
Direct Methods and Matrix Factorizations (Julia)
Machine Learning Fundamentals for Economists

Jesse Perla

University of British Columbia

jesse.perla@ubc.ca

 1 / 40

mailto:jesse.perla@ubc.ca
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Table of contents

Overview

Complexity

Matrix Structure

Factorizations

Continuous Time Markov Chains

 2 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Overview

 3 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Motivation

In preparation for the ML lectures we cover some core numerical linear algebra concepts

Many of these are directly useful

→ e.g. solving large systems of equations or as building blocks in bigger algorithms

 4 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Packages and Materials

See and associated notebooksQuantEcon Numerical Linear Algebra

using LinearAlgebra, Statistics, BenchmarkTools, SparseArrays, Random1
using Plots2
Random.seed!(42); # seed random numbers for reproducibility3

 5 / 40

https://julia.quantecon.org/tools_and_techniques/numerical_linear_algebra.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Complexity

 6 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Basic Computational Complexity

Big-O Notation

For a function and a positive constant , we say is , if there exist positive

constants and such that:

Often crucial to know how problems scale asymptotically (as)

Caution! This is only an asymptotic limit, and can be misleading for small

→ is

→ is

→ For roughly use algorithm, otherwise

𝑓(𝑁) 𝐶 𝑓(𝑁) 𝑂(𝑔(𝑁))

𝐶 𝑁0

0 ≤ 𝑓(𝑁) ≤ 𝐶 ⋅ 𝑔(𝑁) for all 𝑁 ≥ 𝑁0

𝑁→∞

𝑁

𝑓1(𝑁) = 𝑁 3 +𝑁 𝑂(𝑁 3)

𝑓2(𝑁) = 1000𝑁 2 + 3𝑁 𝑂(𝑁 2)

𝑁 > 1000 𝑓2 𝑓1

 7 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Examples of Computational Complexity

Simple examples:

→ is since it requires multiplications and additions

→ for is since it requires dot products, each

𝑥 ⋅ 𝑦 = ∑𝑁
𝑛=1 𝑥𝑛𝑦𝑛 𝑂(𝑁) 𝑁

𝐴𝑥 𝐴 ∈ ℝ𝑁×𝑁, 𝑥 ∈ ℝ𝑁 𝑂(𝑁 2) 𝑁 𝑂(𝑁)

 8 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Computational Complexity

Ask yourself whether the following is a computationally expensive operation as the matrix

size increases

Multiplying two matrices?

→ Answer: It depends. Multiplying two diagonal matrices is trivial.

Solving a linear system of equations?

→ Answer: It depends. If the matrix is the identity, the solution is the vector itself.

Finding the eigenvalues of a matrix?

→ Answer: It depends. The eigenvalues of a triangular matrix are the diagonal

elements.

 9 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Numerical Precision

Machine Epsilon

For a given datatype, is defined as

Computers have finite precision. 64-bit typical, but 32-bit on GPUs

𝜖 𝜖 = min𝛿>0 {𝛿 : 1 + 𝛿 > 1}

machine epsilon for float64 = 2.220446049250313e-16
1 + eps/2 == 1? true
machine epsilon for float32 = 1.1920929e-7

 10 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Matrix Structure

 11 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Matrix Structure

A key principle is to ensure you don’t lose “structure”

→ e.g. if sparse, operations should keep it sparse if possible

→ If triangular, then use appropriate algorithms instead of converting back to a dense

matrix

Key structure is:

→ Symmetry, diagonal, tridiagonal, banded, sparse, positive-definite

The worse operations for losing structure are matrix multiplication and inversion

 12 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Example Losing Sparsity

Here the density increases substantially

A = sprand(10, 10, 0.45) # random sparse 10x10, 45 percent filled with non-zeros1
2

@show nnz(A) # counts the number of non-zeros3
invA = sparse(inv(Array(A))) # Julia won't invert sparse, so convert to dense with Array.4
@show nnz(invA);5

nnz(A) = 46
nnz(invA) = 100

 13 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Losing Tridiagonal Structure

