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Motivation

Building on the  direct methods, we now explore iterative approaches

Iterative methods and matrix conditioning you’ll learn:

→ Conditioning: Why some matrices are harder to work with (condition numbers)

→ Stationary methods: Jacobi iteration for diagonally dominant systems

→ Krylov methods: Conjugate Gradient (CG) and NormalCG for least squares

→ Matrix-free operators: Solving problems without storing the full matrix

→ Preconditioning: Transforming problems to make them easier to solve

→ Applications: Large-scale LLS, two-way fixed effects, CTMC value functions

Key insight: Performance depends on geometry (conditioning), not just size

These methods are essential for ML: optimization, regularization, and large-scale

problems

previous lecture’s
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Summary and Material

See 

Python resources:

→  - JAX linear solvers ( )

→  - Compositional Linear Algebra ( )

QuantEcon Krylov Methods and Matrix Conditioning

Lineax Documentation Rader, Lyons, and Kidger 2023

CoLA Documentation Potapczynski et al. 2023

import jax1
import jax.numpy as jnp2
import jax.random as random3
import lineax as lx4
import cola5
import time6
import matplotlib.pyplot as plt7

8
# Set random seed for reproducibility9
key = random.PRNGKey(42)10
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Conditioning
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Direct Methods and Conditioning

Some algorithms and some matrices are more numerically stable than others

→ By “numerically stable” we mean sensitive to accumulated roundoff errors

A key issue is when matrices are close to singular, or almost have collinear columns.

Many times this can’t be avoided, other times it can (e.g., choose orthogonal polynomials

rather than monomials)

This will become even more of an issue with iterative methods, but is also the key to

rapid convergence. Hint:  is easy if , even if it is dense.𝐴𝑥 = 𝑏 𝐴 = 𝐼
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Condition Numbers of Matrices

 may say it is “almost” singular, but it is not scale-invariant

The condition number , given matrix norm  uses the matrix norm

Expensive to calculate, can show that given spectrum

Intuition: if , then  change in  amplifies to a  error

when solving .

See  for why inv is a bad idea when  is huge

det(𝐴) ≈ 0

𝜅 || ⋅ ||

cond(𝐴) ≡ ‖𝐴‖‖𝐴−1‖ ≥ 1

cond(𝐴) = | 𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛

|

cond(𝐴) = 𝐾 𝑏→ 𝑏 + ∇𝑏 𝑏 𝑥→ 𝑥 + 𝐾∇𝑏

𝐴𝑥 = 𝑏

Matlab Docs on inv cond(𝐴)
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Condition Numbers and Matrix Operations

The identity matrix is as good as it gets

Otherwise, the issue is when matrices are of fundamentally different scales

epsilon = 1E-61
A2 = jnp.array([[1.0, 0.0],2
                [1.0, epsilon]])3
print(f"cond(A2) = {jnp.linalg.cond(A2):.2e}")4
print(f"cond(A2.T) = {jnp.linalg.cond(A2.T):.2e}")5
print(f"cond(inv(A2)) = {jnp.linalg.cond(jnp.linalg.inv6

cond(A2) = 2.00e+06
cond(A2.T) = 2.00e+06
cond(inv(A2)) = 1.88e+06
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Conditioning Under Matrix Products

Matrix operations can often amplify the condition number, or may be invariant

Be especially careful with normal equations/etc.

def lauchli(N, epsilon):1
    ones_row = jnp.ones((1, N))2
    eye_scaled = epsilon * jnp.eye(N)3
    return jnp.vstack([ones_row, eye_scaled])4

5
epsilon = 1E-86
L = lauchli(3, epsilon)7
print(f"cond(L) = {jnp.linalg.cond(L):.2e}")8
print(f"cond(L.T @ L) = {jnp.linalg.cond(L.T @ L):.2e}"9
print("Matrix L:")10
print(L)11

cond(L) = 1.73e+08
cond(L.T @ L) = inf
Matrix L:
[[1.e+00 1.e+00 1.e+00]
 [1.e-08 0.e+00 0.e+00]
 [0.e+00 1.e-08 0.e+00]
 [0.e+00 0.e+00 1.e-08]]

See  for why a monomial basis is a bad ideahere
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Stationary Iterative Methods
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Direct Methods

Direct methods work with a matrix, stored in memory, and typically involve factorizations

