
Rethinking Least Squares: Min-Norm Solutions and Loss

Geometry

Machine Learning Fundamentals for Economists

Jesse Perla

University of British Columbia

jesse.perla@ubc.ca

 1 / 56

mailto:jesse.perla@ubc.ca
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Table of contents

Overview

Least Squares with the QR Decomposition

Min-Norm Solutions and Sobolev Spaces

Geometry and Loss Functions

Gradient Descent and Conditioning

Regularization and Large-Scale Methods

 2 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Overview

 3 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Motivation

In preparation for the ML lectures we cover some core numerical linear algebra concepts

on functional equations

We will also use this as an opportunity to reinterpret least squares solutions as a prelude

to non-linearity

Connection to : conditioning and eigenvalues drive algorithm behaviorprevious lecture

 4 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/slides/iterative_methods.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Why This Matters for ML

Modern ML operates in high-dimensional parameter spaces where traditional

“identification” fails

→ Neural networks: millions of parameters, infinitely many equivalent solutions

→ Yet these models generalize well despite apparent non-uniqueness

Key insight: multiplicity of parameters multiplicity of the functions they represent

→ Different may produce the same (or nearly same) predictions

→ Understanding this requires thinking about geometry of loss functions

This lecture builds intuition through the simplest case: linear least squares

→ Same geometric principles extend to deep learning

≠

𝛽

 5 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Packages and Materials

See QuantEcon Numerical Linear Algebra

import numpy as np1
import matplotlib.pyplot as plt2
from scipy.linalg import eigvalsh, qr, lstsq, solve3
from numpy.linalg import cond, matrix_rank, norm4
import jax5
import jax.numpy as jnp6
np.random.seed(42)7

 6 / 56

https://python.quantecon.org/numerical_linear_algebra.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Least Squares with the QR

Decomposition

 7 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Least Squares and Normal Equations

Given the least squares problem

Taking the FOCs and rearranging gives the normal equations

This works, but forming can be numerically unstable

→ Condition number squares:

min
𝑥

‖𝐴𝑥 − 𝑏‖2

𝐴
⊤
𝐴𝑥 = 𝐴

⊤
𝑏 ⇒ 𝑥 = (𝐴⊤𝐴)−1𝐴⊤𝑏

𝐴⊤𝐴

𝜅(𝐴⊤𝐴) = 𝜅(𝐴)2

 8 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

QR Decomposition for Least Squares

QR factorizes rectangular matrices: for orthogonal, upper triangular

Substitute into the normal equations :

Since (orthogonal), this simplifies to

Left-multiply by to get the triangular system:

Solve via back-substitution - avoids forming entirely, much more stable

𝐴 = 𝑄𝑅 𝑄 𝑅

𝐴 = 𝑄𝑅 𝐴⊤𝐴𝑥 = 𝐴⊤𝑏

(𝑄𝑅)⊤(𝑄𝑅)𝑥 = (𝑄𝑅)⊤𝑏

𝑅⊤𝑄⊤𝑄𝑅𝑥 = 𝑅⊤𝑄⊤𝑏

𝑄⊤𝑄 = 𝐼 𝑅⊤𝑅𝑥 = 𝑅⊤𝑄⊤𝑏

(𝑅⊤)−1

𝑅𝑥 = 𝑄⊤𝑏

𝐴⊤𝐴 9 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

QR is Used Internally for Least Squares

Inside lstsq and similar functions, QR is used for numerical stability

Compare direct normal equations vs. QR-based solution

N, M = 10, 31
A = np.random.randn(N, M) + np.random.randn(N, 1)2
b = np.random.randn(N)3

4
QR-based solution5
x_lstsq, residuals, rank, s = lstsq(A, b)6

7
Normal equations (less stable but instructive)8
x_normal = solve(A.T @ A, A.T @ b)9
print(f"lstsq solution: {x_lstsq}")10
print(f"Normal eqn sol: {x_normal}")11

lstsq solution: [-0.4229563 0.63714154 -0.16902314]
Normal eqn sol: [-0.4229563 0.63714154 -0.16902314]

 10 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

QR and Underdetermined Least Squares

Take the case where and use the QR decomposition

Wait, why did that give an answer?

