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Motivation

* In preparation for the ML lectures we cover some core numerical linear algebra concepts
» Many of these are directly useful
e.g. solving large systems of equations or as building blocks in bigger algorithms
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Packages and Materials

e See QuantEcon Numerical Linear Algebra and associated notebooks

using LinearAlgebra, Statistics, BenchmarkTools, SparseArrays, Random
using Plots
Random.seed!(42); # seed random numbers for reproducibility

! 2 ) 5/ 40


https://julia.quantecon.org/tools_and_techniques/numerical_linear_algebra.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Complexity

-y


file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Basic Computational Complexity

Big-O Notation

For a function f(N) and a positive constant C, we say f(N) is O(g(N)), if there exist positive
constants C and Ny such that:

0< f(N)<C-g(N) forall N> Nj

» Often crucial to know how problems scale asymptotically (as N — oo)

» Caution! This is only an asymptotic limit, and can be misleading for small N
f1(N) = N? + N is O(N?)
f2(N) = 1000N2 + 3N is O(N?)
For roughly N > 1000 use f, algorithm, otherwise f;
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Examples of Computational Complexity

» Simple examples:
x-y=3N x,y,is OWN) since it requires N multiplications and additions
Ax for A € RN x e RN is O(N?) since it requires N dot products, each O(N)
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0/
Computational Complexity

Ask yourself whether the following is a computationally expensive operation as the matrix
size increases
» Multiplying two matrices?
Answer: It depends. Multiplying two diagonal matrices is trivial.
» Solving a linear system of equations?
Answer: It depends. If the matrix is the identity, the solution is the vector itself.
» Finding the eigenvalues of a matrix?

Answer: It depends. The eigenvalues of a triangular matrix are the diagonal
elements.
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Numerical Precision

Machine Epsilon

For a given datatype, € is defined as € = mingsg {0 : 1 + 6 > 1}

» Computers have finite precision. 64-bit typical, but 32-bit on GPUs

machine epsilon for float64 = 2.220446049250313e-16
1 + eps/2 == 1? true
machine epsilon for float32 = 1.1920929%e-7
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Matrix Structure

» Akey principle is to ensure you don't lose “structure’
e.q. If sparse, operations should keep it sparse if possible

f triangular, then use appropriate algorithms instead of converting back to a dense
matrix

» Key structure is:
Symmetry, diagonal, tridiagonal, banded, sparse, positive-definite

» The worse operations for losing structure are matrix multiplication and inversion
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Example Losing Sparsity

» Here the density increases substantially

A = sprand(10, 10, 0.45) # random sparse 10x10, 45 percent filled with non-zeros

@show nnz(A) # counts the number of non-zeros

invA = sparse(inv(Array(A))) # Julia won't invert sparse, so convert to dense with Array.
@show nnz(invA);

nnz(A) = 46
nnz(invA) = 100
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Losing Tridiagonal Structure

1 1
o 00 o0

An even more extreme example. Tridiagonal has roughly 3N nonzeros. Inverses are

dense N2

N =25

A =

inv(A)
Matrix{Float64}:
.29099 -0.327957
.163978 1.31183
.0208333 -0.166667
.00268817 0.0215054
.000672043 -0.00537634

0.0416667

-0.166667

1.29167

-0.166667

0.0416667

Tridiagonal([fill(®.12, N - 2),; 0.2],

0]
0
0]

1

-0

-0.00537634

.0215054

-0.166667

.31183
.327957

fill(e.8, N), [0.2; fill(e.1, N -

. 000672043
.00268817
.0208333
.163978
.29099

2)1)
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Forming the Covariance and/or Gram Matrix

» Another common exampleis A’A

A = sprand(20, 21, 0.3)
@show nnz(A) / 2072
@show nnz(A' * A) / 2172;
nnz(A) / 20 A 2 = 0.34
nnz(A' * A) / 21 N 2 = 0.9229024943310657
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i
Specialized Algorithms

Besides sparsity/storage, the real loss is you miss out on algorithms. For example, lets setup
the benchmarking code

using BenchmarkTools

function benchmark_solve(A, b)
println("A\\b for typeof(A) = $(string(typeof(A)))")
@btime $A \ $b

end

benchmark_solve (generic function with 1 method)
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Compare Dense vs. Sparse vs. Tridiagonal

1000

rand(N)

Tridiagonal([fill(®.1, N - 2); 0.2], fill(©.8, N), [0.2; fill(0.1, N - 2)])
_sparse = sparse(A) # sparse but losing tridiagonal structure

A_dense = Array(A) # dropping the sparsity structure, dense 1000x1000

> > T =
"

# benchmark solution to system A x = b
benchmark_solve(A, b)
benchmark_solve(A_sparse, b)
benchmark_solve(A_dense, b);

A\b for typeof(A) = LinearAlgebra.Tridiagonal{Float64, Vector{Float64}}
26.860 ps (20 allocations: 47.39 KiB)

A\b for typeof(A) = SparseArrays.SparseMatrixCSC{Float64, Int64}
512.290 ps (95 allocations: 1.03 MiB)