→ Can be dense or sparse

→ They can be fast, and solve problems to machine precision

Typically are superior until problems get large or have particular structure

But always use the right factorizations and matrix structure! (e.g., posdef, sparse, etc)

The key limitations are the sizes of the matrices (or the sparsity)
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Iterative Methods

Iterative methods are in the spirit of gradient descent and optimization algorithms

→ They take an initial guess and update until convergence

→ They work on matrix-vector and vector-matrix products, and can be matrix-free,

which is a huge advantage for huge problems

→ Rather than waiting until completion like direct methods, you can control stopping

The key limitations on performance are geometric (e.g., conditioning), not dimensionality

Two rough types: stationary methods and Krylov methods
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Bellman Equation with CTMC Generator

Let  be a vector of payoffs in each state, and  a discount rate

Then we can use the  generator as a simple Bellman Equation (using the Kolmogorov

Backwards Equation) to find the value  in each state

Rearranging, 

Teaser: can we just implement  and avoid factorizing the matrix?

𝑟 ∈ ℝ𝑁 𝜌 > 0

𝑄

𝑣

𝜌𝑣 = 𝑟 +𝑄𝑣

(𝜌𝐼 −𝑄)𝑣 = 𝑟

(𝜌𝐼 −𝑄) ⋅ 𝑣
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Example from Previous Lectures

Variation on CTMC example:  gain,  to lose

Solve the Bellman Equation for a CTMC

𝑎 > 0 𝑏 > 0

N = 1001
a = 0.12
b = 0.053
rho = 0.054

5
# Define diagonals for tridiagonal matrix Q6
lower_diag = jnp.full(N-1, b)7
main_diag = jnp.concatenate([jnp.array([-a]),8
                             jnp.full(N-2, -(a+b)),9
                             jnp.array([-b])])10
upper_diag = jnp.full(N-1, a)11
Q = cola.ops.Tridiagonal(lower_diag, main_diag, upper_diag)12

13
# For direct solve, convert to dense14
r = jnp.linspace(0.0, 10.0, N)15
Q_dense = Q.to_dense()16
A = rho * jnp.eye(N) - Q_dense17
v_direct = jnp.linalg.solve(A, r)18
print(f"Mean value: {jnp.mean(v_direct):.6f}")19

Mean value: 101.963066  15 / 45
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Diagonal Dominance

Stationary Iterative Methods reorganize the problem so it is a contraction mapping and

then iterate

For matrices that are 

i.e., sum of all off-diagonal elements in a row is less than the diagonal element in

absolute value

Note for our problem rows sum to 0 so if  then  is strictly diagonally

dominant

strictly diagonal dominant

|𝐴𝑖𝑖| ≥∑
𝑗≠𝑖

|𝐴𝑖𝑗| for all 𝑖 = 1…𝑁

𝜌 > 0 𝜌𝐼 −𝑄
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Jacobi Iteration

To solve a system , split the matrix  into its diagonal and off-diagonal elements.

That is,

𝐴𝑥 = 𝑏 𝐴

𝐴 ≡ 𝐷 + 𝑅

𝐷 ≡

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

𝐴11 0 … 0

0 𝐴22 … 0

⋮ ⋮ ⋮ ⋮

0 0 … 𝐴𝑁𝑁

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

𝑅 ≡

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

0 𝐴12 … 𝐴1𝑁

𝐴21 0 … 𝐴2𝑁

⋮ ⋮ ⋮ ⋮

𝐴𝑁1 𝐴𝑁2 … 0

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
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Jacobi Iteration Algorithm

Then we can rewrite  as

Where  is trivial since diagonal. To solve, take an iteration , starting from ,

See  in appendix for code example.

(𝐷 + 𝑅)𝑥 = 𝑏

𝐷𝑥 = 𝑏 − 𝑅𝑥

𝑥 = 𝐷
−1(𝑏 − 𝑅𝑥)

𝐷−1 𝑥𝑘 𝑥0

𝑥
𝑘+1 = 𝐷

−1(𝑏 − 𝑅𝑥𝑘)

▶ Jacobi Implementation
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Structured Linear Operators
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Structured and Lazy Operators

CoLA (Compositional Linear Algebra) ( ) provides structured

matrix types

Operators can be composed lazily without materializing the result

CoLA dispatches to appropriate algorithms based on structure (direct or iterative)