→ And if I try various algorithms even with random starting points, why does it give the

same answer?

→ There is a bias towards a particular solution. Will come back to this repeatedly

𝑁 <𝑀

A = np.array([[1.0, 2.0, 3.0],1
 [4.0, 5.0, 6.0]])2
b = np.array([7.0, 8.0])3
x, residuals, rank, s = lstsq(A, b)4
print(f"Solution: {x}")5
print(f"Rank: {rank}, Columns: {A.shape[1]}")6

Solution: [-3.05555556 0.11111111 3.27777778]
Rank: 2, Columns: 3

 11 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Min-Norm Solutions and Sobolev

Spaces

 12 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Min-Norm Solution

Linear least squares was solving

Which had multiplicity in this case. The solution it returns fulfills

Or, can think of as solving the “ridgeless regression”

Will become crucial in deep learning where the number of parameters data

min𝑥 ‖𝐴𝑥 − 𝑏‖
2
2

min
𝑥

‖𝑥‖
2
2 s.t.𝐴𝑥 = 𝑏

lim
𝜆→0

[min
𝑥

‖𝐴𝑥 − 𝑏‖22 + 𝜆‖𝑥‖22]

≫

 13 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Algorithms + Optimization Problems

A key requirement to make the switch to ML thinking is to remember that just seeing the

optimization problem, e.g. may not be enough

The algorithm itself will be important if there is multiplicity in solutions, if things are not

numerically stable, etc.

In the case above, we saw that using QR decomposition delivered the min norm

max𝑥 𝑓(𝑥)

 14 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Linear Operators, not Matrices

Recall: for we should think of for as a linear transformation

from to

→ Definition of Linear: for scalar

Many algorithms might be implementable just using the matrix-vector product or the

transpose of the matrix-vector product?

Maybe we don’t actually need to create a matrix? Can compose operations together?

This will be related to a lot of ML algorithms and autodifferentiation. Hint: Jacobian

The key to iterative methods will be the spectral properties of the Jacobian, which is

related to the eigenvalues of

𝑥 ∈ ℝ𝑁 𝑓(𝑥) = 𝐴𝑥 𝐴 ∈ ℝ
𝑀×𝑁

ℝ
𝑁

ℝ
𝑀

𝑓(𝑎𝑥1 + 𝑏𝑥2) = 𝑎𝑓(𝑥1) + 𝑏𝑓(𝑥2) 𝑎, 𝑏

∇𝑓(𝑥)

= 𝐴

𝐴

 15 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

 Space

Let be an open subset of . A function

 space: A function is in if:

Useful in a lot of cases, but will be especially important when considering norms on a

function space and whether a particular function solves a particular problem

𝐿𝑝

Ω ℝ
𝑛 𝑢 : Ω→ ℝ

𝐿𝑝(Ω) 𝑓 : Ω→ ℝ 𝐿𝑝(Ω)

∫
Ω

|𝑓|𝑝 𝑑𝑥 < ∞

 16 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Sobolev Space

A function belongs to the Sobolev space if:

and all its weak derivatives up to order are also in .

A function is said to be a weak derivative of if:

for all multi-indices with .

𝑢 𝑊 𝑘,𝑝(Ω)

𝑢 ∈ 𝐿𝑝(Ω)

𝑘 𝐿𝑝(Ω)

𝜙 ∈𝑊 𝑘,𝑝(Ω) 𝑢

∫
Ω
𝑢𝐷𝛼𝜙𝑑𝑥 = (−1)|𝛼|∫

Ω
𝜙𝐷𝛼𝑢 𝑑𝑥

𝛼 |𝛼| ≤ 𝑘

 17 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Sobolev Norm

The Sobolev Norm for a function is defined as some variation on:

where is a multi-index and represents the weak derivative of .

You can choose whatever terms you want in

𝑢 ∈𝑊 𝑘,𝑝(Ω)

‖𝑢‖𝑊 𝑘,𝑝(Ω) =

⎛

⎝

⎜⎜⎜⎜⎜⎜
∑
|𝛼|≤𝑘

∫
Ω

|𝐷𝛼𝑢|𝑝 𝑑𝑥

⎞

⎠

⎟⎟⎟⎟⎟⎟

1/𝑝

𝛼 𝐷𝛼𝑢 𝑢

𝛼

 18 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

A Key Sobolev Semi-Norm

The key one to keep in mind is , which is the space of functions with square-

integrable first derivatives.

