
Direct Methods and Matrix Factorizations (Julia)
Machine Learning Fundamentals for Economists

Jesse Perla

University of British Columbia

jesse.perla@ubc.ca

 1 / 40

mailto:jesse.perla@ubc.ca
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html


Table of contents

Overview

Complexity

Matrix Structure

Factorizations

Continuous Time Markov Chains

 2 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html


Overview
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Motivation

In preparation for the ML lectures we cover some core numerical linear algebra concepts

Many of these are directly useful

→ e.g. solving large systems of equations or as building blocks in bigger algorithms
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Packages and Materials

See  and associated notebooksQuantEcon Numerical Linear Algebra

using LinearAlgebra, Statistics, BenchmarkTools, SparseArrays, Random1
using Plots2
Random.seed!(42);  # seed random numbers for reproducibility3
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Complexity
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Basic Computational Complexity

Big-O Notation

For a function  and a positive constant , we say  is , if there exist positive

constants  and  such that:

Often crucial to know how problems scale asymptotically (as )

Caution! This is only an asymptotic limit, and can be misleading for small 

→  is 

→  is 

→ For roughly  use  algorithm, otherwise 

𝑓(𝑁) 𝐶 𝑓(𝑁) 𝑂(𝑔(𝑁))

𝐶 𝑁0

0 ≤ 𝑓(𝑁) ≤ 𝐶 ⋅ 𝑔(𝑁) for all 𝑁 ≥ 𝑁0

𝑁→∞

𝑁

𝑓1(𝑁) = 𝑁 3 +𝑁 𝑂(𝑁 3)

𝑓2(𝑁) = 1000𝑁 2 + 3𝑁 𝑂(𝑁 2)

𝑁 > 1000 𝑓2 𝑓1

 7 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html


Examples of Computational Complexity

Simple examples:

→  is  since it requires  multiplications and additions

→  for  is  since it requires  dot products, each 

𝑥 ⋅ 𝑦 = ∑𝑁
𝑛=1 𝑥𝑛𝑦𝑛 𝑂(𝑁) 𝑁

𝐴𝑥 𝐴 ∈ ℝ𝑁×𝑁, 𝑥 ∈ ℝ𝑁 𝑂(𝑁 2) 𝑁 𝑂(𝑁)
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Computational Complexity

Ask yourself whether the following is a computationally expensive operation as the matrix

size increases

Multiplying two matrices?

→ Answer: It depends. Multiplying two diagonal matrices is trivial.

Solving a linear system of equations?

→ Answer: It depends. If the matrix is the identity, the solution is the vector itself.

Finding the eigenvalues of a matrix?

→ Answer: It depends. The eigenvalues of a triangular matrix are the diagonal

elements.
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Numerical Precision

Machine Epsilon

For a given datatype,  is defined as 

Computers have finite precision. 64-bit typical, but 32-bit on GPUs

𝜖 𝜖 = min𝛿>0 {𝛿 : 1 + 𝛿 > 1}

machine epsilon for float64 = 2.220446049250313e-16
1 + eps/2 == 1? true
machine epsilon for float32 = 1.1920929e-7
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Matrix Structure
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Matrix Structure

A key principle is to ensure you don’t lose “structure”

→ e.g. if sparse, operations should keep it sparse if possible

→ If triangular, then use appropriate algorithms instead of converting back to a dense

matrix

Key structure is:

→ Symmetry, diagonal, tridiagonal, banded, sparse, positive-definite

The worse operations for losing structure are matrix multiplication and inversion
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Example Losing Sparsity

Here the density increases substantially

A = sprand(10, 10, 0.45)  # random sparse 10x10, 45 percent filled with non-zeros1
2

@show nnz(A)  # counts the number of non-zeros3
invA = sparse(inv(Array(A)))  # Julia won't invert sparse, so convert to dense with Array.4
@show nnz(invA);5

nnz(A) = 46
nnz(invA) = 100
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Losing Tridiagonal Structure