Example: Diagonal + Tridiagonal

Potapczynski et al. 2023

# Diagonal operator1
D = cola.ops.Diagonal(jnp.arange(1.0, N+1))2

3
# Compose without forming the matrix (lazy composition)4
Op = Q + D5

6
# CoLA handles the structure automatically in solves7
b_test = jnp.ones(N)8
x_cola = cola.solve(Op, b_test)9

10
# Can also use eigenvalue methods11
eigenvalues, eigenvectors = cola.eig(Op, k=3, which='SM')12
print(f"Three smallest eigenvalues: {eigenvalues}")13

Three smallest eigenvalues: [0.89475226+0.j 1.8502488 +0.j 2.850001  +0.j] 20 / 45
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Benefits of Lazy Composition

No need to materialize Q + D as a dense matrix

Memory efficient for large problems

Enables matrix-free methods at scale

Foundation for both direct solvers and iterative methods
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Krylov Methods
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Krylov Subspaces

Krylov methods are a class of iterative methods that use a sequence of subspaces

The subspaces are generated by repeated matrix-vector products

→ i.e., given an  and a initial value  we could generate the sequence

→  and see

Note that the only operation we require from our linear operator  is the matrix-vector

product. This is a huge advantage for large problems

e.g. Krylov method is  for posdef 

𝐴 𝑏

𝑏,𝐴𝑏,𝐴2𝑏, … ,𝐴𝑘𝑏

𝐴

Conjugate Gradient 𝐴
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Conjugate Gradient

CG method for positive-definite systems, matrix or function form

N_cg = 1001
key, subkey = random.split(key)2
A_sparse = random.uniform(subkey, (N_cg, N_cg))3
key, subkey = random.split(key)4
A_sparse = jnp.where(random.uniform(subkey, (N_cg, N_cg)) < 0.1, A_sparse, 0.0)5
A_pd = A_sparse @ A_sparse.T + 0.5 * jnp.eye(N_cg)6
key, subkey = random.split(key)7
b_cg = random.uniform(subkey, (N_cg,))8
x_direct = jnp.linalg.solve(A_pd, b_cg)9
operator = lx.MatrixLinearOperator(A_pd, tags=lx.positive_semidefinite_tag)10
solver = lx.CG(rtol=1e-5, atol=1e-5, max_steps=1000)11
solution = lx.linear_solve(operator, b_cg, solver)12
print(f"cond(A) = {jnp.linalg.cond(A_pd):.2e}, Iterations: {solution.stats['num_steps']}, Error: {jnp.linalg.norm(sol13

cond(A) = 6.32e+01, Iterations: 32, Error: 2.61e-05
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Benchmarking: CG vs Direct Solve

Key insights:

Iterative methods scale better for large sparse systems

Direct methods may be faster for medium/dense matrices

Conditioning affects iteration count

# Warmup both solvers (JIT compilation happens on first call)1
_ = jnp.linalg.solve(A_pd, b_cg).block_until_ready()2
_ = lx.linear_solve(operator, b_cg, solver).value.block_until_ready()3

4
# Direct solve benchmark5
start = time.perf_counter()6
x_direct = jnp.linalg.solve(A_pd, b_cg)7
x_direct.block_until_ready()  # Wait for JAX async execution8
direct_time = time.perf_counter() - start9

10
# CG solve benchmark11
start = time.perf_counter()12
solution = lx.linear_solve(operator, b_cg, solver)13
solution.value.block_until_ready()14
cg_time = time.perf_counter() - start15

16
print(f"Direct solve: {direct_time*1000:.2f} ms")17
print(f"CG solve: {cg_time*1000:.2f} ms")18
print(f"Speedup: {direct_time/cg_time:.2f}x")19

Direct solve: 2.51 ms
CG solve: 0.45 ms
Speedup: 5.60x
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Iterative Methods for LLS

