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Motivation

» Building on the previous lecture’s direct methods, we now explore iterative approaches

e |terative methods and matrix conditioning you'll learn:
Conditioning: WWhy some matrices are harder to work with (condition numbers)
Stationary methods: Jacobi iteration for diagonally dominant systems
Krylov methods: Conjugate Gradient (CG) and NormalCG for least squares
Matrix-free operators: Solving problems without storing the full matrix
Preconditioning: Transforming problems to make them easier to solve
Applications: Large-scale LLS, two-way fixed effects, CTMC value functions

» Key insight: Performance depends on geometry (conditioning), not just size

» These methods are essential for ML: optimization, regularization, and large-scale
problems
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Summary and Material

e See QuantEcon Krylov Methods and Matrix Conditioning

» Python resources:

— Lineax Documentation - JAX linear solvers (Rader, Lyons, and Kidger 2023)
— CoLA Documentation - Compositional Linear Algebra (Potapczynski et al. 2023)

import jax

import jax.numpy as jnp

import jax.random as random
import lineax as 1x

import cola

import time

import matplotlib.pyplot as plt

# Set random seed for reproducibility
key = random.PRNGKey(42)
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Direct Methods and Conditioning

o Some algorithms and some matrices are more numerically stable than others
By “numerically stable” we mean sensitive to accumulated roundoff errors

» Akeyissue is when matrices are close to singular, or almost have collinear columns.

Many times this can't be avoided, other times it can (e.g., choose orthogonal polynomials
rather than monomials)

» This will become even more of an issue with iterative methods, but is also the key to
rapid convergence. Hint: Ax = biseasy if A =1 evenifitis dense.
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Condition Numbers of Matrices

o det(A) = 0 may say itis "almost’ singular, but it is not scale-invariant

The condition number «, given matrix norm || - || uses the matrix norm

cond(A) = ||A|IIA7Y =1

Expensive to calculate, can show that given spectrum

Aﬁnax

cond(A) = .

Intuition: if cond(A) = K, then b — b + Vb change in b amplifilestoax — x + KVb error
when solving Ax = b.

See Matlab Docs on inv for why inv is a b%d idea when cond(A) is huge
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Condition Numbers and Matrix Operations

» The identity matrix is as good as it gets

» Otherwise, the issue is when matrices are of fundamentally different scales

epsilon = 1E-6 cond(A2) = 2.00e+06
A2 = jnp.array([[1.0, 0.0], CO”S(AZ'TAZZ 2'02e326 o6
= 1. +
[1.0, epsilon]]) cond(inv(A2)) €

print(f"cond(A2) = {jnp.linalg.cond(A2):.2e}")
print(f"cond(A2.T) = {jnp.linalg.cond(A2.T):.2e}")
print(f"cond(inv(A2)) = {jnp.linalg.cond(jnp.linalg.inv

9/45
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Conditioning Under Matrix Products

» Matrix operations can often amplify the condition number, or may be invariant

» Be especially careful with normal equations/etc.

def lauchli(N, epsilon):
ones_row = jnp.ones((1, N))
eye_scaled = epsilon * jnp.eye(N)
return jnp.vstack([ones_row, eye_scaled])

epsilon = 1E-8

L = lauchli(3, epsilon)

print(f"cond(L) = {jnp.linalg.cond(L):.2e}")
print(f"cond(L.T @ L) = {jnp.linalg.cond(L.T @ L):.2e}"
print("Matrix L:")

print(L)

See here for why a monomial basis is a bad idea

cond(L) = 1.73e+08

cond(L.T @ L) = inf

Matrix L:

[[1.e+00 1.e+00 1.e+00]
[1.€-08 0.e+00 0.e+00]
[0.e+00 1.e-08 0.e+00]
[0.e+00 0.e+00 1.e-08]]
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Direct Methods
» Direct methods work with a matrix, stored in memory, and typically involve factorizations
Can be dense or sparse
They can be fast, and solve problems to machine precision
 Typically are superior until problems get large or have particular structure
» But always use the right factorizations and matrix structure! (e.g., posdef, sparse, etc)

» The key limitations are the sizes of the matrices (or the sparsity)
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'terative Methods

* |terative methods are in the spirit of gradient descent and optimization algorithms
They take an initial guess and update until convergence

They work on matrix-vector and vector-matrix products, and can be matrix-free,
which is a huge advantage for huge problems

Rather than waiting until completion like direct methods, you can control stopping
» The key limitations on performance are geometric (e.g., conditioning), not dimensionality

» Two rough types: stationary methods and Krylov methods
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Bellman Equation with CTMC Generator

