
Python Frameworks for Machine Learning

Machine Learning Fundamentals for Economists

Jesse Perla

University of British Columbia

jesse.perla@ubc.ca

 1 / 30

mailto:jesse.perla@ubc.ca
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Table of contents

Python

Python Ecosystem

JAX Ecosystem

 2 / 30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Python

 3 / 30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Why Python?

For “modern” ML: all the well-supported frameworks are in Python

In particular, auto-differentiation is central to many ML algorithms

Why should you avoid Julia/Matlab/R in these cases?

→ Poor AD, especially for reverse-mode

→ Network effects. Very few higher level packages for ML pipeline

→ But Julia dominates for many ML topics (e.g. ODEs) and R is outstanding for classic

ML

Should you use Python for more things?

→ Maybe, but it is limited and can be slow unless you jump through hoops

→ Personally, if I have algorithms but no need for AD or particular packages, Julia is a

much better language and less frustrating

 4 / 30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

There is No Such Thing as “Python”!

Many incompatible wrappers around C++ for numerical methods

Numpy/Scipy is the baseline (a common API)

Pytorch

JAX

Ones to avoid

→ Tensorflow, common in industry but old

→ Numba (for me, reasonable people disagree)

 5 / 30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Pytorch

In recent years, the most flexible and popular ML framework for researchers

Key features:

→ Most of the code is for auto-differentiation/GPUs

→ JIT/etc. for GPU and fast kernels for deep learning

→ Neural Network libraries and utilities

→ A good subset of numpy

→ Utilities for ML pipelines optimization/etc.

 6 / 30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Pytorch Key Downsides

Not really for general purpose programming

→ Intended for making auto-differentiation of neural networks easy, and updating

gradients for solvers

→ May be very slow for simple things or ones which don’t involve high-order AD

Won’t always have packages you need for general code, and compatibility is ugly

 7 / 30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

JAX

Compiler that enables layered program transformations

1. jit compiler to , including accelerators (e.g. GPUs)

2. grad Auto-differentiation

3. vmap vectorization

4. Flexibility to add more transformations

 provide a nested tree structure for compiler passes

Closer to being a full JIT for general code than pytorch

For ML, not full-featured like pytorch. Need to shop for other libraries

XLA

JAX PyTrees

 8 / 30

https://www.tensorflow.org/xla/
https://jax.readthedocs.io/en/latest/jax-101/05.1-pytrees.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

JAX Key Downsides

JAX is now stable and central to Google DeepMind’s infrastructure

→ Mature enough for production use, though API changes still occur

Windows support has improved but Linux/macOS remain better supported

Subset of python. Can’t really use loops, etc. Functional-style programming

→ Much more restrictive than it seems, and far more restrictive than pytorch

 9 / 30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Python Ecosystem

 10 / 30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Environments

See for installation instructions and discussion of

reproducibility

uv is great as a pip replacement, but conda sometimes has better binary support

Python Environment Setup

 11 / 30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/pages/python_setup.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Baseline, Safe Packages to Use

 and

 for dataframes

 for general plotting

 for plotting data

 for classic econometrics

 for classic ML

Numpy Scipy

Pandas

Matplotlib

Seaborn

Statsmodels

Scikit-learn

 12 / 30

https://numpy.org/doc/stable/
https://docs.scipy.org/doc/scipy/reference/
https://pandas.pydata.org/docs/
https://matplotlib.org/stable/contents.html
https://seaborn.pydata.org/
https://www.statsmodels.org/stable/index.html
https://scikit-learn.org/stable/
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

General Tools for ML Pipelines

Logging/visualization:

→ Sign up for an account! Built in hyperparameter optimization tools

CLI useful for many pipelines and HPO. See

For more end-to-end frameworks for deep-learning

→ is a higher-level framework for deep learning. Traditionally tensorflow, but

now many.

→ is easy and flexible, eliminating a lot of boilerplate for CLI,

optimizers, GPUs, etc.

