-y

Rethinking Least Squares: Min-Norm Solutions and Loss

Geometry
Machine Learning Fundamentals for Economists

Jesse Perla

jesse.perla@ubc.ca

University of British Columbia

f 1/56

mailto:jesse.perla@ubc.ca
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

miy
Table of contents

e Overview

Least Squares with the QR Decomposition
Min-Norm Solutions and Sobolev Spaces
Geometry and Loss Functions

Gradient Descent and Conditioning
Regularization and Large-Scale Methods

f 2 /56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Qoverview

-y

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

iy
Motivation

* In preparation for the ML lectures we cover some core numerical linear algebra concepts

on functional equations
» We will also use this as an opportunity to reinterpret least squares solutions as a prelude

to non-linearity
» Connection to previous lecture: conditioning and eigenvalues drive algorithm behavior

2) 4156

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/slides/iterative_methods.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Why This Matters for ML

» Modern ML operates in high-dimensional parameter spaces where traditional
‘identification’ fails

Neural networks: millions of parameters, infinitely many equivalent solutions
Yet these models generalize well despite apparent non-uniqueness

» Key insight: multiplicity of parameters # multiplicity of the functions they represent
Different g may produce the same (or nearly same) predictions
Understanding this requires thinking about geometry of loss functions

» This lecture builds intuition through the simplest case: linear least squares

Same geometric principles extend to deep learning

f 5/56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Packages and Materials

e See QuantEcon Numerical Linear Algebra

import numpy as np

import matplotlib.pyplot as plt

from scipy.linalg import eigvalsh, gr, lstsqg, solve
from numpy.linalg import cond, matrix_rank, norm
import jax

import jax.numpy as jnp

np.random.seed(42)

f 6 /56

https://python.quantecon.org/numerical_linear_algebra.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

_east Squares with the Q
Decomposition

-y

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

s
Least Squares and Normal Equations

» Given the least squares problem
min ||Ax — b||?
X
» Taking the FOCs and rearranging gives the normal equations

ATAx=A"b = x=(ATATATD

 This works, but forming AT A can be numerically unstable

Condition number squares: k(AT A) = k(A)?

f 81756

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
QR Decomposition for Least Squares

» QR factorizes rectangular matrices: A = OR for Q orthogonal, R upper triangular
Substitute A = QR into the normal equations AT Ax = A'b:

(QR)"(QR)x = (QR) "D

RTQTQRx=RTQb

Since QTQ = I (orthogonal), this simplifesto R"TRx = RTQ'b
Left-multiply by (RT)™! to get the triangular system:

Rx=Q"b

Solve via back-substitution - avoids formin®y AT A entirely, much more stable 9/56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

3/
QR is Used Internally for Least Squares
* Inside 1stsqg and similar functions, QR is used for numerical stability

» Compare direct normal equations vs. QR-based solution

N, M = 10, 3
np.random.randn(N, M) + np.random.randn(N, 1)
np.random.randn(N)

b

QR-based solution
x_1lstsq, residuals, rank, s = lstsq(A, b)

Normal equations (less stable but instructive)
x_normal = solve(A. T @ A, A.T @ b)

print(f"lstsq solution: {x_1lstsq}")
print(f"Normal eqn sol: {x_normal}")

lstsq solution: [-0.4229563 0.63714154 -0.16902314]
Normal eqgn sol: [-0.4229563 0.63714154 -0.16902314]

L] 10 /56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
QR and Underdetermined Least Squares

» Take the case where N < M and use the QR decomposition

A = np.array([[1.0, 2.0, 3.0],
[4.0, 5.0, 6.0]])
b = np.array([7.0, 8.0])
X, residuals, rank, s = lstsq(A, b)
print(f"Solution: {x}")
print(f"Rank: {rank}, Columns: {A.shape[1]}")

Solution: [-3.05555556 0.11111111 3.27777778]
Rank: 2, Columns: 3

» Wait, why did that give an answer?

And if | try various algorithms even with random starting points, why does it give the
same answer?

There is a bias towards a particular solution. Will come back to this repeatedly

11 /56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Min-Norm Solutions and Sobolev
Spaces

-y

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

n /
Min-Norm Solution

 Linear least squares was solving min, ||Ax — b||§

» Which had multiplicity in this case. The solution it returns fulfills

min||x|5 s.t.Ax =10
X

 Or, can think of as solving the “ridgeless regression’

lim [mm | Ax — b2 + Auxu%]

» Will become crucial in deep learning where the number of parameters > data

f 13 /56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Algorithms + Optimization Problems

» Akey requirement to make the switch to ML thinking is to remember that just seeing the
optimization problem, e.g. max, f(x) may not be enough

» The algorithm itself will be important if there is multiplicity in solutions, if things are not
numerically stable, etc.

