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Motivation

In preparation for the ML lectures we cover some core numerical linear algebra concepts

Many of these are directly useful

→ e.g. solving large LLS and systems of equations, such as you might find with a large

scale two-way fixed effects model

→ Solving systems of equations is useful in itself

Others will be helpful in setting up understanding for ML

→ Matrix-free and iterative methods

→ What governs complexity and convergence speed

→ Conditioning

→ Regularization
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Summary and Material

See QuantEcon Krylov Methods and Matrix Conditioning

using LinearAlgebra, Statistics, BenchmarkTools, SparseArrays, Random1
using LaTeXStrings, Plots, IterativeSolvers, Preconditioners, IncompleteLU, LinearMaps2
using Arpack3
Random.seed!(42);  # seed random numbers for reproducibility4

Precompiling packages...
   2636.2 ms  ✓ IterativeSolvers
  1 dependency successfully precompiled in 3 seconds. 10 already precompiled.
Precompiling packages...
    548.2 ms  ✓ CommonSolve
   1098.4 ms  ✓ AMD
    984.8 ms  ✓ LimitedLDLFactorizations
   2438.6 ms  ✓ AlgebraicMultigrid
   1735.3 ms  ✓ Preconditioners
  5 dependencies successfully precompiled in 5 seconds. 6 already precompiled.
Precompiling packages...
    633.7 ms  ✓ IncompleteLU
  1 dependency successfully precompiled in 1 seconds. 3 already precompiled.
Precompiling packages...
   1579.9 ms  ✓ LinearMaps
  1 dependency successfully precompiled in 2 seconds
Precompiling packages...
    411.8 ms  ✓ LinearMaps → LinearMapsStatisticsExt
  1 dependency successfully precompiled in 1 seconds. 2 already precompiled.
Precompiling packages...
    986.5 ms  ✓ LinearMaps → LinearMapsSparseArraysExt
1 dependency successfully precompiled in 1 seconds 4 already precompiled
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Conditioning
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Direct Methods and Conditioning

Some algorithms and some matrices are more numerically stable than others

→ By “numerically stable” we mean sensitive to accumulated roundoff errors

A key issue is when matrices are close to singular, or almost have collinear columns.

Many times this can’t be avoided, other times it can (e.g., choose orthogonal polynomials

rather than monomials)

This will become even more of an issue with iterative methods, but is also the key to

rapid convergence. Hint:  is easy if , even if it is dense.𝐴𝑥 = 𝑏 𝐴 = 𝐼
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Condition Numbers of Matrices

 may say it is “almost” singular, but it is not scale-invariant

The condition number , given matrix norm  uses the matrix norm

Expensive to calculate, can show that given spectrum

Intuition: if , then  change in  amplifies to a  error

when solving .

See  for why inv is a bad idea when  is huge

det(𝐴) ≈ 0

𝜅 || ⋅ ||

cond(𝐴) ≡ ‖𝐴‖‖𝐴−1‖ ≥ 1

cond(𝐴) = | 𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛

|
cond(𝐴) = 𝐾 𝑏→ 𝑏 + ∇𝑏 𝑏 𝑥→ 𝑥 + 𝐾∇𝑏

𝐴𝑥 = 𝑏

Matlab Docs on inv cond(𝐴)
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Condition Numbers and Matrix Operations

The identity matrix is as good as it gets

Otherwise, the issue is when matrices are of fundamentally different scales

@show cond(I(2))1
epsilon = 1E-62
A2 = [1.0 0.03
     1.0 epsilon]4
@show cond(A2);5
@show cond(A2');6
@show cond(inv(A2));7

cond(I(2)) = 1.0
cond(A2) = 2.0000000000005004e6
cond(A2') = 2.0000000000004997e6
cond(inv(A2)) = 2.0000000002323308e6
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Conditioning Under Matrix Products

Matrix operations can often amplify the condition number, or may be invariant

Be especially careful with normal equations/etc.