A\b for typeof(A) = Matrix{Float64}
19.588 ms (9 allocations: 7.64 MiB)
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Triangular Matrices and Back/Forward Substitution

» A key example of a better algorithm is for triangular matrices

« Upper or lower triangular matrices can be solved in O(N?) instead of O(N?3)

b =1[1.0, 2.0, 3.0]

U = UpperTriangular([1.0 2.0 3.0;
0.0 5.0 6.0,
0.0 0.0 9.0])

U\b

3-element Vector{Float64}:
0.0

0.0

0.3333333333333333
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Backwards Substitution Example

Solving bottom row for x»
2x, =2, x,=1
Move up a row, solving for x1, substituting for x»
3x1+1x,=7, 3x1+1%x1=7, x1=2

Generalizes to many rows. For L it is "forward substitution’
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Factorizing matrices

e Just like you can factor 6 = 2 - 3, you can factor matrices
» Unlike integers, you have more choice over the properties of the factors

» Many operations (e.g., solving systems of equations, finding eigenvalues, inverting,
finding determinants) have a factorization done internally

Instead you can often just find the factorization and reuse it

» Key factorizations: LU, QR, Cholesky, SVD, Schur, Eigenvalue
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0/
LU(P) Decompositions

» We can "factor” any square A into PA = LU for triangular L and U. Invertible can have A
= LU, called the LU decomposition. "P" is for partial-pivoting

» Singular matrices may not have full-rank L or U matrices

4

rand(N, N)

rand(N)

chooses the right factorization based on matrix structure
LU here

Af = factorize(A)

Af.P * A = Af.L * Af.U

* # T > =2

true
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s
Using a Factorization

* In Julia the factorization objects typically overload the \ and functions such as inv

@show Af \ b
@show inv(Af) * b

Af \ b = [1.567631093835083, -1.8670423474177864, -0.7020922312927874, 1.0653095651070625]
inv(Af) * b = [1.5676310938350828, -1.8670423474177873, -0.7020922312927873, 1.0653095651070625]

4-element Vector{Float64}:
1.5676310938350828
-1.8670423474177873
-0.7020922312927873
1.0653095651070625
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LU Decompositions and Systems of Equations

» Pivoting is typically implied when talking about "LU’

Used in the default solve algorithm (without more structure)

Solving systems of equations with triangular matrices: for Ax = LUx = b
1. Definey = Ux
2. Solve Ly = bforyand Ux =y for x
Since both are triangular, process is O(N?) (but LU itself O(N?))
Could be used to find inv
A=LUthenAA7 =I1=LUA"' =1
Solve forYinLY =1 then solve UA™' = Y

Tight connection to textbook Gaussian elimination (including pivoting)

-y
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Cholesky

» LU is for general invertible matrices, but it doesnt use positive-definiteness or symmetry

» The Cholesky is the right factorization for general positive-definite matrices. For general
symmetric matrices you can use Bunch-Kaufman or others

« A = LL’ for lower triangular L or equivalent for upper triangular

N = 500

B = rand(N, N)

A_dense = B' * B # an easy way to generate a symmetric positive semi-definite matrix
A = Symmetric(A_dense) # flags the matrix as symmetric

println("A is symmetric? $(issymmetric(A))")

A 1s symmetric? true
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Comparing Cholesky

» By default it doesn't know the matrix is positive-definite, so factorize is the best it can
do given symmetric structure

b = rand(N)
factorize(A) |> typeof
cholesky(A) \ b # use the factorization to solve

benchmark_solve(A, b)
benchmark_solve(A_dense, b)
@btime cholesky($A, check = false) \ $b;

A\b for typeof(A) = LinearAlgebra.Symmetric{Float64, Matrix{Float64}}
2.049 ms (13 allocations: 2.16 MiB)

A\b for typeof(A) = Matrix{Float64}
2.987 ms (9 allocations: 1.92 MiB)
1.611 ms (6 allocations: 1.91 MiB)
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Eigen Decomposition

» For square, symmetric, non-singular matrix A factor into

A=QAQ™!

* Qisamatrix of eigenvectors, A is a diagonal matrix of paired eigenvalues

« For symmetric matrices, the eigenvectors are orthogonal and Q71Q = Q'Q = I which
form an orthonormal basis

» Orthogonal matrices can be thought of as rotations without stretching
» More general matrices all have a Singular Value Decomposition (SVD)

« With symmetric A, an interpretation of Ax is that we can first rotate x into the Q basis,
then stretch by A, then rotate back
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Calculating the Eigen Decomposition

A = Symmetric(rand(5, 5)) # symmetric matrices have real eigenvectors/eigenvalues
A_eig = eigen(A)

A = Diagonal(A_eig.values)

Q = A_eig.vectors

@show norm(Q * A * inv(Q) - A)

@show norm(Q * A * Q' - A);

norm(Q * A * inv(Q) - A) = 5.243912693681636e-15
norm(Q * A * Q' - A) = 6.347597591257379¢e-15
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i
Figendecompositions and Matrix Powers

 Can be used to find Af for large ¢t (e.g. for Markov chains)