An even more extreme example. Tridiagonal has roughly nonzeros. Inverses are

dense

3𝑁

𝑁
2

N = 51
A = Tridiagonal([fill(0.1, N - 2); 0.2], fill(0.8, N), [0.2; fill(0.1, N - 2)])2
inv(A)3

5×5 Matrix{Float64}:
 1.29099 -0.327957 0.0416667 -0.00537634 0.000672043
 -0.163978 1.31183 -0.166667 0.0215054 -0.00268817
 0.0208333 -0.166667 1.29167 -0.166667 0.0208333
 -0.00268817 0.0215054 -0.166667 1.31183 -0.163978
 0.000672043 -0.00537634 0.0416667 -0.327957 1.29099

 14 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Forming the Covariance and/or Gram Matrix

Another common example is 𝐴′
𝐴

A = sprand(20, 21, 0.3)1
@show nnz(A) / 20^22
@show nnz(A' * A) / 21^2;3

nnz(A) / 20 ^ 2 = 0.34
nnz(A' * A) / 21 ^ 2 = 0.9229024943310657

 15 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Specialized Algorithms

Besides sparsity/storage, the real loss is you miss out on algorithms. For example, lets setup

the benchmarking code

using BenchmarkTools1
function benchmark_solve(A, b)2
 println("A\\b for typeof(A) = $(string(typeof(A)))")3
 @btime $A \ $b4
end5

benchmark_solve (generic function with 1 method)

 16 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Compare Dense vs. Sparse vs. Tridiagonal
N = 10001
b = rand(N)2
A = Tridiagonal([fill(0.1, N - 2); 0.2], fill(0.8, N), [0.2; fill(0.1, N - 2)])3
A_sparse = sparse(A) # sparse but losing tridiagonal structure4
A_dense = Array(A) # dropping the sparsity structure, dense 1000x10005

6
benchmark solution to system A x = b7
benchmark_solve(A, b)8
benchmark_solve(A_sparse, b)9
benchmark_solve(A_dense, b);10

A\b for typeof(A) = LinearAlgebra.Tridiagonal{Float64, Vector{Float64}}
 26.860 μs (20 allocations: 47.39 KiB)
A\b for typeof(A) = SparseArrays.SparseMatrixCSC{Float64, Int64}
 512.290 μs (95 allocations: 1.03 MiB)
A\b for typeof(A) = Matrix{Float64}
 19.588 ms (9 allocations: 7.64 MiB)

 17 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Triangular Matrices and Back/Forward Substitution

A key example of a better algorithm is for triangular matrices

Upper or lower triangular matrices can be solved in instead of 𝑂(𝑁 2) 𝑂(𝑁 3)

b = [1.0, 2.0, 3.0]1
U = UpperTriangular([1.0 2.0 3.0;2
 0.0 5.0 6.0;3
 0.0 0.0 9.0])4
U \ b5

3-element Vector{Float64}:
 0.0
 0.0
 0.3333333333333333

 18 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Backwards Substitution Example

Solving bottom row for

Move up a row, solving for , substituting for

Generalizes to many rows. For it is “forward substitution”

𝑈𝑥 = 𝑏

𝑈 ≡ [3 1

0 2
] , 𝑏 = [7

2
]

𝑥2

2𝑥2 = 2, 𝑥2 = 1

𝑥1 𝑥2

3𝑥1 + 1𝑥2 = 7, 3𝑥1 + 1 × 1 = 7, 𝑥1 = 2

𝐿

 19 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Factorizations

 20 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Factorizing matrices

Just like you can factor , you can factor matrices

Unlike integers, you have more choice over the properties of the factors

Many operations (e.g., solving systems of equations, finding eigenvalues, inverting,

finding determinants) have a factorization done internally

→ Instead you can often just find the factorization and reuse it

Key factorizations: LU, QR, Cholesky, SVD, Schur, Eigenvalue

6 = 2 ⋅ 3

 21 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

LU(P) Decompositions

We can “factor” any square into for triangular and . Invertible can have

, called the LU decomposition. “P” is for partial-pivoting

Singular matrices may not have full-rank or matrices

𝐴 𝑃𝐴 = 𝐿𝑈 𝐿 𝑈 𝐴

= 𝐿𝑈

𝐿 𝑈

N = 41
A = rand(N, N)2
b = rand(N)3
chooses the right factorization based on matrix structure4
LU here5
Af = factorize(A)6
Af.P * A ≈ Af.L * Af.U7

true

 22 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Using a Factorization

In Julia the factorization objects typically overload the \ and functions such as inv

