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i
Why Python?

» For 'modern” ML: all the well-supported frameworks are in Python

* In particular, auto-differentiation is central to many ML algorithms

Why should you avoid Julia/Matlab/R in these cases?
Poor AD, especially for reverse-mode
Network effects. Very few higher level packages for ML pipeline

But Julia dominates for many ML topics (e.g. ODEs) and R is outstanding for classic
ML

Should you use Python for more things?

Maybe, but it is limited and can be slow unless you jump through hoops

Personally, if | have algorithms but no need for AD or particular packages, Julia is a
much better language and less frustrating
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i
There is No Such Thing as "Python’l

» Many incompatible wrappers around C++ for numerical methods

Numpy/Scipy is the baseline (a common API)

Pytorch
o JAX

Ones to avoid

Tensorflow, common in industry but old

Numba (for me, reasonable people disagree)
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3 7/
Pytorch
 Inrecent years, the most flexible and popular ML framework for researchers

» Key features:
Most of the code is for auto-differentiation/GPUS

JIT/etc. for GPU and fast kernels for deep learning
Neural Network libraries and utilities

A good subset of numpy
Utilities for ML pipelines optimization/etc.
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i
Pytorch Key Downsides

» Not really for general purpose programming

Intended for making auto-differentiation of neural networks easy, and updating
gradients for solvers

May be very slow for simple things or ones which don't involve high-order AD
» Won't always have packages you need for general code, and compatibility is ugly
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s
JAX

o Compiler that enables layered program transformations

1. jit compiler to XLA, including accelerators (e.g. GPUS)

7. grad Auto-differentiation

3. vmap vectorization

4. Flexibility to add more transformations
» JAX PyTrees provide a nested tree structure for compiler passes
» Closer to being a full JIT for general code than pytorch

» For ML, not full-featured like pytorch. Need to shop for other libraries
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i
JAX Key Downsides

» JAXis now stable and central to Google DeepMind's infrastructure
Mature enough for production use, though API changes still occur
» Windows support has improved but Linux/macOS remain better supported

» Subset of python. Can't really use loops, etc. Functional-style programming

Much more restrictive than it seems, and far more restrictive than pytorch
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| i
Environments

» See Python Environment Setup for installation instructions and discussion of
reproducibility

e uvis great asa pip replacement, but conda sometimes has better binary support
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iy
Baseline, Safe Packages to Use

 Numpy and Scipy

Pandas for dataframes

Matplotlib for general plotting

Seaborn for plotting data

Statsmodels for classic econometrics

Scikit-learn for classic ML
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0/
General Tools for ML Pipelines

» Logging/visualization: Weights and Biases

Sign up for an account! Built in hyperparameter optimization tools

CLI' useful for many pipelines and HPO. See here

For more end-to-end frameworks for deep-learning

Keras is a higher-level framework for deep learning. Traditionally tensorflow, but
NOW many.

Pytorch Lightning is easy and flexible, eliminating a lot of boilerplate for CLI,
optimizers, GPUSs, etc.

Also FastAl

HuggingFace is a great resource for NLP and transformers

Optuna is a great hyperparameter optimization framework, etc.
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0/
Examples of Core Transformations

From JAX quickstart

Builtin composable transformations: jit, grad and vmap

import jax

import jax.numpy as jnp

import numpy as np

from jax import grad, jit, vmap, random
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0/
Compiling with jit

def selu(x, alpha=1.67, lmbda=1.05):
return lmbda * jnp.where(x > 0, x, alpha * jnp.exp(x) - alpha)
key = random.key(0)
X = random.normal(key, (1000000, ))
%timeit selu(x).block_until_ready()
selu_jit = jit(selu)
%timeit selu_jit(x).block_until_ready()

1.23 ms = 7.03 pus per loop (mean = std. dev. of 7 runs, 1,000 loops each)
670 us £ 1.3 pus per loop (mean + std. dev. of 7 runs, 1,000 loops each)
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Convenience Decorators for jit

» Convenience python decorator @jit

@jit
def selu(x, alpha=1.67, lmbda=1.05):

return lmbda * jnp.where(x > 0, x, alpha * jnp.exp(x) - alpha)
%timeit selu(x).block_until_ready()

670 us £ 1.04 pus per loop (mean % std. dev. of 7 runs, 1,000 loops each)
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Differentiation with grad

def sum_logistic(x):
return jnp.sum(1.0 / (1.0 + jnp.exp(-x)))

derivative_fn = grad(sum_logistic)
x_small = jnp.array([1.0, 2.0, 3.0])
print(derivative_fn(x_small))

[0.19661197 0.10499357 0.04517666 ]
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0/
Manual "Batching’/Vectorization