An even more extreme example. Tridiagonal has roughly  nonzeros. Inverses are

dense 

3𝑁

𝑁
2

N = 51
A = Tridiagonal([fill(0.1, N - 2); 0.2], fill(0.8, N), [0.2; fill(0.1, N - 2)])2
inv(A)3

5×5 Matrix{Float64}:
  1.29099      -0.327957     0.0416667  -0.00537634   0.000672043
 -0.163978      1.31183     -0.166667    0.0215054   -0.00268817
  0.0208333    -0.166667     1.29167    -0.166667     0.0208333
 -0.00268817    0.0215054   -0.166667    1.31183     -0.163978
  0.000672043  -0.00537634   0.0416667  -0.327957     1.29099
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Forming the Covariance and/or Gram Matrix

Another common example is 𝐴′
𝐴

A = sprand(20, 21, 0.3)1
@show nnz(A) / 20^22
@show nnz(A' * A) / 21^2;3

nnz(A) / 20 ^ 2 = 0.34
nnz(A' * A) / 21 ^ 2 = 0.9229024943310657
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Specialized Algorithms

Besides sparsity/storage, the real loss is you miss out on algorithms. For example, lets setup

the benchmarking code

using BenchmarkTools1
function benchmark_solve(A, b)2
    println("A\\b for typeof(A) = $(string(typeof(A)))")3
    @btime $A \ $b4
end5

benchmark_solve (generic function with 1 method)
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Compare Dense vs. Sparse vs. Tridiagonal
N = 10001
b = rand(N)2
A = Tridiagonal([fill(0.1, N - 2); 0.2], fill(0.8, N), [0.2; fill(0.1, N - 2)])3
A_sparse = sparse(A)  # sparse but losing tridiagonal structure4
A_dense = Array(A)    # dropping the sparsity structure, dense 1000x10005

6
# benchmark solution to system A x = b7
benchmark_solve(A, b)8
benchmark_solve(A_sparse, b)9
benchmark_solve(A_dense, b);10

A\b for typeof(A) = LinearAlgebra.Tridiagonal{Float64, Vector{Float64}}
  26.860 μs (20 allocations: 47.39 KiB)
A\b for typeof(A) = SparseArrays.SparseMatrixCSC{Float64, Int64}
  512.290 μs (95 allocations: 1.03 MiB)
A\b for typeof(A) = Matrix{Float64}
  19.588 ms (9 allocations: 7.64 MiB)
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Triangular Matrices and Back/Forward Substitution

A key example of a better algorithm is for triangular matrices

Upper or lower triangular matrices can be solved in  instead of 𝑂(𝑁 2) 𝑂(𝑁 3)

b = [1.0, 2.0, 3.0]1
U = UpperTriangular([1.0 2.0 3.0;2
                     0.0 5.0 6.0;3
                     0.0 0.0 9.0])4
U \ b5

3-element Vector{Float64}:
 0.0
 0.0
 0.3333333333333333
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Backwards Substitution Example

Solving bottom row for 

Move up a row, solving for , substituting for 

Generalizes to many rows. For  it is “forward substitution”

𝑈𝑥 = 𝑏

𝑈 ≡ [3 1

0 2
] , 𝑏 = [7

2
]

𝑥2

2𝑥2 = 2, 𝑥2 = 1

𝑥1 𝑥2

3𝑥1 + 1𝑥2 = 7, 3𝑥1 + 1 × 1 = 7, 𝑥1 = 2

𝐿
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Factorizations
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Factorizing matrices

Just like you can factor , you can factor matrices

Unlike integers, you have more choice over the properties of the factors

Many operations (e.g., solving systems of equations, finding eigenvalues, inverting,

finding determinants) have a factorization done internally

→ Instead you can often just find the factorization and reuse it

Key factorizations: LU, QR, Cholesky, SVD, Schur, Eigenvalue

6 = 2 ⋅ 3
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LU(P) Decompositions