lauchli(N, epsilon) = [ones(N)';1
                       epsilon * I(N)]'2
epsilon = 1E-83
L = lauchli(3, epsilon) |> Matrix4
@show cond(L)5
@show cond(L' * L)6
L7

cond(L) = 1.732050807568878e8
cond(L' * L) = 2.8104131146758097e32

3×4 Matrix{Float64}:
 1.0  1.0e-8  0.0     0.0
 1.0  0.0     1.0e-8  0.0
 1.0  0.0     0.0     1.0e-8

See  for why a monomial basis is a bad ideahere

 10 / 34

https://julia.quantecon.org/tools_and_techniques/iterative_methods_sparsity.html#why-a-monomial-basis-is-a-bad-idea
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html


Stationary Iterative Methods
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Direct Methods

Direct methods work with a matrix, stored in memory, and typically involve factorizations

→ Can be dense or sparse

→ They can be fast, and solve problems to machine precision

Typically are superior until problems get large or have particular structure

But always use the right factorizations and matrix structure! (e.g., posdef, sparse, etc)

The key limitations are the sizes of the matrices (or the sparsity)
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Iterative Methods

Iterative methods are in the spirit of gradient descent and optimization algorithms

→ They take an initial guess and update until convergence

→ They work on matrix-vector and vector-matrix products, and can be matrix-free,

which is a huge advantage for huge problems

→ Rather than waiting until completion like direct methods, you can control stopping

The key limitations on performance are geometric (e.g., conditioning), not dimensionality

Two rough types: stationary methods and Krylov methods
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Example from Previous Lectures

Variation on CTMC example:  gain,  to lose

Solve the Bellman Equation for a CTMC

𝑎 > 0 𝑏 > 0

N = 1001
a = 0.12
b = 0.053
rho = 0.054
Q = Tridiagonal(fill(b, N-1),5
                [-a; fill(-(a + b), N-2); -b],6
                fill(a, N-1))7

8
r = range(0.0, 10.0, length = N)9
A = rho * I - Q10
v_direct = A \ r11
mean(v_direct)12

101.96306207828795
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Diagonal Dominance

Stationary Iterative Methods reorganize the problem so it is a contraction mapping and

then iterate

For matrices that are 

→ i.e., sum of all off-diagonal elements in a row is less than the diagonal element in

absolute value

Note for our problem rows sum to 0 so if  then  is strictly diagonally

dominant

strictly diagonal dominant

|𝐴𝑖𝑖| ≥∑
𝑗≠𝑖

|𝐴𝑖𝑗| for all 𝑖 = 1…𝑁

𝜌 > 0 𝜌𝐼 −𝑄
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Jacobi Iteration

To solve a system , split the matrix  into its diagonal and off-diagonal elements.

That is,

𝐴𝑥 = 𝑏 𝐴

𝐴 ≡ 𝐷 + 𝑅

𝐷 ≡

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

𝐴11 0 … 0

0 𝐴22 … 0

⋮ ⋮ ⋮ ⋮

0 0 … 𝐴𝑁𝑁

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

𝑅 ≡

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

0 𝐴12 … 𝐴1𝑁

𝐴21 0 … 𝐴2𝑁

⋮ ⋮ ⋮ ⋮

𝐴𝑁1 𝐴𝑁2 … 0

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
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Jacobi Iteration Algorithm

Then we can rewrite  as

Where  is trivial since diagonal. To solve, take an iteration , starting from ,

(𝐷 + 𝑅)𝑥 = 𝑏

𝐷𝑥 = 𝑏 − 𝑅𝑥

𝑥 = 𝐷
−1(𝑏 − 𝑅𝑥)

𝐷−1 𝑥𝑘 𝑥0

𝑥
𝑘+1 = 𝐷

−1(𝑏 − 𝑅𝑥𝑘)
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Code for Jacobi Iteration