» Letr € RY be a vector of payoffs in each state, and p > 0 a discount rate

» Then we can use the Q generator as a simple Bellman Equation (using the Kolmogorov
Backwards Equation) to find the value v in each state

po =1+ Qu

» Rearranging, (pI - Q)v =r

 Teaser: can we just implement (pI — Q) - v and avoid factorizing the matrix?
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Example from Previous Lectures

 Variation on CTMC example:a > 0 gain, b > 0 to lose

» Solve the Bellman Equation for a CTMC

N = 100
a=2=0.1
b = 0.05
rho = 0.05

# Define diagonals for tridiagonal matrix Q

lower_diag = jnp.full(N-1, b)

main_diag = jnp.concatenate([jnp.array([-a]),
jnp.full(N-2, -(a+b)),
jnp.array([-b])])

upper_diag = jnp.full(N-1, a)

Q = cola.ops.Tridiagonal(lower_diag, main_diag, upper_diag)

# For direct solve, convert to dense

r = jnp.linspace(0.0, 10.0, N)

Q_dense = Q.to_dense()

A = rho * jnp.eye(N) - Q_dense

v_direct = jnp.linalg.solve(A, r)

print(f"Mean value: {jnp.mean(v_direct):.6T}")

Mean value: 101.963066 2] 15/ 45
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Diagonal Dominance

» Stationary Iterative Methods reorganize the problem so it is a contraction mapping and
then iterate

e For matrices that are strictly diagonal dominant

|Aji| > Z |Aij| foralli=1..N

J#i

» e, sum of all off-diagonal elements in a row is less than the diagonal element in
absolute value

 Note for our problem rows sumto 0 soif p > 0 then pI — Q is strictly diagonally
dominant
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Jacobi Iteration

» To solve a system Ax = b, split the matrix A into its diagonal and off-diagonal elements.
Thatis,

A=D+R
An 0 0 0 Ajp AiN
0 A 0 A 0 A
D= 2 R = .21 ON
0 0 ANN _ANl ANZ 0
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Jacobi Iteration Algorithm

» Then we canrewrite (D + R)x = b as

Dx =b—-Rx
x = D7}(b - Rx)

Where D71 is trivial since diagonal. To solve, take an iteration x¥, starting from «©,
1 = D7 (b - RxF)

See in appendix for code example.
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Structured and Lazy Operators

» CoLA (Compositional Linear Algebra) (Potapczynski et al. 2023) provides structured

» CoLA dispatches to appropriate algorithms based on structure (direct or iterative)

Three smallest eigenvalues: [0.89475226+0.j 1.8502488 +0.]j Ms50001

matrix types

Operators can be composed lazily without materializing the result

Example: Diagonal + Tridiagonal

# Diagonal operator
D = cola.ops.Diagonal(jnp.arange(1.0, N+1))

# Compose without forming the matrix (lazy composition)
Op =Q + D

# CoLA handles the structure automatically in solves
b_test = jnp.ones(N)
x_cola = cola.solve(Op, b_test)

# Can also use eigenvalue methods
eigenvalues, eigenvectors = cola.eig(Op, k=3, which='SM')
print(f"Three smallest eigenvalues: {eigenvalues}")

+0.7]
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Benefits of Lazy Composition
» NoO need to materialize Q + D as a dense matrix
» Memory efficient for large problems
» Enables matrix-free methods at scale

o Foundation for both direct solvers and iterative methods
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Krylov Subspaces

» Krylov methods are a class of iterative methods that use a sequence of subspaces
» The subspaces are generated by repeated matrix-vector products

.e, given an A and a initial value b we could generate the sequence

b, Ab, A%b, ..., Akb and see

» Note that the only operation we require from our linear operator A is the matrix-vector
product. This is a huge advantage for large problems

» e.g. Krylov method is Conjugate Gradient for posdef A

23 /45
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Conjugate Gradient

» CG method for positive-definite systems, matrix or function form

N_cg = 100

key, subkey = random.split(key)

A_sparse = random.uniform(subkey, (N_cg, N_cg))

key, subkey = random.split(key)

A_sparse = jnp.where(random.uniform(subkey, (N_cg, N_cg)) < 0.1, A_sparse, 0.0)
A_pd = A_sparse @ A_sparse.T + 0.5 * jnp.eye(N_cq)

key, subkey = random.split(key)

b_cg = random.uniform(subkey, (N_cg,))

