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Motivation

* In preparation for the ML lectures we cover some core numerical linear algebra concepts
» Many of these are directly useful

e.g. solving large LLS and systems of equations, such as you might find with a large
scale two-way fixed effects model

Solving systems of equations is useful in itself

» Others will be helpful in setting up understanding for ML
Matrix-free and iterative methods
What governs complexity and convergence speed
Conditioning
Regularization
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Summary and Material

e See QuantEcon Krylov Methods and Matrix Conditioning

using LinearAlgebra, Statistics, BenchmarkTools, SparseArrays, Random
using LaTeXStrings, Plots, IterativeSolvers, Preconditioners, IncompletelU,
using Arpack

Random.seed!(42); # seed random numbers for reproducibility

Precompiling packages. ..
2636.2 ms v IterativeSolvers
1 dependency successfully precompiled in 3 seconds. 10 already precompiled.
Precompiling packages...
548.2 ms ~ CommonSolve
1098.4 ms v AMD
984.8 ms v LimitedLDLFactorizations
2438.6 ms v AlgebraicMultigrid
1735.3 ms v Preconditioners
5 dependencies successfully precompiled in 5 seconds. 6 already precompiled.
Precompiling packages...
633.7 ms v IncompletelLU
1 dependency successfully precompiled in 1 seconds. 3 already precompiled.
Precompiling packages...
1579.9 ms v LinearMaps
1 dependency successfully precompiled in 2 seconds
Precompiling packages...
411.8 ms v LinearMaps - LinearMapsStatisticsExt
1 dependency successfully precompiled in 1 seconds. 2 already precompiled.
Precompiling packages... A
986.5 ms v LinearMaps - LinearMapsSparseArraysExt
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Direct Methods and Conditioning

o Some algorithms and some matrices are more numerically stable than others
By “numerically stable” we mean sensitive to accumulated roundoff errors

» Akeyissue is when matrices are close to singular, or almost have collinear columns.

Many times this can't be avoided, other times it can (e.g., choose orthogonal polynomials
rather than monomials)

» This will become even more of an issue with iterative methods, but is also the key to
rapid convergence. Hint: Ax = biseasy if A =1 evenifitis dense.
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Condition Numbers of Matrices

o det(A) = 0 may say itis "almost’ singular, but it is not scale-invariant

The condition number «, given matrix norm || - || uses the matrix norm

cond(A) = [JAIAT = 1

Expensive to calculate, can show that given spectrum

/\max
/\min

cond(A) =

Intuition: if cond(A) = K, then b — b + Vb change in b amplifies toax — x + KVb error
when solving Ax = b.

See Matlab Docs on inv for why inv is a bad idea when cond(A) is huge
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Condition Numbers and Matrix Operations

» The identity matrix is as good as it gets

» Otherwise, the issue is when matrices are of fundamentally different scales

@show cond(I(2)) cond(I(2)) = 1.0
opiion - 16-c oons2) = 2 eesseeuunaanantee
A2 = [1.0 0.0 cond(A2') = 2. e

_ cond(inv(A2)) = 2.0000000002323308e6
1.0 epsilon]

@show cond(A2);
@show cond(A2');
@show cond(inv(A2));
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Conditioning Under Matrix Products

» Matrix operations can often amplify the condition number, or may be invariant

» Be especially careful with normal equations/etc.

lauchli(N, epsilon) = [ones(N)"'; cond(L) = 1.732050807568878e8
epsilon * T(N)]' cond(L' * L) = 2.8104131146758097e32
epsilon = 1E-8 3x4 Matrix{Float64}:
L = lauchli(3, epsilon) |> Matrix 1.0 1.0e-8 0.0 0.0
@show cond(L) 1.0 0.0 1.0e-8 0.0
1.0 0.0 0.0 1.0e-8

@show cond(L' * L)
L

See here for why a monomial basis is a bad idea
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Direct Methods
» Direct methods work with a matrix, stored in memory, and typically involve factorizations
Can be dense or sparse
They can be fast, and solve problems to machine precision
 Typically are superior until problems get large or have particular structure
» But always use the right factorizations and matrix structure! (e.g., posdef, sparse, etc)

» The key limitations are the sizes of the matrices (or the sparsity)
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'terative Methods

* |terative methods are in the spirit of gradient descent and optimization algorithms
They take an initial guess and update until convergence

