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Overview
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Motivation

In preparation for the ML lectures we cover some core numerical linear algebra concepts

on functional equations

We will also use this as an opportunity to reinterpret least squares solutions as a prelude

to non-linearity
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Packages and Materials

See  and associated notebooksQuantEcon Numerical Linear Algebra

using LinearAlgebra, Statistics, BenchmarkTools, SparseArrays, Random1
using Plots2
Random.seed!(42);  # seed random numbers for reproducibility3
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Least Squares with the QR

Decomposition
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QR Decomposition

QR is for general rectangular matrices  for  orthogonal and  upper triangular

Especially useful for least-squares problems, where it is fast and numerically stable.

Normal equations are 

Given a QR Decomposition 

→ Where we recall that for upper-triangular  the system of equations is easy to solve

𝐴 = 𝑄𝑅 𝑄 𝑅

min
𝑥

‖𝐴𝑥 − 𝑏‖2

𝑥 = (𝐴′𝐴)−1𝐴′𝑏

𝑅𝑥 = 𝑄′𝑏

𝑅
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QR is Used Internally for Least Squares

Inside of the \ it will do a QR

See full lectures for implementing the qr(A) \ b

N = 101
M = 32
x_true = rand(3)3

4
A = rand(N, M) .+ randn(N)5
b = rand(N)6
x = A \ b7
@show qr(A) \ b;8

qr(A) \ b = [0.2054650535804738, -0.17355961216966145, 0.2655893861922953]
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QR and Underdetermined Least Squares

Take the case where  and use the QR decomposition.

Wait, why did that give an answer?

→ And if I try various algorithms even with random starting points, why does it give the

same answer?

→ There is a bias towards a particular solution. Will come back to this repeatedly

𝑁 <𝑀

A = [1.0 2.0 3.0;1
     4.0 5.0 6.0]2
b = [7.0, 8.0]3
@show A \ b;4

A \ b = [-3.0555555555555522, 0.11111111111111072, 3.277777777777776]
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Min-Norm Solutions and Sobolev

Spaces
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Min-Norm Solution

Linear least squares was solving 

Which had multiplicity in this case. The solution it returns fulfills

Or, can think of as solving the “ridgeless regression”

Will become crucial in deep learning where the number of parameters  data

min𝑥 ‖𝐴𝑥 − 𝑏‖
2
2

min
𝑥

‖𝑥‖
2
2 s.t.𝐴𝑥 = 𝑏

lim
𝜆→0

[min
𝑥

‖𝐴𝑥 − 𝑏‖22 + 𝜆‖𝑥‖22]

≫
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Algorithms + Optimization Problems

A key requirement to make the switch to ML thinking is to remember that just seeing the

optimization problem, e.g.   may not be enough

The algorithm itself will be important if there is there is multiplicity in solutions, if things

are not numerically stable, etc.

In the case above, we saw that using QR decomposition delivered the min norm

max𝑥 𝑓(𝑥)
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Linear Operators, not Matrices

Recall: for  we should think of a  for  as a linear

transformation from  to 

→ Definition of Linear:  for scalar 

Many algorithms might be implementable just using the matrix-vector product or the

transpose of the matrix-vector product?

Maybe we don’t actually need to create a matrix? Can compose operations together?

This will be related to a lot of ML algorithms and autodifferentiation. Hint: Jacobian 

The key to iterative methods will be the spectral properties of the Jacobian, which is

related to the eigenvalues of 

𝑥 ∈ ℝ𝑁 𝑓(𝑥) = 𝐴𝑥 𝐴 ∈ ℝ
𝑀×𝑁

ℝ
𝑁

ℝ
𝑀

𝑓(𝑎𝑥1 + 𝑏𝑥2) = 𝑎𝑓(𝑥1) + 𝑏𝑓(𝑥2) 𝑎, 𝑏

∇𝑓(𝑥)

= 𝐴

𝐴
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 space

Let  be an open subset of . A function 

 space: A function  is in  if:

Useful in a lot of cases, but will be especially important when considering norms on a

function space and whether a particular function solves a particular problem

𝐿𝑝

Ω ℝ
𝑛 𝑢 : Ω→ ℝ

𝐿𝑝(Ω) 𝑓 : Ω→ ℝ 𝐿𝑝(Ω)

∫
Ω

|𝑓|𝑝 𝑑𝑥 < ∞
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Sobolev Space

A function  belongs to the Sobolev space  if:

and all its weak derivatives up to order  are also in .