@show Af \ b1
@show inv(Af) * b2

Af \ b = [1.567631093835083, -1.8670423474177864, -0.7020922312927874, 1.0653095651070625]
inv(Af) * b = [1.5676310938350828, -1.8670423474177873, -0.7020922312927873, 1.0653095651070625]

4-element Vector{Float64}:
 1.5676310938350828
 -1.8670423474177873
 -0.7020922312927873
 1.0653095651070625

 23 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

LU Decompositions and Systems of Equations

Pivoting is typically implied when talking about “LU”

Used in the default solve algorithm (without more structure)

Solving systems of equations with triangular matrices: for

1. Define

2. Solve for and for

Since both are triangular, process is (but LU itself)

Could be used to find inv

→ then

→ Solve for in , then solve

Tight connection to textbook Gaussian elimination (including pivoting)

𝐴𝑥 = 𝐿𝑈𝑥 = 𝑏

𝑦 = 𝑈𝑥

𝐿𝑦 = 𝑏 𝑦 𝑈𝑥 = 𝑦 𝑥

𝑂(𝑁 2) 𝑂(𝑁 3)

𝐴 = 𝐿𝑈 𝐴𝐴−1 = 𝐼 = 𝐿𝑈𝐴−1 = 𝐼

𝑌 𝐿𝑌 = 𝐼 𝑈𝐴−1 = 𝑌

 24 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Cholesky

LU is for general invertible matrices, but it doesn’t use positive-definiteness or symmetry

The Cholesky is the right factorization for general positive-definite matrices. For general

symmetric matrices you can use Bunch-Kaufman or others

 for lower triangular or equivalent for upper triangular𝐴 = 𝐿𝐿
′

𝐿

N = 5001
B = rand(N, N)2
A_dense = B' * B # an easy way to generate a symmetric positive semi-definite matrix3
A = Symmetric(A_dense) # flags the matrix as symmetric4
println("A is symmetric? $(issymmetric(A))")5

A is symmetric? true

 25 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Comparing Cholesky

By default it doesn’t know the matrix is positive-definite, so factorize is the best it can

do given symmetric structure

b = rand(N)1
factorize(A) |> typeof2
cholesky(A) \ b # use the factorization to solve3

4
benchmark_solve(A, b)5
benchmark_solve(A_dense, b)6
@btime cholesky($A, check = false) \ $b;7

A\b for typeof(A) = LinearAlgebra.Symmetric{Float64, Matrix{Float64}}
 2.049 ms (13 allocations: 2.16 MiB)
A\b for typeof(A) = Matrix{Float64}
 2.987 ms (9 allocations: 1.92 MiB)
 1.611 ms (6 allocations: 1.91 MiB)

 26 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Eigen Decomposition

For square, symmetric, non-singular matrix factor into

 is a matrix of eigenvectors, is a diagonal matrix of paired eigenvalues

For symmetric matrices, the eigenvectors are orthogonal and which

form an orthonormal basis

Orthogonal matrices can be thought of as rotations without stretching

More general matrices all have a Singular Value Decomposition (SVD)

With symmetric , an interpretation of is that we can first rotate into the basis,

then stretch by , then rotate back

𝐴

𝐴 = 𝑄Λ𝑄−1

𝑄 Λ

𝑄−1𝑄 = 𝑄𝑇𝑄 = 𝐼

𝐴 𝐴𝑥 𝑥 𝑄

Λ

 27 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Calculating the Eigen Decomposition
A = Symmetric(rand(5, 5)) # symmetric matrices have real eigenvectors/eigenvalues1
A_eig = eigen(A)2
Λ = Diagonal(A_eig.values)3
Q = A_eig.vectors4
@show norm(Q * Λ * inv(Q) - A)5
@show norm(Q * Λ * Q' - A);6

norm(Q * Λ * inv(Q) - A) = 5.243912693681636e-15
norm(Q * Λ * Q' - A) = 6.347597591257379e-15

