-y

Python Frameworks for Machine Learning

Machine Learning Fundamentals for Economists

Jesse Perla

jesse.perla@ubc.ca

University of British Columbia

L] 1/30

mailto:jesse.perla@ubc.ca
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

miy
Table of contents

e Python
e Python Ecosystem
e JAX Ecosystem

f 2/30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Python

-y

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Why Python?

» For 'modern” ML: all the well-supported frameworks are in Python

* In particular, auto-differentiation is central to many ML algorithms

Why should you avoid Julia/Matlab/R in these cases?
Poor AD, especially for reverse-mode
Network effects. Very few higher level packages for ML pipeline

But Julia dominates for many ML topics (e.g. ODEs) and R is outstanding for classic
ML

Should you use Python for more things?

Maybe, but it is limited and can be slow unless you jump through hoops

Personally, if | have algorithms but no need for AD or particular packages, Julia is a
much better language and less frustrating

2) 4130

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
There is No Such Thing as "Python’l

» Many incompatible wrappers around C++ for numerical methods

Numpy/Scipy is the baseline (a common API)

Pytorch
o JAX

Ones to avoid

Tensorflow, common in industry but old

Numba (for me, reasonable people disagree)

f 5/30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

3 7/
Pytorch
 Inrecent years, the most flexible and popular ML framework for researchers

» Key features:
Most of the code is for auto-differentiation/GPUS

JIT/etc. for GPU and fast kernels for deep learning
Neural Network libraries and utilities

A good subset of numpy
Utilities for ML pipelines optimization/etc.

f 6/30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Pytorch Key Downsides

» Not really for general purpose programming

Intended for making auto-differentiation of neural networks easy, and updating
gradients for solvers

May be very slow for simple things or ones which don't involve high-order AD
» Won't always have packages you need for general code, and compatibility is ugly

f 7130

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

s
JAX

o Compiler that enables layered program transformations

1. jit compiler to XLA, including accelerators (e.g. GPUS)

7. grad Auto-differentiation

3. vmap vectorization

4. Flexibility to add more transformations
» JAX PyTrees provide a nested tree structure for compiler passes
» Closer to being a full JIT for general code than pytorch

» For ML, not full-featured like pytorch. Need to shop for other libraries

8/30

https://www.tensorflow.org/xla/
https://jax.readthedocs.io/en/latest/jax-101/05.1-pytrees.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
JAX Key Downsides

» JAXis now stable and central to Google DeepMind's infrastructure
Mature enough for production use, though API changes still occur
» Windows support has improved but Linux/macOS remain better supported

» Subset of python. Can't really use loops, etc. Functional-style programming

Much more restrictive than it seems, and far more restrictive than pytorch

f 9/30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Python

-cosystem

-y

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

| i
Environments

» See Python Environment Setup for installation instructions and discussion of
reproducibility

e uvis great asa pip replacement, but conda sometimes has better binary support

L] 11/30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/pages/python_setup.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

iy
Baseline, Safe Packages to Use

 Numpy and Scipy

Pandas for dataframes

Matplotlib for general plotting

Seaborn for plotting data

Statsmodels for classic econometrics

Scikit-learn for classic ML

f 12 /30

https://numpy.org/doc/stable/
https://docs.scipy.org/doc/scipy/reference/
https://pandas.pydata.org/docs/
https://matplotlib.org/stable/contents.html
https://seaborn.pydata.org/
https://www.statsmodels.org/stable/index.html
https://scikit-learn.org/stable/
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
General Tools for ML Pipelines

» Logging/visualization: Weights and Biases

Sign up for an account! Built in hyperparameter optimization tools

CLI' useful for many pipelines and HPO. See here

For more end-to-end frameworks for deep-learning

Keras is a higher-level framework for deep learning. Traditionally tensorflow, but
NOW many.

Pytorch Lightning is easy and flexible, eliminating a lot of boilerplate for CLI,
optimizers, GPUSs, etc.