A function  is said to be a weak derivative of  if:

for all multi-indices  with .

𝑢 𝑊 𝑘,𝑝(Ω)

𝑢 ∈ 𝐿𝑝(Ω)

𝑘 𝐿𝑝(Ω)

𝜙 ∈𝑊 𝑘,𝑝(Ω) 𝑢

∫
Ω
𝑢𝐷𝛼𝜙𝑑𝑥 = (−1)|𝛼|∫

Ω
𝜙𝐷𝛼𝑢 𝑑𝑥

𝛼 |𝛼| ≤ 𝑘
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Sobolev Norm

The Sobolev Norm for a function  is defined as some variation on:

where  is a multi-index and  represents the weak derivative of .

You can choose whatever terms you want in 

𝑢 ∈𝑊 𝑘,𝑝(Ω)

‖𝑢‖𝑊 𝑘,𝑝(Ω) =

⎛

⎝

⎜⎜⎜⎜⎜⎜
∑
|𝛼|≤𝑘

∫
Ω

|𝐷𝛼𝑢|𝑝 𝑑𝑥

⎞

⎠

⎟⎟⎟⎟⎟⎟

1/𝑝

𝛼 𝐷𝛼𝑢 𝑢

𝛼
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A Key Sobolev Semi-Norm

The key one to keep in mind is , which is the space of functions with square-

integrable first derivatives.

Note that we have the option to include or not include the  term itself when we define

a particular norm

This is a semi-norm because it is semi-definite (i.e., multiple  with )

Semi-norms serve two key purposes: establish equivalence classes, and prove a way to

control length which will come up with algorithms

𝑊 1,2(Ω)

‖𝑢‖𝑊 1,2(Ω) = (∫
Ω
|∇𝑢|2 𝑑𝑥)1/2

|𝑢|2

𝑢 ‖𝑢‖ = 0
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Sobolev Semi-Norms and Equivalence Classes

A Sobolev semi-norms  define equivalence classes of functions

→ i.e., any  and  such that  are in the same equivalence class

In general, when we move to nonlinear and highly parameterized models there will be

many solutions that are equivalent

→ But if they are in approximately the same equivalence class, then who cares?

→ Multiplicity of “parameters” doesn’t really matter if the functions do the same thing

𝑆

𝑢1 𝑢2 ‖𝑢1 − 𝑢2‖𝑆 = 0
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Sobolev Semi-Norms and Occam’s Razor

The other purpose is to give some sense of length, 

This will come up with regularization since we may want to bias algorithms towards

particular functions or interpret inherent bias in the algorithms

The key interpretation here is that for Sobolev Norms we can think of variations on the

 as determining how simple a function is

→ If  then it has smaller gradients and fewer “wiggles”

→ If both interpolate the same data, then we should prefer the simpler one. Occam’s

Razor

We won’t always be able to know the precise semi-norm when working with ML, but this

is useful intuition

‖𝑢1‖𝑆 < ‖𝑢2‖𝑆

𝑊
1,2

‖𝑢1‖𝑆 < ‖𝑢2‖𝑆
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Sobolev Norms and Linear Functions

Now, think of linear functions  where  is a vector, matrix, or scalar

→ Consider this on a bounded domain  so the integrals are well defined

Then our Sobolev 1,2 norm,  here is simple:

Where  is euclidean norm of the vector, or the Frobenius norm of the matrix

𝑓(𝑥) = 𝛽𝑥 𝛽

Ω

𝑊 𝑘,𝑝

‖𝑓‖𝑊 1,2 = ‖𝛽‖2

‖𝛽‖2
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Back to the Ridgeless Regression

Now lets reinterpret our “ridgeless regression” with a

This says that we are “penalizing” the norm of  in the  sense

The limit  means we are asymptotically dropping this penalty, but there is still this

“bias” which makes solutions unique

Normally unique to an equivalence class with in , but with linear functions they are

unique. Why?

lim
𝜆→0

[min
𝛽

‖𝐴𝛽 − 𝑏‖22 + 𝜆‖𝛽‖
2
2]

𝑓(𝑥) = 𝛽𝑥 𝑊 1,2

𝜆→ 0

𝑊 1,2
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Min-Norm Solution as Occam’s Razor

Recall that this was also

i.e., we are finding the minimum norm solution that interpolates our data

And we can interpret the minimum norm through Occam’s Razor

This general principle will apply when we think about nonlinear approximations as well,

though we don’t need to fully interpolate (i.e., if  then we don’t need to interpolate

perfectly)

Suggests the crucial role of regularization. Discuss!

min
𝛽

‖𝛽‖22 s.t.𝐴𝛽 = 𝑏

𝜆 > 0
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Singular Linear Systems of Equations

This isn’t just least squares

Consider the case for finding solutions to  where  is singular. Either no solution

or infinite solutions exist

If you solve a linear system with SVD or iterative methods it gives an answer! The min-

norm solution

𝐴𝛽 = 𝑏 𝐴

min
𝛽

‖𝛽‖22

s.t.𝐴𝛽 = 𝑏

 23 / 38

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html


Is the Min-Norm Solution Special?

The min-norm solution to LLS/etc. is the closest projection to the column space of the

data

For a given norm it is the unique solution to a well-specified problem which can often be

interpreted through appealing to simplicity

It is also the unique “most stable” solution for a given norm. Loosely,

→ Take  for some small  and/or  for some small 

→ Then the min-norm solution is the one where  is smallest

Another interpretation we will apply to ML and nonlinear models: min-norm solutions are

the ones least sensitive to data perturbations

This will also come up with Bayesian statistics, if we apply a prior which is asymptotically

non-informative, the min-norm solution is the MAP solution

𝑏 + 𝛿𝑏 𝛿𝑏 𝐴 + 𝛿𝐴 𝛿𝐴

𝛽 + 𝛿𝛽
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Min-Norm Solution and Conditioning

As a preview of the next lecture, consider if the matrix is almost, but not quite singular

→ Tough to know due to numerical roundoff

You may have learned from experience that everything works great if you:

→ Tweak to the diagonal of the matrix, or to the normal equations for LLS, or to make

a covariance matrix positive definite

Consider how that is related to the min-norm solution and L2 penalized LLS (i.e., “ridge”)

→ Will turn out to be exactly equivalent in many algorithms
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Geometry and Loss Functions
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Geometry of Loss Functions

The curvature of the less function will be essential to understanding generalization

→ The motivation: we will work with models where every local minima is a global

minima, multiplicity is pervasive but innocuous, etc.

For some  which is a local minima of  the Hessian  tells us

about whether minima are unique, how sensitive they are to perturbations, etc.

Key questions to ask:

→ What is the rank of the hessian? If full rank, with a positive definite hessian, then the

solution is (locally) unique

→ Eigenvalues show ridges/etc.