* Inthe case above, we saw that using QR decomposition delivered the min norm

14 /56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

s
Linear Operators, not Matrices

o Recall: for x € RN we should think of f(x) = Ax for A € RM*N as a linear transformation
from RN to RM
Definition of Linear: f(axy + bxy) = af(x1) + bf(x,) for scalar a, b

» Many algorithms might be implementable just using the matrix-vector product or the
transpose of the matrix-vector product?

Maybe we don't actually need to create a matrix? Can compose operations together?

This will be related to a lot of ML algorithms and autodifferentiation. Hint: Jacobian V f(x)
=A

The key to iterative methods will be the spectral properties of the Jacobian, which is
related to the eigenvalues of A

f 15/56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

s
LP Space

Let QQ be an open subset of R”™. A functionu : Q - R

LF(Q)) space: A function f : QO — Risin LP(Q) if:

p
NG

» Useful in a lot of cases, but will be especially important when considering norms on a
function space and whether a particular function solves a particular problem

f 16 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Sobolev Space

A function u belongs to the Sobolev space W 7 (Q) if:
u e LF(Q)

and all its weak derivatives up to order k are also in LP(€)).

A function ¢ € W*P(Q) is said to be a weak derivative of u if
uD%p dx = (1)1 f D%u dx
[uptgdx =1 | o

for all multi-indices a with || < k.

-y

17 /56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Sobolev Norm

The Sobolev Norm for a function u € WkP(Q) is defined as some variation on:

1/p
|l wrr) {Zf |D“u|de)

lar|<k

where a is a multi-index and D%u represents the weak derivative of u.

You can choose whatever terms you want in a

f 18 /56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
A Key Sobolev Semi-Norm

The key one to keep in mind is W12(Q), which is the space of functions with square-
integrable first derivatives.

1/2
Il = (fQ|Vu|2dx)

» Note that we have the option to include or not include the |u|? term itself when we define
a particular norm

 This is a semi-norm because it is semi-definite (i.e., multiple u with [ju|| = 0)

o Semi-norms serve two key purposes: establish equivalence classes, and prove a way to
control length which will come up with algorithms

f 19 /56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Sobolev Semi-Norms and Equivalence Classes

» A Sobolev semi-norms S define equivalence classes of functions
.e., any uqp and up such that [|lu; — usl|ls = 0 are in the same equivalence class

 In general, when we move to nonlinear and highly parameterized models there will be
many solutions that are equivalent

But if they are in approximately the same equivalence class, then who cares?

Multiplicity of “parameters” doesn't really matter if the functions do the same thing

f 20 /56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

1/
Sobolev Semi-Norms and Occam's Razor
» The other purpose is to give some sense of length, [luqlls < [luzlls

» This will come up with regularization since we may want to bias algorithms towards
particular functions or interpret inherent bias in the algorithms

» The key interpretation here is that for Sobolev Norms we can think of variations on the
W12 as determining how simple a function is

T |lu1lls < ||uz|ls then it has smaller gradients and fewer "wiggles’

If both interpolate the same data, then we should prefer the simpler one. Occam’s
Razor

» We won't always be able to know the precise semi-norm when working with ML, but this
s useful intuition

21 /56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Sobolev Norms and Linear Functions

« Now, think of linear functions f(x) = px where f is a vector, matrix, or scalar
Consider this on a bounded domain €2 so the integrals are well defined

 Then our Sobolev 1,2 norm, W5 here is simple:

1 fllwr2 = 1Ill2

Where ||5]]2 is euclidean norm of the vector, or the Frobenius norm of the matrix

2) 22 /56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Back to the Ridgeless Regression

Now lets reinterpret our ridgeless regression” with a

li in ||AB - bl|5 + AllBlI3
lim mﬁmll B = bllz + AllBll2
» This says that we are “penalizing” the norm of f(x) = Bx in the W2 sense

e Thelimit A — 0 means we are asymptotically dropping this penalty, but there is still this
‘bias” which makes solutions unique

« Normally unigue to an equivalence class with in W12 but with linear functions they are
unigue. Why?

23 /56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Min-Norm Solution as Occam’'s Razor

Recall that this was also

min|jflly st.AB="b

» i.e, we are finding the minimum norm solution that interpolates our data

And we can interpret the minimum norm through Occam's Razor

This general principle will apply when we think about nonlinear approximations as well,
though we don't need to fully interpolate (i.e., if A > 0 then we don't need to interpolate
perfectly)

Suggests the crucial role of regularization.