X_direct = jnp.linalg.solve(A_pd, b_cg)

operator Ix.MatrixLinearOperator(A_pd, tags=1lx.positive_semidefinite_tag)
solver = 1x.CG(rtol=1le-5, atol=le-5, max_steps=1000)

solution = 1x.linear_solve(operator, b_cg, solver)

print(f"cond(A) = {jnp.linalg.cond(A_pd):.2e}, Iterations: {solution.stats['num_steps']}, Error: {jnp.linalg.norm(so

cond(A) = 6.32e+01, Iterations: 32, Error: 2.61le-05
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Benchmarking: CG vs Direct Solve

# Warmup both solvers (JIT compilation happens on first call)
_ = jnp.linalg.solve(A_pd, b_cg).block_until_ready()
_ = 1x.linear_solve(operator, b_cg, solver).value.block_until_ready()

# Direct solve benchmark

start = time.perf_counter()

x_direct = jnp.linalg.solve(A_pd, b_cg)
X_direct.block_until_ready() # Wait for JAX async execution
direct_time = time.perf_counter() - start

# CG solve benchmark

start = time.perf_counter()

solution = 1x.linear_solve(operator, b_cg, solver)
solution.value.block_until_ready()

cg_time = time.perf_counter() - start

print(f"Direct solve: {direct_time*1000:.2f} ms")

print(f"CG solve: {cg_time*1000:.2f} ms")
print(f"Speedup: {direct_time/cg_time:.2f}x")

Direct solve: 2.51 ms
CG solve: 0.45 ms
Speedup: 5.60x

Key insights:

* |terative methods scale better for large sparse systems
» Direct methods may be faster for medium/dense matrices
» Conditioning affects iteration count

-y
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'terative Methods for LLS

» NormalCG (Rader, Lyons, and Kidger 2023) is a Krylov method for solving least squares
via the normal equations

mﬁin IXB = yII* + alIBII*

» Wherea > 0. If @ = 0 then it delivers the ridgeless regression limit, even if
underdetermined

L] 26 /45
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NormalCG Example

M = 1000

N_11ls = 10000

sigma = 0.1

key, subkey = random.split(key)

X_sparse = random.uniform(subkey, (N_1l1ls, M))

key, subkey = random.split(key)

X_sparse = jnp.where(random.uniform(subkey, (N_1l1ls, M)) < 0.1, X_sparse, 0.0)
key, subkey = random.split(key)

beta_true = random.uniform(subkey, (M,))

key, subkey = random.split(key)

y = X_sparse @ beta_true + sigma * random.normal(subkey, (N_11s,))
beta_direct = jnp.linalg.lstsq(X_sparse, y, rcond=None)[0]

operator = 1lx.MatrixLinearOperator(X_sparse)

solver = 1x.NormalCG(rtol=1e-5, atol=le-5, max_steps=1000)

solution = 1x.linear_solve(operator, y, solver)

beta_normalcg = solution.value

print(f"Norm difference: {jnp.linalg.norm(beta_direct - beta_normalcg):.2e}, Iterations: {solution.stats['num_steps'

Norm difference: 1.97e-04, Iterations: 15

! 2 ) 27145
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Benchmarking: Direct vs Iterative LLS

# Warmup both solvers (JIT compilation happens on first call)
_ = jnp.linalg. lstsq(X_sparse, y, rcond=None)[0].block_until_ready()
_ = 1x.linear_solve(operator, y, solver).value.block_until_ready()

# Benchmark direct least squares

start = time.perf_counter()

beta_direct = jnp.linalg.lstsq(X_sparse, y, rcond=None)[0]
beta_direct.block_until ready()

direct_time = time.perf_counter() - start

# Benchmark NormalCG

start = time.perf_counter()

solution = 1x.linear_solve(operator, y, solver)
solution.value.block_until_ready()
normalcg_time = time.perf_counter() - start

print(f"Direct lstsq: {direct_time*1000:.2f} ms")
print(f"NormalCG: {normalcg_time*1000:.2f} ms")
print(f"Speedup: {direct_time/normalcg_time:.2f}x")
print(f"Iterations: {solution.stats['num_steps']}")

Direct lstsq: 1283.48 ms
NormalCG: 127.66 ms
Speedup: 10.05x
Iterations: 15

Trade-offs:

» QOverdetermined systems (N > M): iterative methods shine
e Sparse matrices: memory savings matter

e Accuracy: iterative methods controlled by tolerances
1] 28/ 45
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Matrix-Free LLS

o For LLS, need Xu and XTv products via FunctionLinearOperator

» Lineax automatically computes transposes (no manual adjoints needed!)

def matvec(vec):
return X_sparse @ vec
input_structure = jax.ShapeDtypeStruct((M,), jnp.float32)
X_op = Ilx.FunctionLinearOperator(matvec, input_structure)
solver = 1x.NormalCG(rtol=1e-5, atol=l1le-5, max_steps=1000)
solution = 1x.linear_solve(X_op, Yy, solver)
beta_matvec = solution.value
print(f"Norm diff: {jnp.linalg.norm(beta_direct - beta_matvec):.2e}, Iterations: {solution.stats['num_steps']}")