Note that we have the option to include or not include the term itself when we define

a particular norm

This is a semi-norm because it is semi-definite (i.e., multiple with)

Semi-norms serve two key purposes: establish equivalence classes, and prove a way to

control length which will come up with algorithms

𝑊 1,2(Ω)

‖𝑢‖𝑊 1,2(Ω) = (∫
Ω
|∇𝑢|2 𝑑𝑥)1/2

|𝑢|2

𝑢 ‖𝑢‖ = 0

 19 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Sobolev Semi-Norms and Equivalence Classes

A Sobolev semi-norms define equivalence classes of functions

→ i.e., any and such that are in the same equivalence class

In general, when we move to nonlinear and highly parameterized models there will be

many solutions that are equivalent

→ But if they are in approximately the same equivalence class, then who cares?

→ Multiplicity of “parameters” doesn’t really matter if the functions do the same thing

𝑆

𝑢1 𝑢2 ‖𝑢1 − 𝑢2‖𝑆 = 0

 20 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Sobolev Semi-Norms and Occam’s Razor

The other purpose is to give some sense of length,

This will come up with regularization since we may want to bias algorithms towards

particular functions or interpret inherent bias in the algorithms

The key interpretation here is that for Sobolev Norms we can think of variations on the

 as determining how simple a function is

→ If then it has smaller gradients and fewer “wiggles”

→ If both interpolate the same data, then we should prefer the simpler one. Occam’s

Razor

We won’t always be able to know the precise semi-norm when working with ML, but this

is useful intuition

‖𝑢1‖𝑆 < ‖𝑢2‖𝑆

𝑊
1,2

‖𝑢1‖𝑆 < ‖𝑢2‖𝑆

 21 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Sobolev Norms and Linear Functions

Now, think of linear functions where is a vector, matrix, or scalar

→ Consider this on a bounded domain so the integrals are well defined

Then our Sobolev 1,2 norm, here is simple:

Where is euclidean norm of the vector, or the Frobenius norm of the matrix

𝑓(𝑥) = 𝛽𝑥 𝛽

Ω

𝑊 𝑘,𝑝

‖𝑓‖𝑊 1,2 = ‖𝛽‖2

‖𝛽‖2

 22 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Back to the Ridgeless Regression

Now lets reinterpret our “ridgeless regression” with a

This says that we are “penalizing” the norm of in the sense

The limit means we are asymptotically dropping this penalty, but there is still this

“bias” which makes solutions unique

Normally unique to an equivalence class with in , but with linear functions they are

unique. Why?

lim
𝜆→0

[min
𝛽

‖𝐴𝛽 − 𝑏‖22 + 𝜆‖𝛽‖
2
2]

𝑓(𝑥) = 𝛽𝑥 𝑊 1,2

𝜆→ 0

𝑊 1,2

 23 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Min-Norm Solution as Occam’s Razor

Recall that this was also

i.e., we are finding the minimum norm solution that interpolates our data

And we can interpret the minimum norm through Occam’s Razor

This general principle will apply when we think about nonlinear approximations as well,

though we don’t need to fully interpolate (i.e., if then we don’t need to interpolate

perfectly)

Suggests the crucial role of regularization.

min
𝛽

‖𝛽‖22 s.t.𝐴𝛽 = 𝑏

𝜆 > 0

 24 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Singular Linear Systems of Equations

This isn’t just least squares

Consider the case for finding solutions to where is singular.

→ Either no solution or infinite solutions exist

If you solve a linear system with SVD or iterative methods it gives an answer! The min-

norm solution

𝐴𝛽 = 𝑏 𝐴

min
𝛽

‖𝛽‖22

s.t.𝐴𝛽 = 𝑏

 25 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Is the Min-Norm Solution Special?