Common to run the same function along one dimension of an array

mat = random.normal(key, (150, 100))
batched_x = random.normal(key, (10, 100))

def f(v):
return jnp.dot(mat, v)
def naively_batched_f(v_batched):
return jnp.stack([f(v) for v in v_batched])
%timeit naively_batched_f(batched_x).block_until_ready()

638 us £ 1.54 pus per loop (mean %= std. dev. of 7 runs, 1,000 loops each)
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Using vmap

The vmap applies across a dimension

@jit
def vmap_batched_f(v_batched):
return vmap(f)(v_batched)

print('Auto-vectorized with vmap')
%timeit vmap_batched_f(batched_x).block_until_ready()

Auto-vectorized with vmap
33.1 pus £ 231 ns per loop (mean = std. dev. of 7 runs, 10,000 loops each)
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More vmap

Can fix dimensions with in_axes

def f(a, x, y):
return a * x + vy
a=2.0
X jnp.arange(5.)
y jnp.arange(5.)
vmap(f, in_axes=(None, 0, 0))(a, X, VYy)

Array([ 0., 3., 6., 9., 12.], dtype=float32)
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Save vmap functions

Can fix dimensions with in_axes

@jax.jit
def f(a, x, y):
return a * x + vy
2.0
jnp.arange(5.)
jnp.arange(5.)
_batched = vmap(f, in_axes=(None, 0, 0))
f_batched(a, x, y)

< X o

Array([ 0., 3., 6., 9., 12.], dtype=float32)
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Key JAX Neural Network Libraries/Frameworks

o Neural Network Libraries
Flax NNX

o, NNXis the new Flax API Linen the older one

2. Has momentum, supported by google (for now)
Equinox
o, General, not just neural networks. Similar to NNX

Keras supports JAX (as well as PyTorch, TF, etc.)
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0/
Other ML-oriented Packages

» Tough to keep up, see Awesome JAX
» Optax for ML-style optimization

» Checkpointing and serialization: Orbax
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i
More Scientific Computing in JAX

e jax.scipy which is a subset of scipy

Nonlinear Systems/Least Squares: Optimistix

Linear Systems of Equations: Lineax

Matrix-free operators for iterative solvers: COLA

Differential Equations: diffrax

More general optimization and solvers: JAXopt

Interpolation: interpax
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JAX Challenges
» Basically only pure functional programming
No “mutation’ of vectors
Loops/conditionals are tough

Rules for what is jitable are tricky
e See JAX - The Sharp Bits

» May not be faster on CPUs or for "normal” things

» Debugging
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i
Py lrees

» JAX uses a generic tree structure. Powerful but takes time to understand: Examples
from: here and here

f = lambda x, y: jnp.vdot(x, y)

X = jnp.array([[1.0, 2.0],
[3.0, 4.0]])

y = jnp.array([3.0, 4.0])

print(f(X[e], y))
print(f(X[1], y))

mv = vmap(f, in_axes = (
@, # broadcast over 1st index of first argument
None # don't broadcast over anything of second argument
), out_axes=0)

print(mv(X, y))

11.0
25.0
[11. 25.]
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i
PyTree Example 1

The in_axes can match more complicated structures

dct = {'a': 0., 'b': jnp.arange(5.)}
def foo(dct, x):
return dct['a'] + dct['b'] + Xx
# axes must match shape of the PyTree
X = 1.
out = vmap(foo, in_axes=(
{'a': None, 'b': 0}, #broadcast over the 'b'
None # no broadcasting over the "x"
)) (dct, Xx)
# example now: {'a': 0, 'b': 0} etc.
print(out)

[1. 2. 3. 4. 5.]
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i
PyTree Example 2

dct = {'a': jnp.array([3.0, 5.0]), 'b': jnp.array([2.0, 4.0])}
def foo2(dct, x):
return dct['a'] + dct['b'] + X
# axes must match shape of the PyTree
X = 1.
out = vmap(foo2, in_axes=(
{'a': 0, 'b': 0}, #broadcast over the 'a' and 'b'
None # no broadcasting over the "x"
)) (dct, x)
# example now: {'a': 3.0, 'b': 2.0} etc.
print(out)

[ 6. 10.]
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i
PyTree Example 3

dct = {'a': jnp.array([3.0, 5.0]), 'b': jnp.arange(5.)}
def foo3(dct, x):
return dct['a'][0] * dct['a'][1] + dct['b'] + Xx
# axes must match shape of the PyTree
out = vmap(foo3, in_axes=(
{'a': None, 'b': 0}, #broadcast over the 'b'
None # no broadcasting over the "x"
)) (dct, x)
# example now: {'a': [3.0, 5.0], 'b': 0} etc.
print(out)

[16. 17. 18. 19. 20.]
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