0
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Evaluating the  near 
√
𝑥 𝑥 = 1.1 > 1
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Evaluating the  for 𝑥
2

𝑥 = 0.6 < 1
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Evaluating the  for 𝑥
2

𝑥 = 1.01 > 1
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Linear Dynamics and Stability
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Scalar Linear Model

𝑥𝑡+1 = 𝑎𝑥𝑡 + 𝑏 ≡ 𝑓(𝑥𝑡), given 𝑥0

𝑥1 = 𝑎𝑥0 + 𝑏

𝑥2 = 𝑎𝑥1 + 𝑏 = 𝑎2𝑥0 + 𝑎𝑏+ 𝑏

…

𝑥𝑡 = 𝑎𝑡𝑥0 + 𝑏

𝑡−1

∑
𝑖=0

𝑎𝑖 = 𝑎𝑡𝑥0 + 𝑏
1− 𝑎𝑡

1− 𝑎

𝑥∗ ≡ lim
𝑡→∞

𝑥𝑡 =

⎧

⎨
⎩

{
{

{
{

𝑏
1−𝑎

if |𝑎| < 1

diverges if |𝑎| > 1 or 𝑎 = 1, 𝑏 ≠ 0
indeterminate if 𝑎 = 1, 𝑏 = 0

18 / 41



Stability and Jacobians

Given 

→ The Jacobian (derivative since scalar) 

Eigenvalues of a scalar are just the value itself, so can write the condition as

→ Stable at fixed point  if , where  the

spectral radius

→ Saw this as a condition for stability with higher-dimensional linear systems when

looking at Present Discounted Values

𝑓(𝑥𝑡) = 𝑎𝑥𝑡 + 𝑏

∇𝑓(𝑥𝑡) = 𝑎

𝑥∗ 𝜌(∇𝑓(𝑥∗)) < 1 𝜌(𝐴) = max𝑖 |𝜆𝑖(𝐴)|
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Linearization and Stability

Important condition for stability with nonlinear 

Intuition: assume  exists and then

→ Linearize around the steady state and see if it would be locally explosive

→ Necessary but not sufficient.  can’t be a stable fixed point

You may see this when working with macro models in Dynare and similar methods in

macroeconomics

𝑓(⋅)

𝑥∗

𝜌(∇𝑓(𝑥∗)) > 1 ⟹ 𝑥∗
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Linearization

Assume steady state  exists, with system 

Take  around 

Where the last formulation is common in macroeconomics and time-series

econometrics.  is the deviation from the steady state

→ For the linear case, these would all be exact as there are no higher-order terms

𝑥∗ = 𝑓(𝑥∗) 𝑥𝑡+1 = 𝑓(𝑥𝑡)

first-order taylor expansion 𝑥∗

𝑥𝑡+1 = 𝑓(𝑥∗) +∇𝑓(𝑥∗)(𝑥𝑡 − 𝑥∗)+second order and smaller terms

𝑥𝑡+1 − 𝑥∗ ≈ ∇𝑓(𝑥∗)(𝑥𝑡 − 𝑥∗)

𝑥𝑡+1 ≈ ∇𝑓(𝑥∗)𝑥𝑡

𝑥𝑡 ≡ 𝑥𝑡 − 𝑥∗
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https://en.wikipedia.org/wiki/Linearization#Multivariable_functions


Quality of Linearization

Gives approximate dynamics for a perturbation close to the steady state

→ May have good approximation far away from  if  is close to linear

→ May have terrible approximations close to  if  highly nonlinear/asymmetric

→ Often  is used instead, which expresses in percent deviation

𝑥∗ 𝑓(⋅)

𝑥∗ 𝑓(⋅)

log-linearization
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https://sites.nd.edu/esims/files/2023/05/log_linearization_sp17.pdf


Plot Against 45 degree line Reminder
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Stability of  and 

Recall that both had fixed points at  and 

Lets check derivatives! Let  and 

→  and 

Check spectral radius of the Jacobians (trivial since univariate) at the fixed points:

→ At ,  and 

→ At , find  and 

Interpretation:

→  is locally explosive at  and locally stable at 

→  is locally stable at  and locally explosive at 

√
𝑥 𝑥2

𝑥∗ = 0 𝑥∗ = 1

𝑓1(𝑥) =
√
𝑥 𝑓2(𝑥) = 𝑥2

∇𝑓1𝑥 = 1
2
√
𝑥

∇𝑓2(𝑥) = 2𝑥

𝑥∗ = 0 ∇𝑓1(0) =∞ ∇𝑓2(0) = 0

𝑥∗ = 1 ∇𝑓1(1) = 1
2 ∇𝑓2(1) = 2

𝑓1(𝑥) 𝑥∗ = 0 𝑥∗ = 1

𝑓2(𝑥) 𝑥∗ = 0 𝑥∗ = 1
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Solow-Swan Growth Model
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Model of Growth and Capital

An early growth model of economic growth is the 

Simple model. Details of the derivation for self-study/macro classes:

→  by capital per worker and  is total output per worker

→  be a parameter which governs the marginal product of capital

→  is the depreciation rate (i.e., fraction of machines breaking each year)

→  is a parameter which governs the total factor productivity (TFP)

→  is the fraction of output used for investment and savings

Solow-Swan model

𝑘𝑡 𝑦𝑡

𝛼 ∈ (0, 1)

𝛿 ∈ (0, 1)

𝐴 > 0

𝑠 ∈ (0, 1)
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https://intro.quantecon.org/solow.html#the-model