( ) is a Krylov method for solving least squares

via the normal equations

Where . If  then it delivers the ridgeless regression limit, even if

underdetermined

NormalCG Rader, Lyons, and Kidger 2023

min
𝛽

‖𝑋𝛽 − 𝑦‖2 + 𝛼‖𝛽‖2

𝛼 ≥ 0 𝛼 = 0
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NormalCG Example
M = 10001
N_lls = 100002
sigma = 0.13
key, subkey = random.split(key)4
X_sparse = random.uniform(subkey, (N_lls, M))5
key, subkey = random.split(key)6
X_sparse = jnp.where(random.uniform(subkey, (N_lls, M)) < 0.1, X_sparse, 0.0)7
key, subkey = random.split(key)8
beta_true = random.uniform(subkey, (M,))9
key, subkey = random.split(key)10
y = X_sparse @ beta_true + sigma * random.normal(subkey, (N_lls,))11
beta_direct = jnp.linalg.lstsq(X_sparse, y, rcond=None)[0]12
operator = lx.MatrixLinearOperator(X_sparse)13
solver = lx.NormalCG(rtol=1e-5, atol=1e-5, max_steps=1000)14
solution = lx.linear_solve(operator, y, solver)15
beta_normalcg = solution.value16
print(f"Norm difference: {jnp.linalg.norm(beta_direct - beta_normalcg):.2e}, Iterations: {solution.stats['num_steps']17

Norm difference: 1.97e-04, Iterations: 15
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Benchmarking: Direct vs Iterative LLS

Trade-offs:

Overdetermined systems (N > M): iterative methods shine

Sparse matrices: memory savings matter

Accuracy: iterative methods controlled by tolerances

# Warmup both solvers (JIT compilation happens on first call)1
_ = jnp.linalg.lstsq(X_sparse, y, rcond=None)[0].block_until_ready()2
_ = lx.linear_solve(operator, y, solver).value.block_until_ready()3

4
# Benchmark direct least squares5
start = time.perf_counter()6
beta_direct = jnp.linalg.lstsq(X_sparse, y, rcond=None)[0]7
beta_direct.block_until_ready()8
direct_time = time.perf_counter() - start9

10
# Benchmark NormalCG11
start = time.perf_counter()12
solution = lx.linear_solve(operator, y, solver)13
solution.value.block_until_ready()14
normalcg_time = time.perf_counter() - start15

16
print(f"Direct lstsq: {direct_time*1000:.2f} ms")17
print(f"NormalCG: {normalcg_time*1000:.2f} ms")18
print(f"Speedup: {direct_time/normalcg_time:.2f}x")19
print(f"Iterations: {solution.stats['num_steps']}")20

Direct lstsq: 1283.48 ms
NormalCG: 127.66 ms
Speedup: 10.05x
Iterations: 15
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Matrix-Free LLS

For LLS, need  and  products via FunctionLinearOperator

Lineax automatically computes transposes (no manual adjoints needed!)

𝑋𝑢 𝑋
𝑇
𝑣

def matvec(vec):1
    return X_sparse @ vec2
input_structure = jax.ShapeDtypeStruct((M,), jnp.float32)3
X_op = lx.FunctionLinearOperator(matvec, input_structure)4
solver = lx.NormalCG(rtol=1e-5, atol=1e-5, max_steps=1000)5
solution = lx.linear_solve(X_op, y, solver)6
beta_matvec = solution.value7
print(f"Norm diff: {jnp.linalg.norm(beta_direct - beta_matvec):.2e}, Iterations: {solution.stats['num_steps']}")8

Norm diff: 7.22e-04, Iterations: 16
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Eigenvalue Problems
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Eigenvalue Example

Steady state of CTMC is solution to 

The  left-eigenvector associated with eigenvalue 0

𝑄⊤
⋅ ¯𝜋 = 0

¯𝜋

N_eig = 41
a = 0.12
b = 0.053
lower_diag = jnp.full(N_eig-1, b)4
main_diag = jnp.concatenate([jnp.array([-a]), jnp.full(N_eig-2, -(a+b)), jnp.array([-b])])5
upper_diag = jnp.full(N_eig-1, a)6
Q_eig = cola.ops.Tridiagonal(lower_diag, main_diag, upper_diag)7
Q_T = cola.ops.Tridiagonal(upper_diag, main_diag, lower_diag)8
eigenvalues, eigenvectors = cola.eig(Q_T, k=1, which='SM')9
lambda_min = eigenvalues[0].real10
phi = eigenvectors[:, 0].real11
phi = phi / jnp.sum(phi)12
print(f"λ_min: {lambda_min:.2e}, Mean(φ): {jnp.mean(phi):.6f}, Q.T:\n{Q_T.to_dense()}")13