2) 24 /56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Singular Linear Systems of Equations

This isnt just least squares

 Consider the case for finding solutions to Ap = b where A is singular.
Either no solution or infinite solutions exist

» |f you solve a linear system with SVD or iterative methods it gives an answer! The min-
norm solution

mﬁinllﬁllﬁ

stAB =10

f 25/ 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
s the Min-Norm Solution Special?

» The min-norm solution to LLS is the closest projection to the column space of the data

» Foragiven norm it is the unigue solution to a well-specified problem which can often be
interpreted through appealing to simplicity

't is also the unique 'most stable” solution for a given norm. Loosely,
Take b + 6b for some small &b and/or A + 6 A for some small 6A

Then the min-norm solution is the one where 8 + 6f is smallest

Another interpretation we will apply to ML and nonlinear models: min-norm solutions are
the ones least sensitive to data perturbations

This will also come up with Bayesian statistics, if we apply a prior which is asymptotically
non-informative, the min-norm solution is the MAP solution

f 26 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Min-Norm Solution and Conditioning

» As a preview of connections to the previous lecture, consider if the matrix is almost, but
not quite sinqular

Tough to know due to numerical roundoff
» You may have learned from experience that everything works great if you:

Tweak to the diagonal of the matrix, or to the normal equations for LLS, or to make
a covariance matrix positive definite

» Consider how that is related to the min-norm solution and L2 penalized LLS (i.e,, "ridge”)

Will turn out to be exactly equivalent in many algorithms

2) 27156

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/slides/iterative_methods.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Geometry and LossS

—UNCctions

-y

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

iy
Geometry of Loss Functions

» The curvature of the loss function will be essential to understanding generalization

The motivation: we will work with models where every local minima is a global
minima, multiplicity is pervasive but innocuous, etc.

» For some B* which is a local minima of ming f(X; f) the Hessian V2 f(X; B*) tells us
about whether minima are unique, how sensitive they are to perturbations, etc.

» Key questions to ask:

What is the rank of the hessian? If full rank, with a positive definite hessian, then the
solution is (locally) unique

Figenvalues show ridges/etc.

f 29 /56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Geometry of Reqularized LLS

.1
min [XB—y3-+ Al

- -

=f(X;B)

» The Hessian is then (for all B)

V(X)) = XTX + Al

* |s this problem convex with A = 0? Only if X T X is positive definite

f 30/56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Reminder on Positive and Semi-Definite
» Positive definite if x" Ax > 0, (‘semi-definite” if > 0) forall x # 0

» With the spectral decomposition of symmetric A

A=QAQT

A = diag(Ay4, ..., A,) and Q is an orthogonal matrix of eigenvectors
A is positive definite if A; > 0 for all i
A is positive semi-definite if A; > 0 for all i

» In more abstract and infinite dimensional spaces a linear operator A(x) operator is
positive definite if x - A(x) > 0 forallx #0

Has eigenvalues/eigenvectors, i.e. A(x) = Ax for some A and x

f 31/56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Shape of Positive Definite Function

3 1
1 2

 This has a unique minimum (at (0, 0), since no “affine” term)

° For A = [] (positive definite)

Eigenvalues: [1.38196601 3.61803399] (all positive)

fix)=xTAx Contours (unique mlnlmum at origin)
\\%\
\5‘
\\;\
S
e

f(x)

-y

32/56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Shape of Positive Semi-Definite Function

1 1
1 1

» Multiple minima along a line! The zero eigenvalue creates a "ridge’

o For A = [](pos't've semi-definite, not definite)

Eigenvalues: [0. 2.] (one is zero!)

fix)=x"Ax Contours (infinite minima alo
~ N Y

gnl=]
(e}
@

line)

25
- 20 20

- 15 f(x)

f 33/56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

n s
Shape of Indefinite Function (Saddle Point)

1 0
e For A = 0 -1 (indefinite: positive and negative eigenvalues)

* No minimum or maximum at origin - it's a saddle point

Eigenvalues: [-1. 1.] (mixed signs = indefinite)

fix)=x T Ax Contours (saddle point at origin)

=
2'\)
6 2 2 s
4 1
2
0o ¥ o0
-2
4 o°
_6 o N
>
-2 _/\,'J’ -
7 // N db\
/ S — 0-—.2_4--. ~7.
-2

f 34 /56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Reqularization Creates Unigue Minimum

1 1
1 1

» Now unigue minimum at (0, 0)!

o Take semi-definite A = []and add Al forA =0.1

Eigenvalues after regularization: [0.1 2.1] (both positive now)

fixX)=xT(A+Alx Contours (unique minimum restored)