→ Also

 is a great resource for NLP and transformers

 is a great hyperparameter optimization framework, etc.

Weights and Biases

here

Keras

Pytorch Lightning

FastAI

HuggingFace

Optuna

 13 / 30

https://wandb.ai/site
https://github.com/shadawck/awesome-cli-frameworks#python
https://keras.io/
https://lightning.ai/
https://www.fast.ai/
https://huggingface.co/
https://optuna.org/
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

JAX Ecosystem

 14 / 30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Examples of Core Transformations

From

Builtin composable transformations: jit, grad and vmap

JAX quickstart

import jax1
import jax.numpy as jnp2
import numpy as np3
from jax import grad, jit, vmap, random4

 15 / 30

https://jax.readthedocs.io/en/latest/notebooks/quickstart.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Compiling with jit
def selu(x, alpha=1.67, lmbda=1.05):1
 return lmbda * jnp.where(x > 0, x, alpha * jnp.exp(x) - alpha)2
key = random.key(0) 3
x = random.normal(key, (1000000,))4
%timeit selu(x).block_until_ready()5
selu_jit = jit(selu)6
%timeit selu_jit(x).block_until_ready()7

1.23 ms ± 7.03 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
670 μs ± 1.3 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

 16 / 30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Convenience Decorators for jit

Convenience python decorator @jit

@jit1
def selu(x, alpha=1.67, lmbda=1.05):2
 return lmbda * jnp.where(x > 0, x, alpha * jnp.exp(x) - alpha)3
%timeit selu(x).block_until_ready()4

670 μs ± 1.04 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

 17 / 30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Differentiation with grad
def sum_logistic(x):1
 return jnp.sum(1.0 / (1.0 + jnp.exp(-x)))2

3
derivative_fn = grad(sum_logistic)4
x_small = jnp.array([1.0, 2.0, 3.0])5
print(derivative_fn(x_small))6

[0.19661197 0.10499357 0.04517666]

 18 / 30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Manual “Batching”/Vectorization

Common to run the same function along one dimension of an array

mat = random.normal(key, (150, 100))1
batched_x = random.normal(key, (10, 100))2

3
def f(v):4
 return jnp.dot(mat, v)5
def naively_batched_f(v_batched):6
 return jnp.stack([f(v) for v in v_batched])7
%timeit naively_batched_f(batched_x).block_until_ready() 8

638 μs ± 1.54 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

 19 / 30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Using vmap

The applies across a dimensionvmap

@jit1
def vmap_batched_f(v_batched):2
 return vmap(f)(v_batched)3

4
print('Auto-vectorized with vmap')5
%timeit vmap_batched_f(batched_x).block_until_ready()6

Auto-vectorized with vmap
33.1 μs ± 231 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)

 20 / 30

https://jax.readthedocs.io/en/latest/_autosummary/jax.vmap.html#jax.vmap
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

More vmap

Can fix dimensions with in_axes

def f(a, x, y):1
 return a * x + y2
a = 2.03
x = jnp.arange(5.)4
y = jnp.arange(5.)5
vmap(f, in_axes=(None, 0, 0))(a, x, y)6

Array([0., 3., 6., 9., 12.], dtype=float32)

 21 / 30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Save vmap functions

Can fix dimensions with in_axes

@jax.jit1
def f(a, x, y):2
 return a * x + y3
a = 2.04
x = jnp.arange(5.)5
y = jnp.arange(5.)6
f_batched = vmap(f, in_axes=(None, 0, 0))7
f_batched(a, x, y)8

Array([0., 3., 6., 9., 12.], dtype=float32)

 22 / 30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Key JAX Neural Network Libraries/Frameworks

Neural Network Libraries

→

→ NNX is the new Flax API, Linen the older one

→ Has momentum, supported by google (for now)

→

→ General, not just neural networks. Similar to NNX

→ supports JAX (as well as PyTorch, TF, etc.)