They work on matrix-vector and vector-matrix products, and can be matrix-free,
which is a huge advantage for huge problems

Rather than waiting until completion like direct methods, you can control stopping
» The key limitations on performance are geometric (e.g., conditioning), not dimensionality

» Two rough types: stationary methods and Krylov methods

2 ) 13/34


file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Example from Previous Lectures

 Variation on CTMC example:a > 0 gain, b > 0 to lose

» Solve the Bellman Equation for a CTMC

N = 100

a=20.1

b = 0.05

rho = 0.05

Q = Tridiagonal(fill(b, N-1),

[-a; fill(-(a + b), N-2); -b],
fill(a, N-1))

r = range(0.0, 10.0, length = N)
A=rho *I -Q

v_direct = A\ r

mean(v_direct)

101.96306207828795
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Diagonal Dominance

» Stationary Iterative Methods reorganize the problem so it is a contraction mapping and
then iterate

e For matrices that are strictly diagonal dominant
Al > Y, |Aj| foralli=1..N
j#i

.e., sum of all off-diagonal elements in a row is less than the diagonal element in
absolute value

 Note for our problem rows sumto 0 so if p > 0 then pI — Q is strictly diagonally
dominant
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Jacobi Iteration

» To solve a system Ax = b, split the matrix A into its diagonal and off-diagonal elements.
Thatis,

A=D+R
An 0 0 0 Ajp AiN
0 A 0 A 0 A
D= 2 R = .21 ON
0 0 ANN _ANl ANZ 0
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Jacobi Iteration Algorithm

» Then we can rewrite (D + R)x = b as

Dx =b - Rx
x = D7}(b - Rx)

Where D71 is trivial since diagonal. To solve, take an iteration x¥, starting from «©,

1 = D7 (b - RxF)
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Code for Jacobi Iteration

» Showing Jacobi Iteration and a better method, successive over-relaxation (SOR). Many
better algoriths exist

v = zeros(N) norm(v - v_direct, Inf)
norm(v - v_direct, Inf)

0.0017762754968373429
9.052314453583676e-12

jacobi! (v, A, r, maxiter = 40)
@show norm(v - v_direct, Inf)
sor!(v, A, r, 1.1, maxiter = 40)
@show norm(v - v_direct, Inf);
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Krylov Subspaces

» Krylov methods are a class of iterative methods that use a sequence of subspaces
» The subspaces are generated by repeated matrix-vector products

.e, given an A and a initial value b we could generate the sequence

b, Ab, A%b, ..., Akb and see

» Note that the only operation we require from our linear operator A is the matrix-vector
product. This is a huge advantage for large problems

» e.g. Krylov method is Conjugate Gradient for posdef A
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Conjugate Gradient

» Solving this system with the conjugate gradient method

» Using matrix, but could just implement A as a function

N = 100 cond(Matrix(A * A')) = 6.933646354576138e17
A = sprand(160, 100, 0.1) Not converged after 1000 iterations.
A=A* A" # easy posdef

b = rand(N)

Xx_direct = A\ b

@show cond(Matrix(A * A'))

X = zeros(N)

sol = cg!(x, A, b, log = true, maxiter = 1000)
sol[end]
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'terative Methods for LLS

* LSMR is one of several Krylov methods for solving LLS

min |[XB —y|I* + a||B|I*

« Wherea > 0. If @ = 0 then it is delivers the ridgeless regression limit, even if
underdetermined
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LSMR Example

M 1000

N 10000

sigma = 0.1

beta = rand(M)

# simulate data

X = sprand(N, M, 0.1)

y = X * beta + sigma * randn(N)
beta_direct = X \ vy

results = Llsmr(X, y, log = true)
beta_lsmr = results[1]

@show norm(beta_direct - beta_lsmr)
println("$(results[end])")

norm(beta_direct - beta_lsmr) = 1.0103408119554285e-5
Converged after 14 iterations.
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Matrix-Free LLS
» To solve LLS problems, we need Xu and X v products
» We can provide those functions directly (cheating here by just using the matrix itself)
# matrix-vector product Converged after 14 iterations.
X_func(u) = X * u

# adjoint-vector product
X_T_func(v) = X' * v

X_map = LinearMap(X_func, X_T_func, N, M)

results = lsmr(X_map, y, log = true)
println("$(results[end])")
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Figenvalue Problems