Pt ie P-P- .. -Pforttimes

P = QAQ™! then Pt = QA'Q™! where Af is just the pointwise power
» Related can find matrix exponential e for square matrices

e = Qe Q7! where e is just the pointwise exponential

Useful for solving differential equations, e.q. vy’ = Ay for y(0) = yo is y(t) = eAtyo
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More on Factorizations

» Plenty more used in different circumstances. Start by looking at structure

Usually have some connection to textbook algorithms, for example LU is Gaussian
elimination with pivoting and QR is Gram-Schmidt Process

Just as shortcuts can be done with sparse matrices in textbook examples, direct sparse
methods can be faster given enough sparsity

But don't assume sparsity will be faster. Often slower unless matrices are big and
especially sparse

Dense algorithms on GPUs can be very fast because of parallelism

Keep in mind that barring numerical roundoff issues, these are "exact” methods. They
don't become more accurate with more iterations
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Large Scale Systems of Equations

» Packages that solve BIG problems with “direct methods” include MUMPS, Paradiso,
UMFPACK, and many others

» Sparse solvers are bread-and-butter scientific computing, so they can crush huge
problems, parallelize on a cluster, etc.

» But for smaller problems they may not be ideal. Profile and test, and only if you need it.

 In Julig, the ScIML package LinearSolver.jl is your best bet there, as it lets you swap out
backends to profile

» On Python harder to flip between them, but scipy has many built in and many wrappers
exist. Same with Matlab
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i
Preview of Conditioning

« [t will turn out that for iterative methods, a different style of algorithm, it is often
necessary to multiple by a matrix to transform the problem
» Theideal transform would be the matrix’s inverse, which requires a full factorization.

» But instead, you can do only part of the way towards the factorization. e.g., part of the
way on gaussian elimination

 Called "Incomplete Cholesky”, ‘Incomplete LU’ etc.
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Markov Chains Transitions in in Continuous Time

o For adiscrete number of states, we cannot have instantaneous transitions between
states or it ceases to be measurable

» Instead: intensity of switching from state ito j as a g;; where

C]i]'A + 0(A) = ]

P{X(t+ A) =71 X()} = {1 +qiA+0o(A) i=j

» With o(A) is little-o notation. That is, ima_,g 0(A)/A = 0.
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i
Intensity Matrix

J Qij = gij fori # ] and Q;; = — Zj;ti qij
* Rows sumto 0

» Forexample, consider a counting process

01 01 0 0 0 0

01 -02 01 0 0 O

01 -02 01 0 0

0 01 -02 01 0

0 0 01 -02 o1
0 0 0 01 -01

o O O O
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Probability Dynamics

The Q is the infinitesimal generator of the stochastic process.
Let (t) € RN with 7t;(t) = P[X; = i| Xo]
Then the probability distribution evolution (Fokker-Planck or KFE), is

%n(t) =1(t)Q, given m(0)

Or, often written as d%n(t) = Q" - n(t), i.e.interms of the "adjoint” of the linear operator Q

A steady state is then a solutionto Q" -7 =0

.e., the 7 left-eigenvector associated with eigenvalue 0 (i.e. 7Q = 0 X )
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Setting up a Counting Process

alpha = 0.1

N =26

Q = Tridiagonal(fill(alpha, N - 1),
[-alpha; fill(-2*alpha, N - 2); -alpha],
fill(alpha, N - 1))

Q
6x6 Tridiagonal{Float64, Vector{Float64}}:
_0.1 0_1 . . . .
0.1 -0.2 0.1 . .
0.1 -0.2 0.1 :
: 0.1 -0.2 0.1
0.1 -0.2 0.1
. 0.1 -0.1
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Finding the Stationary Distribution

» There will always be at least one eigenvalue of O, and the corresponding eigenvector is
the stationary distribution

» Teaser: Do we really need all of the eigenvectors/eigenvalues?

Lambda, vecs = eigen(Array(Q'))

@show Lambda

vecs|[:,

N]

./ sum(vecs|[:,

NT)

Lambda = [-0.3732050807568874, -0.29999999999999993,

-0.19999999999999998,

-0.09999999999999995,

-0.026794919243112274, 0.0]

6-element Vector{Float64}:

ool ool oo

.16666666666666657
.16666666666666657
.1666666666666667

.16666666666666682
.16666666666666685
.16666666666666663
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Using the Generator in a Bellman Equation

» Letr € RYN be a vector of payoffs in each state, and p > 0 a discount rate,

» Then we can use the Q generator as a simple Bellman Equation (using the Kolmogorov
Backwards Equation) to find the value v in each state,

po =1+ Qu

» Rearranging, (pI - Q)v =r

 Teaser: can we just implement (pI — Q) - v and avoid factorizing the matrix?
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Implementing the Bellman Equation

rho = 0.05 typeof(rho * I - Q) = LinearAlgebra.Tridiagonal{Floaté64,

r = range(0.0, 10.0, length=N) vector{Float64}}

@show typeof(rho*I - Q) 6-element Vector{Float64}:
38.15384615384615
57.23076923076923
84.92307692307693

115.07692307692311

142.76923076923077

161.84615384615384

# solve (rho * I - Q) v =1r
v =(rho *I -Q)\Tr
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