- 15 f(x)

-y

35/56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

3 7/
Convexity of a Quadratic Objective
* We will build P and f(x) = %xTPx from the spectral decomposition
 Rotating eigenvectors and starting with A = diag(1,1)
» And keep in mind that V f(x) = Px

Q = np.array([[np.sqrt(2)/2, np.sqrt(2)/2], P =
[-np.sqrt(2)/2, np.sqrt(2)/211) [[1.00000000e+00 -4.26642159e-17]
Lambda = np.array([1.0, 1.0]) [-4.26642159e-17 1.00000000e+00]]

P=Q @ np.diag(Lambda) @ Q.T # since symmetric
print(f"P =\n{P}")

36 /56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Contours of the Quadratic Objective

x_vals = np.linspace(-1, 1, 100)

X1, X2 = np.meshgrid(x_vals, x_vals)

Z =0.5* (P[0,0]*X1**2 + 2*P[0,1]*X1*X2 + P[1,1]*X2**2)
plt.figure(figsize=(6, 5))

cs = plt.contour(X1, X2, Z, levels=20, cmap='viridis')

plt.clabel(cs, inline=True, fontsize=8)

plt.xlabel('x1"'); plt.ylabel('x2")

plt.title(r'$f(x) = \frac{1}{2} xA\top P x$ with $\Lambda = (1, 1)$")
plt.gca().set_aspect('equal')

fix) =2x T Px with A= (1, 1)
1.00

o
0.75 /4.
0.50 A

0.25 1

X2

0.00 A

—0.25 4

—0.50 A

—0.75 4

f 37156

_1.00 T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Gradient

Descent and Conditioning

-y

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Gradient Descent Style Algorithms

» To understand the importance of geometry, lets consider optimizing with simple gradient
descent style algorithms to minimize:

1.
mxmzx Px

» Letn > 0bea’step size’, learning rate, etc. then

xi+1 — xi . T]Vf(xl) — xi . ani

» We will fixx® =[0.9 0.0], set = 0.5 and plot a few iterations

f 39/56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

n /
GGradient Descent Visualization Code

def plot_gd_steps(N_steps, x_0, Lambda, eta):
Q = np.array([[np.sqrt(2)/2, np.sqrt(2)/2],
[-np.sqgrt(2)/2, np.sqrt(2)/2]])
P =Q @ np.diag(Lambda) @ Q.T
gd_step = lambda x: x - eta * P @ x
x_vals = np.linspace(-1, 1, 100)
X1, X2 = np.meshgrid(x_vals, x_vals)
Z = 0.5 * (P[0,0]*X1**2 + 2*P[0,1]*X1*X2 + P[1,1]*X2**2)
plt.figure(figsize=(6, 5))
plt.contour(X1, X2, Z, levels=20, cmap='viridis')

X_current = np.array(x_0)
for i in range(N_steps):
Xx_next = gd_step(x_current)
plt.arrow(x_current[0@], x_current[1], x_next[0] - x_current[0],
x_next[1] - x_current[1],head_width=0.03, head_length=0.02, fc='red', ec='red'")
X_current = x_next

plt.xlabel('x1"'); plt.ylabel('x2")

L] 40/ 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

N/
Contours With Well-Conditioned Matrices

o Let A =diag(1l,1) whichleadsto P =1
» Converges almost immediately. Immediately in any dimensions withnn =1

Lambda = np.array([1.0, 1.0])

X_0 = [0.9, 0.0]

eta = 0.5

plot_gd_steps(5, x_0, Lambda, eta)
plt.title(r'$\Lambda = (1, 1)$: Well-conditioned")

411756

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Contours With Well-Conditioned Matrices

Text (0.5, 1.0, '$\\Lambda = (1, 1)$: Well-conditioned')

A=(1, 1): Well-conditioned

1.00

0.75

0.50 ~

0.25 ~

¥ 0.00 -

—0.25 A

—0.50 ~

—0.75 A

.

N\

X

.