Flax NNX

Equinox

Keras

 23 / 30

https://flax.readthedocs.io/en/latest/index.html
https://github.com/patrick-kidger/equinox
https://keras.io/
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Other ML-oriented Packages

Tough to keep up, see

 for ML-style optimization

Checkpointing and serialization:

Awesome JAX

Optax

Orbax

 24 / 30

https://github.com/n2cholas/awesome-jax
https://github.com/google-deepmind/optax
https://orbax.readthedocs.io/en/latest/
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

More Scientific Computing in JAX

 which is a subset of scipy

Nonlinear Systems/Least Squares:

Linear Systems of Equations:

Matrix-free operators for iterative solvers:

Differential Equations:

More general optimization and solvers:

Interpolation:

jax.scipy

Optimistix

Lineax

COLA

diffrax

JAXopt

interpax

 25 / 30

https://jax.readthedocs.io/en/latest/jax.scipy.html
https://github.com/patrick-kidger/optimistix
https://docs.kidger.site/lineax/
https://github.com/wilson-labs/cola
https://github.com/patrick-kidger/diffrax
https://jaxopt.github.io/stable/#
https://interpax.readthedocs.io/en/latest/?badge=latest
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

JAX Challenges

Basically only pure functional programming

→ No “mutation” of vectors

→ Loops/conditionals are tough

→ Rules for what is jitable are tricky

See

May not be faster on CPUs or for “normal” things

Debugging

JAX - The Sharp Bits

 26 / 30

https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

PyTrees

JAX uses a generic . Powerful but takes time to understand: Examples

from: and

tree structure

here here

f = lambda x, y: jnp.vdot(x, y)1
X = jnp.array([[1.0, 2.0],2
 [3.0, 4.0]])3
y = jnp.array([3.0, 4.0])4
print(f(X[0], y))5
print(f(X[1], y))6

7
mv = vmap(f, in_axes = (8
 0, # broadcast over 1st index of first argument9
 None # don't broadcast over anything of second argument10
), out_axes=0)11
print(mv(X, y))12

11.0
25.0
[11. 25.]

 27 / 30

https://jax.readthedocs.io/en/latest/jax-101/05.1-pytrees.html
https://jax.readthedocs.io/en/latest/pytrees.html
https://jax.readthedocs.io/en/latest/_autosummary/jax.vmap.html#jax.vmap
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

PyTree Example 1

The in_axes can match more complicated structures

dct = {'a': 0., 'b': jnp.arange(5.)}1
def foo(dct, x):2
 return dct['a'] + dct['b'] + x3
axes must match shape of the PyTree4
x = 1.5
out = vmap(foo, in_axes=(6
 {'a': None, 'b': 0}, #broadcast over the 'b'7
 None # no broadcasting over the "x"8
))(dct, x)9
example now: {'a': 0, 'b': 0} etc.10
print(out)11

[1. 2. 3. 4. 5.]

 28 / 30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

PyTree Example 2
dct = {'a': jnp.array([3.0, 5.0]), 'b': jnp.array([2.0, 4.0])}1
def foo2(dct, x):2
 return dct['a'] + dct['b'] + x3
axes must match shape of the PyTree4
x = 1.5
out = vmap(foo2, in_axes=(6
 {'a': 0, 'b': 0}, #broadcast over the 'a' and 'b'7
 None # no broadcasting over the "x"8
))(dct, x)9
example now: {'a': 3.0, 'b': 2.0} etc.10
print(out)11

[6. 10.]

 29 / 30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

PyTree Example 3
dct = {'a': jnp.array([3.0, 5.0]), 'b': jnp.arange(5.)}1
def foo3(dct, x):2
 return dct['a'][0] * dct['a'][1] + dct['b'] + x3
axes must match shape of the PyTree4
out = vmap(foo3, in_axes=(5
 {'a': None, 'b': 0}, #broadcast over the 'b'6
 None # no broadcasting over the "x"7
))(dct, x)8
example now: {'a': [3.0, 5.0], 'b': 0} etc.9
print(out)10

[16. 17. 18. 19. 20.]

 30 / 30

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