We can “factor” any square  into  for triangular  and . Invertible can have 

, called the LU decomposition. “P” is for partial-pivoting

Singular matrices may not have full-rank  or  matrices

𝐴 𝑃𝐴 = 𝐿𝑈 𝐿 𝑈 𝐴

= 𝐿𝑈

𝐿 𝑈

N = 41
A = rand(N, N)2
b = rand(N)3
# chooses the right factorization based on matrix structure4
# LU here5
Af = factorize(A)6
Af.P * A ≈ Af.L * Af.U7

true
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Using a Factorization

In Julia the factorization objects typically overload the \ and functions such as inv

@show Af \ b1
@show inv(Af) * b2

Af \ b = [1.567631093835083, -1.8670423474177864, -0.7020922312927874, 1.0653095651070625]
inv(Af) * b = [1.5676310938350828, -1.8670423474177873, -0.7020922312927873, 1.0653095651070625]

4-element Vector{Float64}:
  1.5676310938350828
 -1.8670423474177873
 -0.7020922312927873
  1.0653095651070625

 23 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html


LU Decompositions and Systems of Equations

Pivoting is typically implied when talking about “LU”

Used in the default solve algorithm (without more structure)

Solving systems of equations with triangular matrices: for 

1. Define 

2. Solve  for  and  for 

Since both are triangular, process is  (but LU itself )

Could be used to find inv

→  then 

→ Solve for  in , then solve 

Tight connection to textbook Gaussian elimination (including pivoting)

𝐴𝑥 = 𝐿𝑈𝑥 = 𝑏

𝑦 = 𝑈𝑥

𝐿𝑦 = 𝑏 𝑦 𝑈𝑥 = 𝑦 𝑥

𝑂(𝑁 2) 𝑂(𝑁 3)

𝐴 = 𝐿𝑈 𝐴𝐴−1 = 𝐼 = 𝐿𝑈𝐴−1 = 𝐼

𝑌 𝐿𝑌 = 𝐼 𝑈𝐴−1 = 𝑌
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Cholesky

LU is for general invertible matrices, but it doesn’t use positive-definiteness or symmetry

The Cholesky is the right factorization for general positive-definite matrices. For general

symmetric matrices you can use Bunch-Kaufman or others

 for lower triangular  or equivalent for upper triangular𝐴 = 𝐿𝐿
′

𝐿

N = 5001
B = rand(N, N)2
A_dense = B' * B  # an easy way to generate a symmetric positive semi-definite matrix3
A = Symmetric(A_dense)  # flags the matrix as symmetric4
println("A is symmetric? $(issymmetric(A))")5

A is symmetric? true
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Comparing Cholesky

By default it doesn’t know the matrix is positive-definite, so factorize is the best it can

do given symmetric structure

b = rand(N)1
factorize(A) |> typeof2
cholesky(A) \ b  # use the factorization to solve3

4
benchmark_solve(A, b)5
benchmark_solve(A_dense, b)6
@btime cholesky($A, check = false) \ $b;7

A\b for typeof(A) = LinearAlgebra.Symmetric{Float64, Matrix{Float64}}
  2.049 ms (13 allocations: 2.16 MiB)
A\b for typeof(A) = Matrix{Float64}
  2.987 ms (9 allocations: 1.92 MiB)
  1.611 ms (6 allocations: 1.91 MiB)
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Eigen Decomposition

For square, symmetric, non-singular matrix  factor into

 is a matrix of eigenvectors,  is a diagonal matrix of paired eigenvalues

For symmetric matrices, the eigenvectors are orthogonal and  which

form an orthonormal basis

Orthogonal matrices can be thought of as rotations without stretching

More general matrices all have a Singular Value Decomposition (SVD)