Also FastAl

HuggingFace is a great resource for NLP and transformers

Optuna is a great hyperparameter optimization framework, etc.

L] 13/30

https://wandb.ai/site
https://github.com/shadawck/awesome-cli-frameworks#python
https://keras.io/
https://lightning.ai/
https://www.fast.ai/
https://huggingface.co/
https://optuna.org/
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

JAX

-cosystem

-y

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Examples of Core Transformations

From JAX quickstart

Builtin composable transformations: jit, grad and vmap

import jax

import jax.numpy as jnp

import numpy as np

from jax import grad, jit, vmap, random

L] 15/30

https://jax.readthedocs.io/en/latest/notebooks/quickstart.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Compiling with jit

def selu(x, alpha=1.67, lmbda=1.05):
return lmbda * jnp.where(x > 0, x, alpha * jnp.exp(x) - alpha)
key = random.key(0)
X = random.normal(key, (1000000,))
%timeit selu(x).block_until_ready()
selu_jit = jit(selu)
%timeit selu_jit(x).block_until_ready()

1.23 ms = 7.03 pus per loop (mean = std. dev. of 7 runs, 1,000 loops each)
670 us £ 1.3 pus per loop (mean + std. dev. of 7 runs, 1,000 loops each)

L] 16 /30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Convenience Decorators for jit

» Convenience python decorator @jit

@jit
def selu(x, alpha=1.67, lmbda=1.05):

return lmbda * jnp.where(x > 0, x, alpha * jnp.exp(x) - alpha)
%timeit selu(x).block_until_ready()

670 us £ 1.04 pus per loop (mean % std. dev. of 7 runs, 1,000 loops each)

-y

17 /30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Differentiation with grad

def sum_logistic(x):
return jnp.sum(1.0 / (1.0 + jnp.exp(-x)))

derivative_fn = grad(sum_logistic)
x_small = jnp.array([1.0, 2.0, 3.0])
print(derivative_fn(x_small))

[0.19661197 0.10499357 0.04517666]

-y

18 /30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Manual "Batching’/Vectorization

Common to run the same function along one dimension of an array

mat = random.normal(key, (150, 100))
batched_x = random.normal(key, (10, 100))

def f(v):
return jnp.dot(mat, v)
def naively_batched_f(v_batched):
return jnp.stack([f(v) for v in v_batched])
%timeit naively_batched_f(batched_x).block_until_ready()

638 us £ 1.54 pus per loop (mean %= std. dev. of 7 runs, 1,000 loops each)

f 19/30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

. 0/
Using vmap

The vmap applies across a dimension

@jit
def vmap_batched_f(v_batched):
return vmap(f)(v_batched)

print('Auto-vectorized with vmap')
%timeit vmap_batched_f(batched_x).block_until_ready()

Auto-vectorized with vmap
33.1 pus £ 231 ns per loop (mean = std. dev. of 7 runs, 10,000 loops each)

L] 20/30

https://jax.readthedocs.io/en/latest/_autosummary/jax.vmap.html#jax.vmap
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
More vmap

Can fix dimensions with in_axes

def f(a, x, y):
return a * x + vy
a=2.0
X jnp.arange(5.)
y jnp.arange(5.)
vmap(f, in_axes=(None, 0, 0))(a, X, VYy)

Array([0., 3., 6., 9., 12.], dtype=float32)

L] 21/30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

. 0/
Save vmap functions

Can fix dimensions with in_axes

@jax.jit
def f(a, x, y):
return a * x + vy
2.0
jnp.arange(5.)
jnp.arange(5.)
_batched = vmap(f, in_axes=(None, 0, 0))
f_batched(a, x, y)

< X o

Array([0., 3., 6., 9., 12.], dtype=float32)

L] 22 /30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Key JAX Neural Network Libraries/Frameworks

o Neural Network Libraries
Flax NNX

o, NNXis the new Flax API Linen the older one

2. Has momentum, supported by google (for now)
Equinox
o, General, not just neural networks. Similar to NNX

Keras supports JAX (as well as PyTorch, TF, etc.)