The min-norm solution to LLS is the closest projection to the column space of the data

For a given norm it is the unique solution to a well-specified problem which can often be

interpreted through appealing to simplicity

It is also the unique “most stable” solution for a given norm. Loosely,

→ Take for some small and/or for some small

→ Then the min-norm solution is the one where is smallest

Another interpretation we will apply to ML and nonlinear models: min-norm solutions are

the ones least sensitive to data perturbations

This will also come up with Bayesian statistics, if we apply a prior which is asymptotically

non-informative, the min-norm solution is the MAP solution

𝑏 + 𝛿𝑏 𝛿𝑏 𝐴 + 𝛿𝐴 𝛿𝐴

𝛽 + 𝛿𝛽

 26 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Min-Norm Solution and Conditioning

As a preview of connections to the , consider if the matrix is almost, but

not quite singular

→ Tough to know due to numerical roundoff

You may have learned from experience that everything works great if you:

→ Tweak to the diagonal of the matrix, or to the normal equations for LLS, or to make

a covariance matrix positive definite

Consider how that is related to the min-norm solution and L2 penalized LLS (i.e., “ridge”)

→ Will turn out to be exactly equivalent in many algorithms

previous lecture

 27 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/slides/iterative_methods.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Geometry and Loss Functions

 28 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Geometry of Loss Functions

The curvature of the loss function will be essential to understanding generalization

→ The motivation: we will work with models where every local minima is a global

minima, multiplicity is pervasive but innocuous, etc.

For some which is a local minima of the Hessian tells us

about whether minima are unique, how sensitive they are to perturbations, etc.

Key questions to ask:

→ What is the rank of the hessian? If full rank, with a positive definite hessian, then the

solution is (locally) unique

→ Eigenvalues show ridges/etc.

𝛽∗ min𝛽 𝑓(𝑋; 𝛽) ∇
2𝑓(𝑋; 𝛽∗)

 29 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Geometry of Regularized LLS

The Hessian is then (for all)

Is this problem convex with ? Only if is positive definite

min
𝛽

1

2
[‖𝑋𝛽−𝑦‖22+𝜆‖𝛽‖22]

  φφφφφφφφφφφφ φφφφφφφφφφφφ

≡𝑓(𝑋;𝛽)

𝛽

∇
2𝑓(𝑋; 𝛽∗) = 𝑋⊤𝑋 + 𝜆𝐼

𝜆 = 0 𝑋⊤𝑋

 30 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Reminder on Positive and Semi-Definite

Positive definite if (“semi-definite” if) for all

With the spectral decomposition of symmetric

→ and is an orthogonal matrix of eigenvectors

→ is positive definite if for all

→ is positive semi-definite if for all

In more abstract and infinite dimensional spaces a linear operator operator is

positive definite if for all

→ Has eigenvalues/eigenvectors, i.e. for some and

𝑥⊤𝐴𝑥 > 0, ≥ 0 𝑥 ≠ 0

𝐴

𝐴 = 𝑄Λ𝑄⊤

Λ = diag(𝜆1, … ,𝜆𝑛) 𝑄

𝐴 𝜆𝑖 > 0 𝑖

𝐴 𝜆𝑖 ≥ 0 𝑖

𝐴(𝑥)

𝑥 ⋅𝐴(𝑥) > 0 𝑥 ≠ 0

𝐴(𝑥) = 𝜆𝑥 𝜆 𝑥

 31 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Shape of Positive Definite Function

For (positive definite)

This has a unique minimum (at , since no “affine” term)

𝐴 = [3 1

1 2
]

(0, 0)

Eigenvalues: [1.38196601 3.61803399] (all positive)

 32 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Shape of Positive Semi-Definite Function

For (positive semi-definite, not definite)

Multiple minima along a line! The zero eigenvalue creates a “ridge”

𝐴 = [1 1

1 1
]

Eigenvalues: [0. 2.] (one is zero!)

 33 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Shape of Indefinite Function (Saddle Point)

For (indefinite: positive and negative eigenvalues)

No minimum or maximum at origin - it’s a saddle point

𝐴 = [1 0

0 −1
]

Eigenvalues: [-1. 1.] (mixed signs = indefinite)

 34 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Regularization Creates Unique Minimum

Take semi-definite and add for

Now unique minimum at !