With symmetric , an interpretation of  is that we can first rotate  into the  basis,

then stretch by , then rotate back

𝐴

𝐴 = 𝑄Λ𝑄−1

𝑄 Λ

𝑄−1𝑄 = 𝑄𝑇𝑄 = 𝐼

𝐴 𝐴𝑥 𝑥 𝑄

Λ
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Calculating the Eigen Decomposition
A = Symmetric(rand(5, 5))  # symmetric matrices have real eigenvectors/eigenvalues1
A_eig = eigen(A)2
Λ = Diagonal(A_eig.values)3
Q = A_eig.vectors4
@show norm(Q * Λ * inv(Q) - A)5
@show norm(Q * Λ * Q' - A);6

norm(Q * Λ * inv(Q) - A) = 5.243912693681636e-15
norm(Q * Λ * Q' - A) = 6.347597591257379e-15
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Eigendecompositions and Matrix Powers

Can be used to find  for large  (e.g. for Markov chains)

→ , i.e.   for  times

→  then  where  is just the pointwise power

Related can find matrix exponential  for square matrices

→  where  is just the pointwise exponential

→ Useful for solving differential equations, e.g.   for  is 

𝐴𝑡 𝑡

𝑃𝑡 𝑃 ⋅ 𝑃 ⋅… ⋅ 𝑃 𝑡

𝑃 = 𝑄Λ𝑄−1 𝑃𝑡 = 𝑄Λ𝑡𝑄−1 Λ𝑡

𝑒𝐴

𝑒𝐴 = 𝑄𝑒Λ𝑄−1 𝑒Λ

𝑦′ = 𝐴𝑦 𝑦(0) = 𝑦0 𝑦(𝑡) = 𝑒𝐴𝑡𝑦0
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More on Factorizations

Plenty more used in different circumstances. Start by looking at structure

Usually have some connection to textbook algorithms, for example LU is Gaussian

elimination with pivoting and QR is Gram-Schmidt Process

Just as shortcuts can be done with sparse matrices in textbook examples, direct sparse

methods can be faster given enough sparsity

→ But don’t assume sparsity will be faster. Often slower unless matrices are big and

especially sparse

→ Dense algorithms on GPUs can be very fast because of parallelism

Keep in mind that barring numerical roundoff issues, these are “exact” methods. They

don’t become more accurate with more iterations
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Large Scale Systems of Equations

Packages that solve BIG problems with “direct methods” include , ,

, and many others

Sparse solvers are bread-and-butter scientific computing, so they can crush huge

problems, parallelize on a cluster, etc.

But for smaller problems they may not be ideal. Profile and test, and only if you need it.

In Julia, the SciML package  is your best bet there, as it lets you swap out

backends to profile

On Python harder to flip between them, but scipy has many built in and many wrappers

exist. Same with Matlab

MUMPS Paradiso

UMFPACK

LinearSolver.jl

 31 / 40

https://mumps-solver.org/index.php
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-0/onemkl-pardiso-parallel-direct-sparse-solver-iface.html
https://en.wikipedia.org/wiki/UMFPACK
https://github.com/SciML/LinearSolve.jl
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html


Preview of Conditioning

It will turn out that for iterative methods, a different style of algorithm, it is often

necessary to multiple by a matrix to transform the problem

The ideal transform would be the matrix’s inverse, which requires a full factorization.

But instead, you can do only part of the way towards the factorization. e.g., part of the

way on gaussian elimination

Called “Incomplete Cholesky”, “Incomplete LU”, etc.
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Continuous Time Markov Chains
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Markov Chains Transitions in in Continuous Time

For a discrete number of states, we cannot have instantaneous transitions between

states or it ceases to be measurable

Instead: intensity of switching from state  to  as a  where

With  is . That is, .

𝑖 𝑗 𝑞𝑖𝑗

ℙ{𝑋(𝑡 + Δ) = 𝑗 |𝑋(𝑡)} = {𝑞𝑖𝑗Δ + 𝑜(Δ) 𝑖 ≠ 𝑗

1 + 𝑞𝑖𝑖Δ + 𝑜(Δ) 𝑖 = 𝑗

𝑜(Δ) little-o notation limΔ→0 𝑜(Δ)/Δ = 0
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Intensity Matrix

 for  and 

Rows sum to 0

For example, consider a counting process

𝑄𝑖𝑗 = 𝑞𝑖𝑗 𝑖 ≠ 𝑗 𝑄𝑖𝑖 = −∑𝑗≠𝑖 𝑞𝑖𝑗

𝑄 =

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

−0.1 0.1 0 0 0 0

0.1 −0.2 0.1 0 0 0

0 0.1 −0.2 0.1 0 0

0 0 0.1 −0.2 0.1 0

0 0 0 0.1 −0.2 0.1

0 0 0 0 0.1 −0.1

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
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Probability Dynamics

The  is the  of the stochastic process.