𝛽∗ min𝛽 𝑓(𝑋; 𝛽) ∇
2𝑓(𝑋; 𝛽∗)
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Geometry of Regularized LLS

The Hessian is then (for all )

Is this problem convex with ? Only if  is positive definite

min
𝛽

1

2
[‖𝑋𝛽−𝑦‖22+𝜆‖𝛽‖22]

  φφφφφφφφφφφφ φφφφφφφφφφφφ

≡𝑓(𝑋;𝛽)

𝛽

∇
2𝑓(𝑋; 𝛽∗) = 𝑋⊤𝑋 + 𝜆𝐼

𝜆 = 0 𝑋⊤𝑋
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Reminder on Positive and Semi-Definite

Positive definite if  (“semi-definite” if ) for all 

With the spectral decomposition of symmetric 

→  and  is an orthogonal matrix of eigenvectors

→  is positive definite if  for all 

→  is positive semi-definite if  for all 

In more abstract and infinite dimensional spaces a linear operator  operator is

positive definite if  for all 

→ Has eigenvalues/eigenvectors, i.e.   for some  and 

𝑥⊤𝐴𝑥 > 0, ≥ 0 𝑥 ≠ 0

𝐴

𝐴 = 𝑄Λ𝑄⊤

Λ = diag(𝜆1, … ,𝜆𝑛) 𝑄

𝐴 𝜆𝑖 > 0 𝑖

𝐴 𝜆𝑖 ≥ 0 𝑖

𝐴(𝑥)

𝑥 ⋅𝐴(𝑥) > 0 𝑥 ≠ 0

𝐴(𝑥) = 𝜆𝑥 𝜆 𝑥
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Convexity of a Quadratic Objective

We will build  and  from the spectral decomposition

Rotating eigenvectors and starting with 

And keep in mind that 

𝑃 𝑓(𝑥) = 1
2 𝑥

⊤𝑃𝑥

Λ = diag(1, 1)

∇𝑓(𝑥) = 𝑃𝑥

Q = [sqrt(2)/2 sqrt(2)/2;1
    -sqrt(2)/2 sqrt(2)/2]2
Lambda = [1.0, 1.0]3
P = Q * Diagonal(Lambda) * Q' # since symmetric4
P5

2×2 Matrix{Float64}:
 1.0  0.0
 0.0  1.0
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Contours of the Quadratic Objective
x_vals = range(-1, 1, length = 100)1
f(x1, x2) = 0.5 * [x1, x2]' * P * [x1, x2]2
contour(x_vals, x_vals, f, levels = 20, legend = true)3
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Gradient Descent Style Algorithms

To understand the importance of geometry, lets consider optimizing with simple gradient

descent style algorithms to minimize:

Let  be a “step size”, learning rate, etc. then

We will fix , set  and plot a few iterations

min
𝑥

1

2
𝑥⊤𝑃𝑥

𝜂 > 0

𝑥𝑖+1 = 𝑥𝑖 − 𝜂∇𝑓(𝑥𝑖) = 𝑥𝑖 − 𝜂𝑃𝑥𝑖

𝑥0 ≡ [0.9 0.0] 𝜂 = 0.5

0.5
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Contours With a Well Conditioned Matrices

Let  which leads to 

Converges almost immediately. Immediately in any dimensions with 

Λ = diag(1, 1) 𝑃 = 𝐼

𝜂 = 1
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Contours With a Less Well Conditioned Matrices

Let 

Does great in one direction, but slows down

Λ = diag(1, 0.5)
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Contours Getting Closer to a “Ridge”

Let Λ = diag(1, 0.1)
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Contours With Terribly Conditioned Matrices

Let 

Can barely move in the “bad” direction

Λ = diag(1, 0.01)
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Contours With Ill-Conditioned Matrices

Let 

Not full rank, positive semi-definite. But hits minima

Λ = diag(1, 0.0)
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Motivation for Regularization and Conditioning

Geometry, not dimensionality, the key to understanding a large class of algorithms

(anything you would use in high-dimensions)

→ “Local” geometry is summarized by the “spectrum” of the Hessian

→ In particular, wildly mismatched eigenvalues are the enemy

Regularization: ridge  then spectrum becomes 

See more in 

cond(𝐴) = | 𝜆max(𝐴)

𝜆min(𝐴)
|

𝛼 || 𝑥||22 𝜆𝑖 + 𝛼

Mark Schmidt’s Notes on Gradient Descent
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