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Motivation

* In preparation for the ML lectures we cover some core numerical linear algebra concepts

on functional equations
» We will also use this as an opportunity to reinterpret least squares solutions as a prelude

to non-linearity

2 ) 4138


file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Packages and Materials

e See QuantEcon Numerical Linear Algebra and associated notebooks

using LinearAlgebra, Statistics, BenchmarkTools, SparseArrays, Random
using Plots
Random.seed!(42); # seed random numbers for reproducibility
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0/
QR Decomposition

» QR is for general rectangular matrices A = OR for Q orthogonal and R upper triangular

» Especially useful for least-squares problems, where it is fast and numerically stable.

min ||Ax — b||?
X

 Normal equations are x = (A’A) 1 A’D
» Given a QR Decomposition Rx = Q’b

Where we recall that for upper-triangular R the system of equations is easy to solve
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i
QR is Used Internally for Least Squares

e Inside of the \ it will doa QR

» See full lectures for implementing the gr (A) \ b

N = 10
M =3
x_true = rand(3)

A = rand(N, M) .+ randn(N)
b = rand(N)

Xx=A\Db

@show qr(A) \ b;

gr(A) \ b = [0.2054650535804738, -0.17355961216966145, 0.2655893861922953]
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QR and Underdetermined Least Squares

» Take the case where N < M and use the QR decomposition.

A=1]1.0 2.0 3.0;
4.0 5.0 6.0]

b =1[7.0, 8.0]

@show A \ b;

A\ b = [-3.0555555555555522, 0.11111111111111072, 3.277777777777776]

» Wait, why did that give an answer?

And if I try various algorithms even with random starting points, why does it give the
same answer?

There is a bias towards a particular solution. Will come back to this repeatedly
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Min-Norm Solution

 Linear least squares was solving min, ||Ax — b||§

» Which had multiplicity in this case. The solution it returns fulfills

min||x|5 s.t.Ax =10
X

 Or, can think of as solving the “ridgeless regression’

lim [mm | Ax — b2 + Auxu%]

» Will become crucial in deep learning where the number of parameters > data
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Algorithms + Optimization Problems

» Akey requirement to make the switch to ML thinking is to remember that just seeing the
optimization problem, e.g. max, f(x) may not be enough

» The algorithm itself will be important if there is there is multiplicity in solutions, if things
are not numerically stable, etc.

* Inthe case above, we saw that using QR decomposition delivered the min norm
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Linear Operators, not Matrices

o Recall: for x € RN we should think of a f(x) = Ax for A € RM*N as a linear
transformation from RN to RM

Definition of Linear: f(axy + bxy) = af(x1) + bf(x,) for scalar a, b

» Many algorithms might be implementable just using the matrix-vector product or the
transpose of the matrix-vector product?

Maybe we don't actually need to create a matrix? Can compose operations together?

This will be related to a lot of ML algorithms and autodifferentiation. Hint: Jacobian V f(x)
=A

The key to iterative methods will be the spectral properties of the Jacobian, which is
related to the eigenvalues of A
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LP space

Let QQ be an open subset of R”™. A functionu : Q - R

LF(Q)) space: A function f : QO — Risin LP(Q) if:

p
NG

» Useful in a lot of cases, but will be especially important when considering norms on a
function space and whether a particular function solves a particular problem
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Sobolev Space

A function u belongs to the Sobolev space W 7 (Q) if:
u e LF(Q)

and all its weak derivatives up to order k are also in LP(€)).

A function ¢ € W*P(Q) is said to be a weak derivative of u if
uD%p dx = (1)1 f D%u dx
[ uptgdx =1 | o

for all multi-indices a with || < k.

-y
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Sobolev Norm

The Sobolev Norm for a function u € WkP(Q) is defined as some variation on:

1/p
|l wrr ) {Zf |D“u|de)

lar|<k

where a is a multi-index and D%u represents the weak derivative of u.

You can choose whatever terms you want in a
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i
A Key Sobolev Semi-Norm

The key one to keep in mind is W12(Q), which is the space of functions with square-
integrable first derivatives.