λ_min: -2.50e-01, Mean(φ): 0.250000, Q.T:
[[-0.1   0.05  0.    0.  ]
 [ 0.1  -0.15  0.05  0.  ]
 [ 0.    0.1  -0.15  0.05]
 [ 0.    0.    0.1  -0.05]]
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Implementing Matrix-Free Operator for Adjoint
def Q_adj_product(x):1
    first = -a * x[0] + b * x[1]2
    middle = a * x[:-2] - (a + b) * x[1:-1] + b * x[2:]3
    last = a * x[-2] - b * x[-1]4
    return jnp.concatenate([jnp.array([first]), middle, jnp.array([last])])5

6
key, subkey = random.split(key)7
x_check = random.uniform(subkey, (N_eig,))8
Q_dense = Q_eig.to_dense()9
error = jnp.linalg.norm(Q_adj_product(x_check) - Q_dense.T @ x_check)10
print(f"Matrix-free error: {error:.2e}")11

Matrix-free error: 3.73e-09
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Solving with Matrix-Free Operator

The FunctionLinearOperator wrapper adds features required for algorithms

# Wrap in Lineax FunctionLinearOperator1
input_structure = jax.ShapeDtypeStruct((N_eig,), jnp.float32)2
Q_adj_op = lx.FunctionLinearOperator(Q_adj_product, input_structure)3

4
# For eigenvalues, we can use CoLA with the dense version5
# (CoLA's matrix-free operator support is limited for eigenvalue problems)6
Q_dense_T = Q_dense.T7
Q_cola = cola.ops.Dense(Q_dense_T)8

9
# Find smallest eigenvalue10
eigenvalues_mf, eigenvectors_mf = cola.eig(Q_cola, k=1, which='SM')11
lambda_min_mf = eigenvalues_mf[0].real12
phi_mf = eigenvectors_mf[:, 0].real13
phi_mf = phi_mf / jnp.sum(phi_mf)14

15
print(f"Smallest eigenvalue (matrix-free): {lambda_min_mf:.2e}")16
print(f"Mean of eigenvector: {jnp.mean(phi_mf):.6f}")17

Smallest eigenvalue (matrix-free): -2.50e-01
Mean of eigenvector: 0.250000
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Preconditioning
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Changing the Geometry

In practice, most Krylov methods are preconditioned or else direct methods usually

dominate. Same with large nonlinear systems

As discussed, the key issue for the convergence speed of iterative methods is the

geometry (e.g. condition number of hessian, etc)

Preconditioning changes the geometry. e.g. more like circles or with eigenvalue problems

spread out the eigenvalues of interest

Preconditioners for a matrix  requires art and tradeoffs

→ Want be relatively cheap to calculate, and must be invertible

→ Want to have 

Ideal preconditioner for  is  since 

→ ! But that is equivalent to solving problem

𝐴

cond(𝑃𝐴)≪ cond(𝐴)

𝐴𝑥 = 𝑏 𝑃 = 𝐴−1 𝐴−1𝐴𝑥 = 𝑥 = 𝐴−1𝑏

cond(𝐴−1𝐴) = 1
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Right-Preconditioning a Linear System

That is, solve  for , and then solve  for .

𝐴𝑥 = 𝑏

𝐴𝑃−1𝑃𝑥 = 𝑏

𝐴𝑃−1𝑦 = 𝑏

𝑃𝑥 = 𝑦

(𝐴𝑃−1)𝑦 = 𝑏 𝑦 𝑃𝑥 = 𝑦 𝑥
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Raw Conjugate Gradient
N_precond = 2001
key, subkey = random.split(key)2
A_sparse_precond = random.uniform(subkey, (N_precond, N_precond))3
key, subkey = random.split(key)4
A_sparse_precond = jnp.where(random.uniform(subkey, (N_precond, N_precond)) < 0.1, A_sparse_precond, 0.0)5
A_precond = A_sparse_precond @ A_sparse_precond.T + 0.5 * jnp.eye(N_precond)6
key, subkey = random.split(key)7
b_precond = random.uniform(subkey, (N_precond,))8
operator_precond = lx.MatrixLinearOperator(A_precond, tags=lx.positive_semidefinite_tag)9
solver_precond = lx.CG(rtol=1e-6, atol=1e-6, max_steps=1000)10
solution_no_precond = lx.linear_solve(operator_precond, b_precond, solver_precond)11
print(f"cond(A) = {jnp.linalg.cond(A_precond):.2e}, Iterations: {solution_no_precond.stats['num_steps']}")12

cond(A) = 2.26e+02, Iterations: 59
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Diagonal Preconditioner