-y

23 /30

https://flax.readthedocs.io/en/latest/index.html
https://github.com/patrick-kidger/equinox
https://keras.io/
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Other ML-oriented Packages

» Tough to keep up, see Awesome JAX
» Optax for ML-style optimization

» Checkpointing and serialization: Orbax

L 24 /30

https://github.com/n2cholas/awesome-jax
https://github.com/google-deepmind/optax
https://orbax.readthedocs.io/en/latest/
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
More Scientific Computing in JAX

e jax.scipy which is a subset of scipy

Nonlinear Systems/Least Squares: Optimistix

Linear Systems of Equations: Lineax

Matrix-free operators for iterative solvers: COLA

Differential Equations: diffrax

More general optimization and solvers: JAXopt

Interpolation: interpax

L] 25/30

https://jax.readthedocs.io/en/latest/jax.scipy.html
https://github.com/patrick-kidger/optimistix
https://docs.kidger.site/lineax/
https://github.com/wilson-labs/cola
https://github.com/patrick-kidger/diffrax
https://jaxopt.github.io/stable/#
https://interpax.readthedocs.io/en/latest/?badge=latest
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

3 7/
JAX Challenges
» Basically only pure functional programming
No “mutation’ of vectors
Loops/conditionals are tough

Rules for what is jitable are tricky
e See JAX - The Sharp Bits

» May not be faster on CPUs or for "normal” things

» Debugging

L] 26 /30

https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Py lrees

» JAX uses a generic tree structure. Powerful but takes time to understand: Examples
from: here and here

f = lambda x, y: jnp.vdot(x, y)

X = jnp.array([[1.0, 2.0],
[3.0, 4.0]])

y = jnp.array([3.0, 4.0])

print(f(X[e], y))
print(f(X[1], y))

mv = vmap(f, in_axes = (
@, # broadcast over 1st index of first argument
None # don't broadcast over anything of second argument
), out_axes=0)

print(mv(X, y))

11.0
25.0
[11. 25.]

L] 27 /30

https://jax.readthedocs.io/en/latest/jax-101/05.1-pytrees.html
https://jax.readthedocs.io/en/latest/pytrees.html
https://jax.readthedocs.io/en/latest/_autosummary/jax.vmap.html#jax.vmap
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
PyTree Example 1

The in_axes can match more complicated structures

dct = {'a': 0., 'b': jnp.arange(5.)}
def foo(dct, x):
return dct['a'] + dct['b'] + Xx
axes must match shape of the PyTree
X = 1.
out = vmap(foo, in_axes=(
{'a': None, 'b': 0}, #broadcast over the 'b'
None # no broadcasting over the "x"
)) (dct, Xx)
example now: {'a': 0, 'b': 0} etc.
print(out)

[1. 2. 3. 4. 5.]

f 28 /30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
PyTree Example 2

dct = {'a': jnp.array([3.0, 5.0]), 'b': jnp.array([2.0, 4.0])}
def foo2(dct, x):
return dct['a'] + dct['b'] + X
axes must match shape of the PyTree
X = 1.
out = vmap(foo2, in_axes=(
{'a': 0, 'b': 0}, #broadcast over the 'a' and 'b'
None # no broadcasting over the "x"
)) (dct, x)
example now: {'a': 3.0, 'b': 2.0} etc.
print(out)

[6. 10.]

f 29 /30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
PyTree Example 3

dct = {'a': jnp.array([3.0, 5.0]), 'b': jnp.arange(5.)}
def foo3(dct, x):
return dct['a'][0] * dct['a'][1] + dct['b'] + Xx
axes must match shape of the PyTree
out = vmap(foo3, in_axes=(
{'a': None, 'b': 0}, #broadcast over the 'b'
None # no broadcasting over the "x"
)) (dct, x)
example now: {'a': [3.0, 5.0], 'b': 0} etc.
print(out)

[16. 17. 18. 19. 20.]

f 30/30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