1/2
Il = ( fQ|Vu|2dx)

» Note that we have the option to include or not include the |u|? term itself when we define
a particular norm

 This is a semi-norm because it is semi-definite (i.e., multiple u with [ju|| = 0)

o Semi-norms serve two key purposes: establish equivalence classes, and prove a way to
control length which will come up with algorithms
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Sobolev Semi-Norms and Equivalence Classes

» A Sobolev semi-norms S define equivalence classes of functions
.e., any uqp and up such that [|lu; — usl|ls = 0 are in the same equivalence class

 In general, when we move to nonlinear and highly parameterized models there will be
many solutions that are equivalent

But if they are in approximately the same equivalence class, then who cares?

Multiplicity of “parameters” doesn't really matter if the functions do the same thing
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Sobolev Semi-Norms and Occam's Razor
» The other purpose is to give some sense of length, [luqlls < [luzlls

» This will come up with regularization since we may want to bias algorithms towards
particular functions or interpret inherent bias in the algorithms

» The key interpretation here is that for Sobolev Norms we can think of variations on the
W12 as determining how simple a function is

T |lu1lls < ||uz|ls then it has smaller gradients and fewer "wiggles’

If both interpolate the same data, then we should prefer the simpler one. Occam’s
Razor

» We won't always be able to know the precise semi-norm when working with ML, but this
s useful intuition
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Sobolev Norms and Linear Functions

« Now, think of linear functions f(x) = px where f is a vector, matrix, or scalar
Consider this on a bounded domain €2 so the integrals are well defined

 Then our Sobolev 1,2 norm, W5 here is simple:

1 fllwr2 = 1Ill2

Where [|5]2 is euclidean norm of the vector, or the Frobenius norm of the matrix
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Back to the Ridgeless Regression

Now lets reinterpret our ridgeless regression” with a

li in ||AB - bl|5 + AllBlI3
lim mﬁmll B = bllz + AllBll2
» This says that we are “penalizing” the norm of f(x) = Bx in the W2 sense

e Thelimit A — 0 means we are asymptotically dropping this penalty, but there is still this
‘bias” which makes solutions unique

« Normally unigue to an equivalence class with in W12 but with linear functions they are
unigue. Why?
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Min-Norm Solution as Occam’'s Razor

Recall that this was also

min|jflly st.AB="b

» i.e, we are finding the minimum norm solution that interpolates our data

And we can interpret the minimum norm through Occam's Razor

This general principle will apply when we think about nonlinear approximations as well,
though we don't need to fully interpolate (i.e., if A > 0 then we don't need to interpolate
perfectly)

Suggests the crucial role of regularization. Discuss!
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i
Singular Linear Systems of Equations

This isnt just least squares
 Consider the case for finding solutions to Ap = b where A is singular. Either no solution
or infinite solutions exist

* |f you solve a linear system with SVD or iterative methods it gives an answer! The min-
norm solution

mﬁinllﬁlli

st.AB =10
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0/
s the Min-Norm Solution Special?

» The min-norm solution to LLS/etc. is the closest projection to the column space of the
data

» Foragiven norm it is the unigue solution to a well-specified problem which can often be
interpreted through appealing to simplicity

e Itis also the unique "'most stable” solution for a given norm. Loosely,
Take b + 6b for some small &b and/or A + 6A for some small 6A
Then the min-norm solution is the one where 8 + 66 is smallest

» Another interpretation we will apply to ML and nonlinear models: min-norm solutions are
the ones least sensitive to data perturbations

» This will also come up with Bayesian statistics, if we apply a prior which is asymptotically
non-informative, the min-norm solution is the MAP solution
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Min-Norm Solution and Conditioning

» As a preview of the next lecture, consider if the matrix is almost, but not quite singular
Tough to know due to numerical roundoff
» You may have learned from experience that everything works great if you:

Tweak to the diagonal of the matrix, or to the normal equations for LLS, or to make
a covariance matrix positive definite

» Consider how that is related to the min-norm solution and L2 penalized LLS (i.e,, "ridge”)

Will turn out to be exactly equivalent in many algorithms
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Geometry of Loss Functions

» The curvature of the less function will be essential to understanding generalization

The motivation: we will work with models where every local minima is a global
minima, multiplicity is pervasive but innocuous, etc.