𝐴 = [1 1

1 1
] 𝜆𝐼 𝜆 = 0.1

(0, 0)

Eigenvalues after regularization: [0.1 2.1] (both positive now)

 35 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Convexity of a Quadratic Objective

We will build and from the spectral decomposition

Rotating eigenvectors and starting with

And keep in mind that

𝑃 𝑓(𝑥) = 1
2 𝑥

⊤𝑃𝑥

Λ = diag(1, 1)

∇𝑓(𝑥) = 𝑃𝑥

Q = np.array([[np.sqrt(2)/2, np.sqrt(2)/2],1
 [-np.sqrt(2)/2, np.sqrt(2)/2]])2
Lambda = np.array([1.0, 1.0])3
P = Q @ np.diag(Lambda) @ Q.T # since symmetric4
print(f"P =\n{P}")5

P =
[[1.00000000e+00 -4.26642159e-17]
 [-4.26642159e-17 1.00000000e+00]]

 36 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Contours of the Quadratic Objective
x_vals = np.linspace(-1, 1, 100)1
X1, X2 = np.meshgrid(x_vals, x_vals)2
Z = 0.5 * (P[0,0]*X1**2 + 2*P[0,1]*X1*X2 + P[1,1]*X2**2)3
plt.figure(figsize=(6, 5))4
cs = plt.contour(X1, X2, Z, levels=20, cmap='viridis')5
plt.clabel(cs, inline=True, fontsize=8)6
plt.xlabel('x1'); plt.ylabel('x2')7
plt.title(r'$f(x) = \frac{1}{2} x^\top P x$ with $\Lambda = (1, 1)$')8
plt.gca().set_aspect('equal')9

 37 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Gradient Descent and Conditioning

 38 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Gradient Descent Style Algorithms

To understand the importance of geometry, lets consider optimizing with simple gradient

descent style algorithms to minimize:

Let be a “step size”, learning rate, etc. then

We will fix , set and plot a few iterations

min
𝑥

1

2
𝑥⊤𝑃𝑥

𝜂 > 0

𝑥𝑖+1 = 𝑥𝑖 − 𝜂∇𝑓(𝑥𝑖) = 𝑥𝑖 − 𝜂𝑃𝑥𝑖

𝑥0 ≡ [0.9 0.0] 𝜂 = 0.5

 39 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Gradient Descent Visualization Code

def plot_gd_steps(N_steps, x_0, Lambda, eta):1
 Q = np.array([[np.sqrt(2)/2, np.sqrt(2)/2],2
 [-np.sqrt(2)/2, np.sqrt(2)/2]])3
 P = Q @ np.diag(Lambda) @ Q.T4
 gd_step = lambda x: x - eta * P @ x5
 x_vals = np.linspace(-1, 1, 100)6
 X1, X2 = np.meshgrid(x_vals, x_vals)7
 Z = 0.5 * (P[0,0]*X1**2 + 2*P[0,1]*X1*X2 + P[1,1]*X2**2)8
 plt.figure(figsize=(6, 5))9
 plt.contour(X1, X2, Z, levels=20, cmap='viridis')10

11
 x_current = np.array(x_0)12
 for i in range(N_steps):13
 x_next = gd_step(x_current)14
 plt.arrow(x_current[0], x_current[1], x_next[0] - x_current[0],15
 x_next[1] - x_current[1],head_width=0.03, head_length=0.02, fc='red', ec='red')16
 x_current = x_next17

18
 plt.xlabel('x1'); plt.ylabel('x2')19

 40 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Contours With Well-Conditioned Matrices

Let which leads to

Converges almost immediately. Immediately in any dimensions with

Λ = diag(1, 1) 𝑃 = 𝐼

𝜂 = 1

Lambda = np.array([1.0, 1.0])1
x_0 = [0.9, 0.0]2
eta = 0.53
plot_gd_steps(5, x_0, Lambda, eta)4
plt.title(r'$\Lambda = (1, 1)$: Well-conditioned')5

 41 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Contours With Well-Conditioned Matrices

Text(0.5, 1.0, '$\\Lambda = (1, 1)$: Well-conditioned')

 42 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Contours With Less Well-Conditioned Matrices

Let

Does great in one direction, but slows down

Λ = diag(1, 0.5)