Norm diff: 7.22e-04, Iterations: 16
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Figenvalue Example

» Steady state of CTMC is solutionto QT -7t = 0

» The 7t left-eigenvector associated with eigenvalue O

N_eig = 4
a=2=0.1
b = 0.05

lower_diag = jnp.full(N_eig-1, b)

main_diag = jnp.concatenate([jnp.array([-a]), jnp.full(N_eig-2, -(a+b)), jnp.array([-b])])
upper_diag = jnp.full(N_eig-1, a)

Q_eig = cola.ops.Tridiagonal(lower_diag, main_diag, upper_diag)

Q_T = cola.ops.Tridiagonal(upper_diag, main_diag, lower_diag)

eigenvalues, eigenvectors = cola.eig(Q_T, k=1, which='SM')

lambda_min = eigenvalues[0].real

phi = eigenvectors[:, 0].real

phi = phi / jnp.sum(phi)

print(f"A_min: {lambda_min:.2e}, Mean(@): {jnp.mean(phi):.6f}, Q.T:\n{Q_T.to_dense()}")

A_min: -2.50e—01, Mean(¢@): 0.250000, Q.T:
[[-0. 0.05 0. 0. ]
0. -0.15 0.05 0. ]
0. 0.1 -0.15 0.05]
0. 0. 0.1 -0.05]]
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Implementing Matrix-Free Operator for Adjoint

def Q_adj_product(x):
first = -a * x[0] + b * x[1]
middle = a * x[:-2] - (a + b) * x[1:-1] + b * x[2:]
last = a * x[-2] - b * x[-1]
return jnp.concatenate([jnp.array([first]), middle, jnp.array([last])])

key, subkey = random.split(key)

X_check = random.uniform(subkey, (N_eig,))

Q_dense = Q_eig.to_dense()

error = jnp.linalg.norm(Q_adj_product(x_check) - Q_dense.T @ x_check)
print(f"Matrix-free error: {error:.2e}")

Matrix-free error: 3.73e-09

L] 321745
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Solving with Matrix-Free Operator

e The FunctionLinearOperator wrapper adds features required for algorithms

# Wrap in Lineax FunctionLinearOperator
input_structure = jax.ShapeDtypeStruct((N_eig,), jnp.float32)
Q_adj_op = 1lx.FunctionLinearOperator(Q_adj_product, input_structure)

# For eigenvalues, we can use CoLA with the dense version

# (CoLA's matrix-free operator support is limited for eigenvalue problems)
Q_dense_T = Q_dense.T

Q_cola = cola.ops.Dense(Q_dense_T)

# Find smallest eigenvalue

eigenvalues_mf, eigenvectors_mf = cola.eig(Q_cola, k=1, which='SM")
lambda_min_mf = eigenvalues_mf[0].real

phi_mf = eigenvectors_mf[:, 0].real

phi_mf = phi_mf / jnp.sum(phi_mf)

print(f"Smallest eigenvalue (matrix-free): {lambda_min_mf:.2e}")
print(f"Mean of eigenvector: {jnp.mean(phi_mf):.6f}")

Smallest eigenvalue (matrix-free): -2.50e-01
Mean of eigenvector: 0.250000
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Changing the Geometry

* In practice, most Krylov methods are preconditioned or else direct methods usually
dominate. Same with large nonlinear systems

As discussed, the key issue for the convergence speed of iterative methods is the
geometry (e.g. condition number of hessian, etc)

Preconditioning changes the geometry. e.g. more like circles or with eigenvalue problems
spread out the eigenvalues of interest

Preconditioners for a matrix A requires art and tradeoffs
Want be relatively cheap to calculate, and must be invertible
Want to have cond(PA) <« cond(A)

/deal preconditioner for Ax = bisP = A since A TAx =x = A7

cond(A™1A) = 1! But that is equivalent to solving problem
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0/
Right-Preconditioning a Linear System

Ax =D
AP'Px =b
APly =1
Px =1y

That is, solve (AP Yy = b for y, and then solve Px = y for x.
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Raw Conjugate Gradient

N_precond = 200

key, subkey = random.split(key)

A_sparse_precond = random.uniform(subkey, (N_precond, N_precond))

key, subkey = random.split(key)