Showing Jacobi Iteration and a better method, successive over-relaxation (SOR). Many

better algoriths exist

v = zeros(N)1
2

jacobi!(v, A, r, maxiter = 40)3
@show norm(v - v_direct, Inf)4
sor!(v, A, r, 1.1, maxiter = 40)5
@show norm(v - v_direct, Inf);6

norm(v - v_direct, Inf) = 0.0017762754968373429
norm(v - v_direct, Inf) = 9.052314453583676e-12
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Krylov Methods
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Krylov Subspaces

Krylov methods are a class of iterative methods that use a sequence of subspaces

The subspaces are generated by repeated matrix-vector products

→ i.e., given an  and a initial value  we could generate the sequence

→  and see

Note that the only operation we require from our linear operator  is the matrix-vector

product. This is a huge advantage for large problems

e.g. Krylov method is  for posdef 

𝐴 𝑏

𝑏,𝐴𝑏,𝐴2𝑏, … ,𝐴𝑘𝑏

𝐴

Conjugate Gradient 𝐴
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Conjugate Gradient

Solving this system with the conjugate gradient method

Using matrix, but could just implement  as a function𝐴

N = 1001
A = sprand(100, 100, 0.1)2
A = A * A'  # easy posdef3
b = rand(N)4
x_direct = A \ b5
@show cond(Matrix(A * A'))6
x = zeros(N)7
sol = cg!(x, A, b, log = true, maxiter = 1000)8
sol[end]9

cond(Matrix(A * A')) = 6.933646354576138e17

Not converged after 1000 iterations.
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Iterative Methods for LLS

 is one of several Krylov methods for solving LLS

Where . If  then it is delivers the ridgeless regression limit, even if

underdetermined

LSMR

min
𝛽

‖𝑋𝛽 − 𝑦‖2 + 𝛼‖𝛽‖2

𝛼 ≥ 0 𝛼 = 0

 22 / 34

https://stanford.edu/group/SOL/software/lsmr/LSMR-SISC-2011.pdf
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html


LSMR Example
M = 10001
N = 100002
sigma = 0.13
beta = rand(M)4
# simulate data5
X = sprand(N, M, 0.1)6
y = X * beta + sigma * randn(N)7
beta_direct = X \ y8
results = lsmr(X, y, log = true)9
beta_lsmr = results[1]10
@show norm(beta_direct - beta_lsmr)11
println("$(results[end])")12

norm(beta_direct - beta_lsmr) = 1.0103408119554285e-5
Converged after 14 iterations.
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Matrix-Free LLS

To solve LLS problems, we need  and  products

We can provide those functions directly (cheating here by just using the matrix itself)

𝑋𝑢 𝑋
𝑇
𝑣

# matrix-vector product1
X_func(u) = X * u2

3
# adjoint-vector product4
X_T_func(v) = X' * v5

6
X_map = LinearMap(X_func, X_T_func, N, M)7
results = lsmr(X_map, y, log = true)8
println("$(results[end])")9

Converged after 14 iterations.
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Eigenvalue Problems

Variation on CTMC example:  gain,  to lose𝑎 > 0 𝑏 > 0

N = 41
a = 0.12
b = 0.053
Q = Tridiagonal(fill(b, N-1),4
                [-a; fill(-(a + b), N-2); -b],5
                fill(a, N-1))6
# Find smallest magnitude eigenvalue (i.e. 0)7
lambda, phi = eigs( Q', nev = 1, which = :SM, maxiter = 1000)8
phi = real(phi) ./ sum(real(phi))9
@show lambda10
@show mean(phi);11
Q'12

lambda = ComplexF64[-2.6156219089047246e-17 + 0.0im]
mean(phi) = 0.25

4×4 Tridiagonal{Float64, Vector{Float64}}:
 -0.1   0.05    ⋅      ⋅ 
  0.1  -0.15   0.05    ⋅ 
   ⋅    0.1   -0.15   0.05
   ⋅     ⋅     0.1   -0.05
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Implementing Matrix-Free Operator for Adjoint
function Q_adj_product(x)1
    Q_x = zero(x)2
    Q_x[1] = -a * x[1] + b * x[2]3
    for i = 2:(N-1)4
        Q_x[i] = a * x[i-1] - (a + b) * x[i] + b * x[i+1]5
    end6
    Q_x[N] = a * x[N-1] - b * x[N]7
    return Q_x8
end9
x_check = rand(N)10
norm(Q_adj_product(x_check) - Q' * x_check)11