 28 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Eigendecompositions and Matrix Powers

Can be used to find for large (e.g. for Markov chains)

→ , i.e. for times

→ then where is just the pointwise power

Related can find matrix exponential for square matrices

→ where is just the pointwise exponential

→ Useful for solving differential equations, e.g. for is

𝐴𝑡 𝑡

𝑃𝑡 𝑃 ⋅ 𝑃 ⋅… ⋅ 𝑃 𝑡

𝑃 = 𝑄Λ𝑄−1 𝑃𝑡 = 𝑄Λ𝑡𝑄−1 Λ𝑡

𝑒𝐴

𝑒𝐴 = 𝑄𝑒Λ𝑄−1 𝑒Λ

𝑦′ = 𝐴𝑦 𝑦(0) = 𝑦0 𝑦(𝑡) = 𝑒𝐴𝑡𝑦0

 29 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

More on Factorizations

Plenty more used in different circumstances. Start by looking at structure

Usually have some connection to textbook algorithms, for example LU is Gaussian

elimination with pivoting and QR is Gram-Schmidt Process

Just as shortcuts can be done with sparse matrices in textbook examples, direct sparse

methods can be faster given enough sparsity

→ But don’t assume sparsity will be faster. Often slower unless matrices are big and

especially sparse

→ Dense algorithms on GPUs can be very fast because of parallelism

Keep in mind that barring numerical roundoff issues, these are “exact” methods. They

don’t become more accurate with more iterations

 30 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Large Scale Systems of Equations

Packages that solve BIG problems with “direct methods” include , ,

, and many others

Sparse solvers are bread-and-butter scientific computing, so they can crush huge

problems, parallelize on a cluster, etc.

But for smaller problems they may not be ideal. Profile and test, and only if you need it.

In Julia, the SciML package is your best bet there, as it lets you swap out

backends to profile

On Python harder to flip between them, but scipy has many built in and many wrappers

exist. Same with Matlab

MUMPS Paradiso

UMFPACK

LinearSolver.jl

 31 / 40

https://mumps-solver.org/index.php
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-0/onemkl-pardiso-parallel-direct-sparse-solver-iface.html
https://en.wikipedia.org/wiki/UMFPACK
https://github.com/SciML/LinearSolve.jl
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Preview of Conditioning

It will turn out that for iterative methods, a different style of algorithm, it is often

necessary to multiple by a matrix to transform the problem

The ideal transform would be the matrix’s inverse, which requires a full factorization.

But instead, you can do only part of the way towards the factorization. e.g., part of the

way on gaussian elimination

Called “Incomplete Cholesky”, “Incomplete LU”, etc.

 32 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Continuous Time Markov Chains

 33 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Markov Chains Transitions in in Continuous Time

For a discrete number of states, we cannot have instantaneous transitions between

states or it ceases to be measurable

Instead: intensity of switching from state to as a where

With is . That is, .

𝑖 𝑗 𝑞𝑖𝑗

ℙ{𝑋(𝑡 + Δ) = 𝑗 |𝑋(𝑡)} = {𝑞𝑖𝑗Δ + 𝑜(Δ) 𝑖 ≠ 𝑗

1 + 𝑞𝑖𝑖Δ + 𝑜(Δ) 𝑖 = 𝑗

𝑜(Δ) little-o notation limΔ→0 𝑜(Δ)/Δ = 0

 34 / 40

https://en.wikipedia.org/wiki/Big_O_notation#Little-o_notation
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Intensity Matrix

 for and

Rows sum to 0

For example, consider a counting process

𝑄𝑖𝑗 = 𝑞𝑖𝑗 𝑖 ≠ 𝑗 𝑄𝑖𝑖 = −∑𝑗≠𝑖 𝑞𝑖𝑗

𝑄 =

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

−0.1 0.1 0 0 0 0

0.1 −0.2 0.1 0 0 0

0 0.1 −0.2 0.1 0 0

0 0 0.1 −0.2 0.1 0

0 0 0 0.1 −0.2 0.1

0 0 0 0 0.1 −0.1

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

 35 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Probability Dynamics

The is the of the stochastic process.