-1.00

x1

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

-y

42 | 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

a7
Contours With Less Well-Conditioned Matrices

o Let A =diag(1,0.5)
» Does great in one direction, but slows down
Lambda = np.array([1.0, 0.5])

plot_gd_steps(5, x_0, Lambda, eta)
plt.title(r'$\Lambda = (1, 0.5)$: Moderately conditioned')

43 /56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

a7
Contours With Less Well-Conditioned Matrices

Text (0.5, 1.0, '$\\Lambda = (1, 0.5)%: Moderately conditioned')

A =(1,0.5): Moderately conditioned

AN

0.50 A

0.25 -
¥ 0.00 A
~0.25 1
—0.50 1

AN O

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
x1

f 44 | 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Contours Getting Closer to a "Ridge’

e Let A =diag(1,0.1)
» Slow convergence in the "flat” direction

Lambda = np.array([1.0, 0.1])
plot_gd_steps(5, x_0, Lambda, eta)
plt.title(r'$\Lambda = (1, 0.1)$: Poorly conditioned')

L] 45/ 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Contours Getting Closer to a "Ridge’

Text (0.5, 1.0, '$\\Lambda = (1, 0.1)%: Poorly conditioned')

A=(1,0.1): Poorly conditioned
1.00
075—222225/

0.50 ~

0.25 A

¥ 0.00 -

—0.25 A

—0.50 A

—0.75 1 /
-1.00 T T T T f T T

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

x1

f 46 / 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Contours With Terribly Conditioned Matrices

e Let A =diag(1,0.01)
» Can barely move in the "bad” direction
Lambda = np.array([1.0, 0.01])

plot_gd_steps(5, x_0, Lambda, eta)
plt.title(r'$\Lambda = (1, 0.01)$: Terribly conditioned')

47] 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Contours With Terribly Conditioned Matrices

Text(0.5, 1.0, '$\\Lambda = (1, 0.01)$: Terribly conditioned')

A= (1,0.01): Terribly conditioned
1.00
0]5—222224/

0.50 A

0.25 A

¥ 0.00 -

—0.25 A

—0.50 A

—0.75 1 /
-1.00 T T T f T T T

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

x1

L] 48 | 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

n /7
Contours With Ill-Conditioned Matrices

e Let A =diag(1,0.0)
» Not full rank, positive semi-definite. But hits minima along the ridge

Lambda = np.array([1.0, 0.0])
plot_gd_steps(5, x_0, Lambda, eta)
plt.title(r'$\Lambda = (1, 0)$: Singular (semi-definite)"')

49/ 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

n /7
Contours With IlI-Conditioned Matrices

Text (0.5, 1.0, '$\\Lambda = (1, 0)$: Singular (semi-definite)')

A= (1, 0): Singular (semi-definite)
1.00
075—222224/

0.50 ~

0.25 A

¥ 0.00 -

—0.25 A

—0.50 A

—0.75 1 /
-1.00 T T T f T T T

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

x1

L] 50/ 56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Reqd
Met

Ularization and Large-Scale

NOdS

-y

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Motivation for Regularization and Conditioning

» Geometry, not dimensionality, the key to understanding a large class of algorithms
(anything you would use in high-dimensions)
‘Local” geometry is summarized by the “spectrum’ of the Hessian

In particular, wildly mismatched eigenvalues are the enemy

Amax(A)
/\min (A)

cond(A) = |

» Regularization: ridge a||x||§ then spectrum becomes A; + «

e See more in Mark Schmidt’'s Notes on Gradient Descent

f 52 /56

https://www.cs.ubc.ca/~schmidtm/Courses/340-F22/L13.pdf
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

iy
Condition Number and Numerical Precision

« Rule of thumb: if condition number is 10¥, lose about k digits of precision

X = np.random.randn(100, 5)

X_col = np.column_stack([X[:, 0], 2*X[:, 0]]) # collinear columns

print(f"cond(X) = {cond(X):.2f}")

print(f"cond(X.T @ X) = {cond(X.T @ X):.2f}")

print(f"cond(X_col.T @ X _col) = {cond(X_col.T @ X_col):.2e}")
cond(X) = 1.34

cond(X. T @ X) = 1.80
cond(X_col.T @ X_col) = 1.65e+16

53 /56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Ridge Regression Stabilizes Conditioning

lam = 0.01

XX = X_col.T @ X_col

XX_ridge = XX + lam * np.eye(XX.shape[0])

print(f"cond(X_col.T @ X_col) = {cond(XX):.2e}")
print(f"cond(X_col.T @ X_col + lambda*I) = {cond(XX_ridge):.2f}")

cond(X_col.T @ X_col) = 1.65e+16
cond(X_col.T @ X_col + lambda*I) = 42036.47

L] 54 /56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
'terative Methods for Large-Scale Least Squares

» Forvery large systems, direct methods become impractical
» The iterative methods lecture covers NormalCG and other Krylov methods
» Lineax 1x.NormalCG() solver for least squares via iterative methods

» Key insight: same conditioning/eigenvalue concepts determine convergence rate

Preconditioners transform the problem to improve conditioning

f 55 /56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/slides/iterative_methods.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Iy
References

L] 56 /56

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