Capital Dynamics

Then capital dynamics follow a nonlinear difference equation with steady state

𝑦𝑡 = 𝐴𝑘𝛼𝑡
𝑘𝑡+1 = 𝑠𝑦𝑡 + (1− 𝛿)𝑘𝑡 = 𝑠𝐴𝑘𝛼𝑡 + (1− 𝛿)𝑘𝑡 ≡ 𝑔(𝑘𝑡) given 𝑘0

𝑘∗ ≡ ( 𝑠𝐴

𝛿
)

1
1−𝛼
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Implementing the Solow-Swan Model
A, s, alpha, delta = 2, 0.3, 0.3, 0.41
def y(k):2
    return A*k**alpha3
# "closure" binds y, A, s, alpha, delta    4
def g(k):5
    return s*y(k) + (1-delta)*k6

7
k_star = (s*A/delta)**(1/(1-alpha))8
k_0 = 0.259
print(f"k_1 = g(k_0) = {g(k_0):.3f},\10
k_2 = g(g(k_0)) = {g(g(k_0)):.3f}")11
print(f"k_star = {k_star:.3f}")12

k_1 = g(k_0) = 0.546,k_2 = g(g(k_0)) = 0.828
k_star = 1.785
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Plotting  vs.   verifies our 𝑘𝑡 𝑘𝑡+1 𝑘
∗
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Jacobian of  at the steady state

Key requirements were  and 

The spectral radius of a scalar is just that value itself.

The spectral radius of , a necessary condition for  stable

Aside: macroeconomics, industrial organization, etc. this is related to contraction

mappings and Blackwell’s condition

𝑔

∇𝑔(𝑘∗) = 𝛼𝑠𝐴𝑘∗𝛼−1 + 1− 𝛿, substitute for 𝑘∗

= 𝛼𝑠𝐴
𝛿

𝑠𝐴
+ 1− 𝛿 = 𝛼𝛿+ 1− 𝛿

= 1− (1− 𝛼)𝛿 < 1

𝛼 ∈ (0, 1) 𝛿 ∈ (0, 1)

||∇𝑔(𝑘∗)|| < 1 𝑘∗
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Simulation

# Generic function, takes in a function!1
def simulate(f, X_0, T):2
    X = np.zeros((1, T+1))3
    X[:,0] = X_04
    for t in range(T):5
        X[:,t+1] = f(X[:,t])6
    return X7
T = 108
X_0 = np.array([0.25]) # initial condition9
X = simulate(g, X_0, T) # use with our g10
print(f"X_{T} = {X[:,T]}")11

X_10 = [1.70531835]
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Capital Transition from  and 𝑘0 < 𝑘
∗

𝑘0 > 𝑘
∗

X_1 = simulate(g, X_0, T) # use with our g1
X_2 = simulate(g, np.array([2.1]) , T)2
fig, ax = plt.subplots()3
ax.plot(range(T+1), X_1.T,4
  label=r"$k_t$ from $k_0 = 0.25$")5
ax.plot(range(T+1), X_2.T,6
  label=r"$k_t$ from $k_0 = 2.1$")7
ax.set(xlabel="t", ylabel="Capital per Worker")8
ax.axhline(y=k_star, linestyle=':',9
  color='black',label=r"$k^*$")10
ax.legend()11
plt.show()12
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Trajectories Using the 45 degree Line
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PageRank and Other Applications
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Network of Web Pages

Consider  as a set of web pages with links given below

A

B

C

D

𝐴,𝐵,𝐶,𝐷
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Create an Adjacency Matrix

We can summarize the network of web pages with  or  if there is a link between two

pages. Pages won’t link to themselves

This is in (arbitrary) order: A, B, C, D

1 0

𝑀 =

⎛

⎝

⎜⎜⎜⎜⎜⎜

0 1 1 0

0 0 1 1

1 0 0 1

1 1 0 0

⎞

⎠

⎟⎟⎟⎟⎟⎟
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PageRank Algorithm

One interpretation of this is that you can

Start on some page

With equal probability click on all pages linked at that page

Keep doing this process and then determine what fraction of time you spend on each

page
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Probabilistic Interpretation

Alternatively,

Start with a probability distribution,  that you will be on any given page (i.e.   and

)

Iterate the process to see the probability distribution after you click the next links

Repeat until the probability distribution doesn’t change.

𝑟𝑡 𝑟𝑛𝑡 ≥ 0

∑4

𝑛=1
𝑟𝑛𝑡 = 1
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Adjacency Matrix to Probabilities

To implement, we want to put the same probability on going to any link for a given page

(i.e. each row)

𝑆 =

⎛

⎝

⎜⎜⎜⎜⎜⎜

0 0.5 0.5 0

0 0 0.5 0.5

0.5 0 0 0.5

0.5 0.5 0 0

⎞

⎠

⎟⎟⎟⎟⎟⎟
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Probabilities Evolution

Now, we can see what happens after we click on a page

For a given  distribution of probabilities across page, I can see the new probabilities

distribution as

Motivation to learn more probability and Markov Chains (next set of lectures)

𝑟𝑡

𝑟𝑡+1 = 𝑆
⊤
𝑟𝑡
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Fixed Points and Eigenvectors

What is a fixed point of this process?

Eigenvector of  associated with  eigenvalue!

The real PageRank is a little more subtle (adds in dampening) but the same basic idea

Learn numerical algebra to use in practice. It is infeasible to actually compute the

eigenvector of a huge matrix with a decomposition.

𝑆⊤ 𝜆 = 1
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