Lambda = np.array([1.0, 0.5])1
plot_gd_steps(5, x_0, Lambda, eta)2
plt.title(r'$\Lambda = (1, 0.5)$: Moderately conditioned')3

 43 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Contours With Less Well-Conditioned Matrices

Text(0.5, 1.0, '$\\Lambda = (1, 0.5)$: Moderately conditioned')

 44 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Contours Getting Closer to a “Ridge”

Let

Slow convergence in the “flat” direction

Λ = diag(1, 0.1)

Lambda = np.array([1.0, 0.1])1
plot_gd_steps(5, x_0, Lambda, eta)2
plt.title(r'$\Lambda = (1, 0.1)$: Poorly conditioned')3

 45 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Contours Getting Closer to a “Ridge”
Text(0.5, 1.0, '$\\Lambda = (1, 0.1)$: Poorly conditioned')

 46 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Contours With Terribly Conditioned Matrices

Let

Can barely move in the “bad” direction

Λ = diag(1, 0.01)

Lambda = np.array([1.0, 0.01])1
plot_gd_steps(5, x_0, Lambda, eta)2
plt.title(r'$\Lambda = (1, 0.01)$: Terribly conditioned')3

 47 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Contours With Terribly Conditioned Matrices
Text(0.5, 1.0, '$\\Lambda = (1, 0.01)$: Terribly conditioned')

 48 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Contours With Ill-Conditioned Matrices

Let

Not full rank, positive semi-definite. But hits minima along the ridge

Λ = diag(1, 0.0)

Lambda = np.array([1.0, 0.0])1
plot_gd_steps(5, x_0, Lambda, eta)2
plt.title(r'$\Lambda = (1, 0)$: Singular (semi-definite)')3

 49 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Contours With Ill-Conditioned Matrices

Text(0.5, 1.0, '$\\Lambda = (1, 0)$: Singular (semi-definite)')

 50 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Regularization and Large-Scale
Methods

 51 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Motivation for Regularization and Conditioning

Geometry, not dimensionality, the key to understanding a large class of algorithms

(anything you would use in high-dimensions)

→ “Local” geometry is summarized by the “spectrum” of the Hessian

→ In particular, wildly mismatched eigenvalues are the enemy

Regularization: ridge then spectrum becomes

See more in

cond(𝐴) = | 𝜆max(𝐴)

𝜆min(𝐴)
|

𝛼‖𝑥‖22 𝜆𝑖 + 𝛼

Mark Schmidt’s Notes on Gradient Descent

 52 / 56

https://www.cs.ubc.ca/~schmidtm/Courses/340-F22/L13.pdf
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Condition Number and Numerical Precision

Rule of thumb: if condition number is , lose about digits of precision10
𝑘

𝑘

X = np.random.randn(100, 5)1
X_col = np.column_stack([X[:, 0], 2*X[:, 0]]) # collinear columns2
print(f"cond(X) = {cond(X):.2f}")3
print(f"cond(X.T @ X) = {cond(X.T @ X):.2f}")4
print(f"cond(X_col.T @ X_col) = {cond(X_col.T @ X_col):.2e}")5

cond(X) = 1.34
cond(X.T @ X) = 1.80
cond(X_col.T @ X_col) = 1.65e+16

 53 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Ridge Regression Stabilizes Conditioning
lam = 0.011
XX = X_col.T @ X_col2
XX_ridge = XX + lam * np.eye(XX.shape[0])3
print(f"cond(X_col.T @ X_col) = {cond(XX):.2e}")4
print(f"cond(X_col.T @ X_col + lambda*I) = {cond(XX_ridge):.2f}")5

cond(X_col.T @ X_col) = 1.65e+16
cond(X_col.T @ X_col + lambda*I) = 42036.47

 54 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Iterative Methods for Large-Scale Least Squares

For very large systems, direct methods become impractical

The covers NormalCG and other Krylov methods

Lineax lx.NormalCG() solver for least squares via iterative methods

Key insight: same conditioning/eigenvalue concepts determine convergence rate

→ Preconditioners transform the problem to improve conditioning

iterative methods lecture

 55 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/slides/iterative_methods.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

References

 56 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