0.0
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Solving with a Wrapper for the Matrix-Free Operator

The LinearMap wrapper adds features required for algorithms (e.g. size(Q_adj_map and

Q_adj_map * v overloads)

Q_adj_map = LinearMap(Q_adj_product, N)1
# Get smallest magnitude only using the Q'(x) map2
lambda, phi = eigs(Q_adj_map, nev = 1, which = :SM, maxiter = 1000)3
phi = real(phi) ./ sum(real(phi))4
@show lambda5
@show mean(phi);6

lambda = ComplexF64[1.5057759750243998e-17 + 0.0im]
mean(phi) = 0.25
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Preconditioning
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Changing the Geometry

In practice, most Krylov methods are preconditioned in practice or else direct methods

usually dominate. Same with large nonlinear systems

As discussed, the key issue for the convergence speed of iterative methods is the

geometry (e.g. condition number of hessian, etc)

Preconditioning changes the geometry. e.g. more like circles or with eigenvalue problems

spread out the eigenvalues of interest

Preconditioners for a matrix  requires art and tradeoffs

→ Want be relatively cheap to calculate, and must be invertible

→ Want to have 

Ideal preconditioner for  is  since 

→ ! But that is equivalent to solving problem

𝐴

cond(𝑃𝐴)≪ cond(𝐴)

𝐴𝑥 = 𝑏 𝑃 = 𝐴−1 𝐴−1𝐴𝑥 = 𝑥 = 𝐴−1𝑏

cond(𝐴−1𝐴) = 1
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Right-Preconditioning a Linear System

That is, solve  for , and then solve  for .

𝐴𝑥 = 𝑏

𝐴𝑃−1𝑃𝑥 = 𝑏

𝐴𝑃−1𝑦 = 𝑏

𝑃𝑥 = 𝑦

(𝐴𝑃−1)𝑦 = 𝑏 𝑦 𝑃𝑥 = 𝑦 𝑥
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Raw Conjugate Gradient
N = 2001
A = sprand(N, N, 0.1)   # 10 percent non-zeros2
A = A * A'3
b = rand(N)4
@show cond(Matrix(A))5
sol = cg(A, b, log = true, maxiter = 1000)6
sol[end]7

cond(Matrix(A)) = 724437.8616697111

Converged after 386 iterations.
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Diagonal Preconditioner

A simple preconditioner is the diagonal of 

This is cheap to calculate, and is invertible if the diagonal has no zeros

For some problems this has a huge impact on convergence/condition, for others it does

nothing

𝐴

P = DiagonalPreconditioner(A)1
sol = cg(A, b; Pl = P, log = true, maxiter = 1000)2
sol[end]3

Converged after 363 iterations.
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Incomplete LU or Cholesky

Iterate part of the way on an LU or Cholesky factorization

Not the total inverse, but can make a big difference

P = ilu(A, τ = 0.1)1
sol = cg(A, b; Pl = P, log = true, maxiter = 1000)2
sol[end]3

Converged after 154 iterations.
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Others

In the above we aren’t getting huge gains, but it is also lacking structure

If you have problems with multiple scales, as might come out of discretizing multiple

dimensions in a statepsace, see  methods

→ Algebraic Multigrid preconditioner is often useful even outside of having different

scales

Other preconditioners include ones intended for  such as approximate

cholesky decompositions and combinatorial multigrid preconditioners.

→ See  for more

multigrid

Graph Laplacians

paper
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