Let  with 

Then the probability distribution evolution (Fokker-Planck or KFE), is

Or, often written as , i.e. in terms of the “adjoint” of the linear operator 

A steady state is then a solution to 

→ i.e., the  left-eigenvector associated with eigenvalue 0 (i.e.  )

𝑄 infinitesimal generator

𝜋(𝑡) ∈ ℝ𝑁 𝜋𝑖(𝑡) ≡ ℙ[𝑋𝑡 = 𝑖 |𝑋0]

𝑑

𝑑𝑡
𝜋(𝑡) = 𝜋(𝑡)𝑄, given 𝜋(0)

𝑑
𝑑𝑡
𝜋(𝑡) = 𝑄⊤

⋅ 𝜋(𝑡) 𝑄

𝑄⊤
⋅ ¯𝜋 = 0

¯𝜋 ¯𝜋𝑄 = 0 × ¯𝜋
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Setting up a Counting Process
alpha = 0.11
N = 62
Q = Tridiagonal(fill(alpha, N - 1),3
                [-alpha; fill(-2*alpha, N - 2); -alpha],4
                fill(alpha, N - 1))5
Q6

6×6 Tridiagonal{Float64, Vector{Float64}}:
 -0.1   0.1    ⋅     ⋅     ⋅     ⋅ 
  0.1  -0.2   0.1    ⋅     ⋅     ⋅ 
   ⋅    0.1  -0.2   0.1    ⋅     ⋅ 
   ⋅     ⋅    0.1  -0.2   0.1    ⋅ 
   ⋅     ⋅     ⋅    0.1  -0.2   0.1
   ⋅     ⋅     ⋅     ⋅    0.1  -0.1
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Finding the Stationary Distribution

There will always be at least one eigenvalue of 0, and the corresponding eigenvector is

the stationary distribution

Teaser: Do we really need all of the eigenvectors/eigenvalues?

Lambda, vecs = eigen(Array(Q'))1
@show Lambda2
vecs[:, N] ./ sum(vecs[:, N])3

Lambda = [-0.3732050807568874, -0.29999999999999993, 
-0.19999999999999998, -0.09999999999999995, 
-0.026794919243112274, 0.0]

6-element Vector{Float64}:
 0.16666666666666657
 0.16666666666666657
 0.1666666666666667
 0.16666666666666682
 0.16666666666666685
 0.16666666666666663
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Using the Generator in a Bellman Equation

Let  be a vector of payoffs in each state, and  a discount rate,

Then we can use the  generator as a simple Bellman Equation (using the Kolmogorov

Backwards Equation) to find the value  in each state,

Rearranging, 

Teaser: can we just implement  and avoid factorizing the matrix?

𝑟 ∈ ℝ𝑁 𝜌 > 0

𝑄

𝑣

𝜌𝑣 = 𝑟 +𝑄𝑣

(𝜌𝐼 −𝑄)𝑣 = 𝑟

(𝜌𝐼 −𝑄) ⋅ 𝑣
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Implementing the Bellman Equation
rho = 0.051
r = range(0.0, 10.0, length=N)2
@show typeof(rho*I - Q)3

4
# solve (rho * I - Q) v = r5
v = (rho * I - Q) \ r6

typeof(rho * I - Q) = LinearAlgebra.Tridiagonal{Float64, 
Vector{Float64}}

6-element Vector{Float64}:
  38.15384615384615
  57.23076923076923
  84.92307692307693
 115.07692307692311
 142.76923076923077
 161.84615384615384

 40 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