A simple preconditioner is the diagonal of 

Cheap to calculate, invertible if diagonal has no zeros

We precondition by solving 

𝐴

𝐷−1/2𝐴𝐷−1/2(𝐷1/2𝑥) = 𝐷−1/2𝑏

D_inv_sqrt = 1.0 / jnp.sqrt(jnp.diag(A_precond))1
P_diag = jnp.diag(D_inv_sqrt)2
A_precond_system = P_diag @ A_precond @ P_diag3
b_precond_system = P_diag @ b_precond4
operator_precond_system = lx.MatrixLinearOperator(A_precond_system, tags=lx.positive_semidefinite_tag)5
solution_precond = lx.linear_solve(operator_precond_system, b_precond_system, solver_precond)6
x_precond = P_diag @ solution_precond.value7
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Diagonal Preconditioner Results
print(f"Iterations (with diagonal preconditioner): {solution_precond.stats['num_steps']}")1
print(f"Reduction: {(1 - solution_precond.stats['num_steps']/solution_no_precond.stats['num_steps'])*100:.1f}%")2
print(f"Error: {jnp.linalg.norm(A_precond @ x_precond - b_precond):.2e}")3

Iterations (with diagonal preconditioner): 57
Reduction: 3.4%
Error: 1.55e-05
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Benchmarking: Preconditioning Impact

When preconditioning helps:

Poorly conditioned systems (high κ)

Multiple solves with same operator

Complex problem structure

Diagonal preconditioning reduces condition number

print(f"Without preconditioner: {solution_no_precond.stats['num_steps']} iterations")1
print(f"With diagonal precond: {solution_precond.stats['num_steps']} iterations")2
reduction_pct = (1 - solution_precond.stats['num_steps']/solution_no_precond.stats['num_steps'])*1003
print(f"Reduction: {reduction_pct:.1f}%")4
print(f"\nCondition numbers:")5
print(f"cond(A): {jnp.linalg.cond(A_precond):.2e}")6
print(f"cond(P A P): {jnp.linalg.cond(A_precond_system):.2e}")7

Without preconditioner: 59 iterations
With diagonal precond: 57 iterations
Reduction: 3.4%

Condition numbers:
cond(A): 2.26e+02
cond(P A P): 2.26e+02
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Incomplete Factorizations in JAX

Limitation: Incomplete LU/Cholesky preconditioners are not available in the JAX

ecosystem

JAX’s sparse matrix support is still experimental (jax.experimental.sparse)

No mature libraries for ILU preconditioners exist for JAX (as of 2026)

Sources: , JAX GitHub Discussion #18452 JAX Sparse Documentation
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Other Preconditioners and Alternatives

Diagonal preconditioners (available in Lineax)

Algebraic multigrid methods - useful for problems with multiple scales (e.g., discretizing

multiple dimensions in a statespace)

→ See  methods

Preconditioners for : approximate Cholesky decompositions and

combinatorial multigrid

→ See  for more

Interface with external libraries (SciPy, PETSc) via callbacks for production use

Julia’s IncompleteLU.jl for comparison

multigrid

Graph Laplacians

paper
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Appendices
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Jacobi Iteration (Educational) 

SOR (Successive Over-Relaxation) is more complex to implement functionally in JAX due to

the need for sequential updates. Use Krylov methods instead for better performance. -

Educational implementation of Jacobi iteration using jax.lax.scan

▶ Back

# Use the CTMC example from earlier1
A_jacobi = A  # From the CTMC example2
b_jacobi = r3
v_direct_jacobi = v_direct4

5
# Jacobi iteration: x^{k+1} = D^{-1}(b - R x^k)6
def jacobi_step(x, _):7
    """Single Jacobi iteration step (functional, no mutation)"""8
    D_inv = 1.0 / jnp.diag(A_jacobi)9
    R = A_jacobi - jnp.diag(jnp.diag(A_jacobi))10
    x_new = D_inv * (b_jacobi - R @ x)11
    return x_new, None12

13
# Run 40 iterations using scan14
x0 = jnp.zeros(N)15
x_jacobi, _ = jax.lax.scan(jacobi_step, x0, None, length=40)16
error_jacobi = jnp.linalg.norm(x_jacobi - v_direct_jacobi, ord=jnp.inf)17
print(f"Error after 40 iterations: {error_jacobi:.2e}")18

Error after 40 iterations: 1.77e-03
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