Let with

Then the probability distribution evolution (Fokker-Planck or KFE), is

Or, often written as , i.e. in terms of the “adjoint” of the linear operator

A steady state is then a solution to

→ i.e., the left-eigenvector associated with eigenvalue 0 (i.e.)

𝑄 infinitesimal generator

𝜋(𝑡) ∈ ℝ𝑁 𝜋𝑖(𝑡) ≡ ℙ[𝑋𝑡 = 𝑖 |𝑋0]

𝑑

𝑑𝑡
𝜋(𝑡) = 𝜋(𝑡)𝑄, given 𝜋(0)

𝑑
𝑑𝑡
𝜋(𝑡) = 𝑄⊤

⋅ 𝜋(𝑡) 𝑄

𝑄⊤
⋅ ¯𝜋 = 0

¯𝜋 ¯𝜋𝑄 = 0 × ¯𝜋

 36 / 40

https://en.wikipedia.org/wiki/Infinitesimal_generator_(stochastic_processes)
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Setting up a Counting Process
alpha = 0.11
N = 62
Q = Tridiagonal(fill(alpha, N - 1),3
 [-alpha; fill(-2*alpha, N - 2); -alpha],4
 fill(alpha, N - 1))5
Q6

6×6 Tridiagonal{Float64, Vector{Float64}}:
 -0.1 0.1 ⋅ ⋅ ⋅ ⋅
 0.1 -0.2 0.1 ⋅ ⋅ ⋅
 ⋅ 0.1 -0.2 0.1 ⋅ ⋅
 ⋅ ⋅ 0.1 -0.2 0.1 ⋅
 ⋅ ⋅ ⋅ 0.1 -0.2 0.1
 ⋅ ⋅ ⋅ ⋅ 0.1 -0.1

 37 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Finding the Stationary Distribution

There will always be at least one eigenvalue of 0, and the corresponding eigenvector is

the stationary distribution

Teaser: Do we really need all of the eigenvectors/eigenvalues?

Lambda, vecs = eigen(Array(Q'))1
@show Lambda2
vecs[:, N] ./ sum(vecs[:, N])3

Lambda = [-0.3732050807568874, -0.29999999999999993,
-0.19999999999999998, -0.09999999999999995,
-0.026794919243112274, 0.0]

6-element Vector{Float64}:
 0.16666666666666657
 0.16666666666666657
 0.1666666666666667
 0.16666666666666682
 0.16666666666666685
 0.16666666666666663

 38 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Using the Generator in a Bellman Equation

Let be a vector of payoffs in each state, and a discount rate,

Then we can use the generator as a simple Bellman Equation (using the Kolmogorov

Backwards Equation) to find the value in each state,

Rearranging,

Teaser: can we just implement and avoid factorizing the matrix?

𝑟 ∈ ℝ𝑁 𝜌 > 0

𝑄

𝑣

𝜌𝑣 = 𝑟 +𝑄𝑣

(𝜌𝐼 −𝑄)𝑣 = 𝑟

(𝜌𝐼 −𝑄) ⋅ 𝑣

 39 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Implementing the Bellman Equation
rho = 0.051
r = range(0.0, 10.0, length=N)2
@show typeof(rho*I - Q)3

4
solve (rho * I - Q) v = r5
v = (rho * I - Q) \ r6

typeof(rho * I - Q) = LinearAlgebra.Tridiagonal{Float64,
Vector{Float64}}

6-element Vector{Float64}:
 38.15384615384615
 57.23076923076923
 84.92307692307693
 115.07692307692311
 142.76923076923077
 161.84615384615384

 40 / 40

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