 Variation on CTMC example:a > 0 gain, b > 0 to lose

N =14

a=20.1

b =0.05

Q = Tridiagonal(fill(b, N-1),

[-a; fill(-(a + b), N-2); -b],
fill(a, N-1))
# Find smallest magnitude eigenvalue (i.e. 0)
lambda, phi = eigs( Q', nev = 1, which = :SM, maxiter = 1000)
phi = real(phi) ./ sum(real(phi))
@show lambda
@show mean(phi);
Q'
lambda = ComplexF64[-2.6156219089047246e-17 + 0.01im]
mean(phi) = 0.25

4x4 Tridiagonal{Float64, Vector{Float64}}:
-0.1 0.05 :
0.1 -0.15 0.05
0.1 -0.15 0.05
0.1 -0.05
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Implementing Matrix-Free Operator for Adjoint

function Q_adj_product(x)
Q_X = zero(x)
Q_x[1] = -a * x[1] + b * x[2]
for i = 2:(N-1)
Q x[1i] = a * x[1i-1] - (a + b) * x[1] + b * x[i+1]
end
Q X[N] = a * x[N-1] - b * Xx[N]
return Q_x
end
x_check = rand(N)
norm(Q_adj_product(x_check) - Q' * x_check)

0.0
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Solving with a Wrapper for the Matrix-Free Operator

» The LinearMap wrapper adds features required for algorithms (e.g. size(Q_adj_map and
Q_adj_map * v overloads)

Q_adj_map = LinearMap(Q_adj_product, N)

# Get smallest magnitude only using the Q'(x) map

lambda, phi = eigs(Q_adj_map, nev = 1, which = :SM, maxiter = 1000)
phi = real(phi) ./ sum(real(phi))

@show lambda

@show mean(phi);

lambda = ComplexF64[1.5057759750243998e-17 + 0.0im]
mean(phi) = 0.25
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Changing the Geometry

 In practice, most Krylov methods are preconditioned in practice or else direct methods
usually dominate. Same with large nonlinear systems

» As discussed, the key issue for the convergence speed of iterative methods is the
geometry (e.g. condition number of hessian, etc)

» Preconditioning changes the geometry. e.g. more like circles or with eigenvalue problems
spread out the eigenvalues of interest

» Preconditioners for a matrix A requires art and tradeoffs
Want be relatively cheap to calculate, and must be invertible
Want to have cond(PA) <« cond(A)

» |deal preconditioner for Ax =bisP = A7 since AT Ax = x = A71b

cond(A™1A) = 1! But that is equivalent to solving problem
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Right-Preconditioning a Linear System

Ax =D
AP'Px =b
APly =1
Px =1y

That is, solve (AP 1)y = b for y, and then solve Px = y for x.
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Raw Conjugate Gradient

200

sprand(N, N, 0.1) # 10 percent non-zeros
=A*A'

rand(N)

@show cond(Matrix(A))

sol = cg(A, b, log = true, maxiter = 1000)
sol[end]

o > > =2
[ T |

cond(Matrix(A)) = 724437.8616697111

Converged after 386 iterations.
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Diagonal Preconditioner

» A simple preconditioner is the diagonal of A
» Thisis cheap to calculate, and is invertible if the diagonal has no zeros

» For some problems this has a huge impact on convergence/condition, for others it does
nothing

P = DiagonalPreconditioner(A)

sol = cg(A, b; PL =P, log = true, maxiter = 1000)
sol[end]

Converged after 363 iterations.
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Incomplete LU or Cholesky
* |terate part of the way on an LU or Cholesky factorization
» Not the total inverse, but can make a big difference

P=1ilu(A, T = 0.1)
sol = cg(A, b; PL =P, log = true, maxiter = 1000)
sol[end]

Converged after 154 iterations.
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Others
» Inthe above we aren't getting huge gains, but it is also lacking structure

« If you have problems with multiple scales, as might come out of discretizing multiple
dimensions in a statepsace, see multigrid methods

Algebraic Multigrid preconditioner is often useful even outside of having different
scales

» Other preconditioners include ones intended for Graph Laplacians such as approximate
cholesky decompositions and combinatorial multigrid preconditioners.

See paper for more
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