» For some B* which is a local minima of ming f(X; f) the Hessian V2 f(X; B*) tells us
about whether minima are unique, how sensitive they are to perturbations, etc.

» Key questions to ask:

What is the rank of the hessian? If full rank, with a positive definite hessian, then the
solution is (locally) unique

Figenvalues show ridges/etc.
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Geometry of Reqularized LLS

.1
min [ XB—y3-+ Al

- -

=f(X;B)

» The Hessian is then (for all B)

V(X)) = XTX + Al

* |s this problem convex with A = 0? Only if X T X is positive definite
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Reminder on Positive and Semi-Definite
» Positive definite if x" Ax > 0, (‘semi-definite” if > 0) forall x # 0

» With the spectral decomposition of symmetric A

A=QAQT

A = diag(Ay4, ..., A,) and Q is an orthogonal matrix of eigenvectors
A is positive definite if A; > 0 for all i
A is positive semi-definite if A; > 0 for all i

» In more abstract and infinite dimensional spaces a linear operator A(x) operator is
positive definite if x - A(x) > 0 forallx #0

Has eigenvalues/eigenvectors, i.e. A(x) = Ax for some A and x
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Convexity of a Quadratic Objective

* We will build P and f(x) = %xTPx from the spectral decomposition
 Rotating eigenvectors and starting with A = diag(1,1)
e And keep in mind that V f(x) = Px

Q = [sqrt(2)/2 sqrt(2)/2; 2x2 Matrix{Float64}:
-sqrt(2)/2 sqrt(2)/2] 1.0 0.0
Lambda = [1.0, 1.0] 0.0 1.0

P = Q * Diagonal(Lambda) * Q' # since symmetric
P
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Contours of the Quadratic Objective

0/

1 x_vals = range(-1, 1, length = 100)
2 f(x1, x2) = 0.5 * [x1, x2]'" * P * [x1, x2]
3 contour(x_vals, x_vals, f, levels = 20, legend = true)
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Gradient Descent Style Algorithms

» To understand the importance of geometry, lets consider optimizing with simple gradient
descent style algorithms to minimize:

1.
mxmzx Px

» Letn > 0bea’step size’, learning rate, etc. then
xi+1 — xi . nvf(xZ) — xi _ 17Pxi

» We will fixx® =[0.9 0.0], set n = 0.5 and plot a few iterations

0.5
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Contours With a Well Conditioned Matrices

o Let A =diag(1l,1) whichleadsto P =1

» Converges almost immediately. Immediately in any dimensions with n =1

1.0 +
05 F

0.0 F

-0.5 F

_1_0 -

-1.0 -0.5 0.0 0.5 1.0
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Contours With a Less Well Conditioned Matrices

» Let A = diag(1, 0.5)

» Does great in one direction, but slows down

1.0 -

0.5

0.0 F

-0.5 |

_1_0 =

-1.0 -0.5 0.0 0.5 1.0
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Contours Getting Closer to a "Ridge’

o Let A = diag(1,0.1)

1.0

00

=05 F

-1.0

=05

0.0

1.0

0/
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Contours With Terribly Conditioned Matrices

» Let A = diag(1,0.01)

» Can barely move in the "bad” direction

1.0 -
0.5
0.0

-0.5 |

_1_0 =

-1.0 -0.5 0.0 0.5 1.0
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Contours With IlI-Conditioned Matrices

o Let A = diag(1, 0.0)

» Not full rank, positive semi-definite. But hits minima

1.0 -

0.5

0.0 F

-0.5 |

_1_0 =

-1.0 -0.5 0.0 0.5 1.0
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i
Motivation for Regularization and Conditioning

» Geometry, not dimensionality, the key to understanding a large class of algorithms
(anything you would use in high-dimensions)
‘Local” geometry is summarized by the “spectrum’ of the Hessian
In particular, wildly mismatched eigenvalues are the enemy

/\max (A)
/\min(A)

cond(A) = ‘

» Regularization: ridge a || x||§ then spectrum becomes A; + «

e See more in Mark Schmidt’s Notes on Gradient Descent
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