A_sparse_precond = jnp.where(random.uniform(subkey, (N_precond, N_precond)) < 0.1, A_sparse_precond, 0.0)
A_precond = A_sparse_precond @ A_sparse_precond.T + 0.5 * jnp.eye(N_precond)

key, subkey = random.split(key)

b_precond = random.uniform(subkey, (N_precond,))

operator_precond = 1x.MatrixLinearOperator(A_precond, tags=1x.positive_semidefinite_tag)

solver_precond = 1x.CG(rtol=1e-6, atol=1le-6, max_steps=1000)

solution_no_precond = 1x.linear_solve(operator_precond, b_precond, solver_precond)

print(f"cond(A) = {jnp.linalg.cond(A_precond):.2e}, Iterations: {solution_no_precond.stats['num_steps']}")

cond(A) = 2.26e+02, Iterations: 59
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Diagonal Preconditioner

» A simple preconditioner is the diagonal of A
» Cheap to calculate, invertible if diagonal has no zeros
 We precondition by solving D72 AD2(DY2x) = D72}

D_inv_sqgrt = 1.0 / jnp.sqrt(jnp.diag(A_precond))

P_diag = jnp.diag(D_inv_sqrt)

A_precond_system = P_diag @ A_precond @ P_diag

b_precond_system = P_diag @ b_precond

operator_precond_system = 1x.MatrixLinearOperator(A_precond_system, tags=1x.positive_semidefinite_tag)
solution_precond = 1x.linear_solve(operator_precond_system, b_precond_system, solver_precond)
x_precond = P_diag @ solution_precond.value
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Diagonal Preconditioner Results

print(f"Iterations (with diagonal preconditioner): {solution_precond.stats[ 'num_steps']}")
print(f"Reduction: {(1 - solution_precond.stats['num_steps']/solution_no_precond.stats['num_steps'])*100:.1f}%")
print(f"Error: {jnp.linalg.norm(A_precond @ x_precond - b_precond):.2e}")

Iterations (with diagonal preconditioner): 57

Reduction: 3.4%
Error: 1.55e-05
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Benchmarking: Preconditioning Impact

print(f"without preconditioner: {solution_no_precond.stats['num_steps']} iterations")

print(f"with diagonal precond: {solution_precond.stats['num_steps']} iterations")

reduction_pct = (1 - solution_precond.stats['num_steps']/solution_no_precond.stats['num_steps'])*100
print(f"Reduction: {reduction_pct:.1f}%")

print(f"\nCondition numbers:")

print(f"cond(A): {jnp.linalg.cond(A_precond):.2e}")

print(f"cond(P A P): {jnp.linalg.cond(A_precond_system):.2e}")

Without preconditioner: 59 iterations
with diagonal precond: 57 iterations
Reduction: 3.4%

Condition numbers:

cond(A): 2.26e+02
cond(P A P): 2.26e+02

When preconditioning helps:

Poorly conditioned systems (high k)

Multiple solves with same operator

Complex problem structure

Diagonal preconditioning reduces condition number
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Incomplete Factorizations in JAX

 Limitation: Incomplete LU/Cholesky preconditioners are not available in the JAX
ecosystem

» JAX's sparse matrix support is still experimental (jax.experimental.sparse)

» No mature libraries for ILU preconditioners exist for JAX (as of 2026)

Sources: JAX GitHub Discussion #18452, JAX Sparse Documentation
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n /
Other Preconditioners and Alternatives

» Diagonal preconditioners (available in Lineax)

Algebraic multigrid methods - useful for problems with multiple scales (e.qg., discretizing
multiple dimensions in a statespace)

See multigrid methods

Preconditioners for Graph Laplacians: approximate Cholesky decompositions and
combinatorial multigrid

See paper for more

Interface with external libraries (SciPy, PETSc) via callbacks for production use

Julia's IncompletelLU. j1 for comparison
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=
Jacobi Iteration (Educational)

SOR (Successive Over-Relaxation) is more complex to implement functionally in JAX due to
the need for sequential updates. Use Krylov methods instead for better performance. -
Educational implementation of Jacobi iteration using jax. lax.scan

# Use the CTMC example from earlier
A_jacobi = A # From the CTMC example
b_jacobi = r

v_direct_jacobi = v_direct

# Jacobi iteration: xA{k+1} = DA{-1}(b - R x~7k)
def jacobi_step(x, _):
"""Single Jacobi iteration step (functional, no mutation)"""
D_inv = 1.0 / jnp.diag(A_jacobi)
R = A_jacobi - jnp.diag(jnp.diag(A_jacobi))
Xx_new = D_inv * (b_jacobi - R @ Xx)
return x_new, None

# Run 40 iterations using scan

X0 = jnp.zeros(N)

Xx_jacobi, _ = jax.lax.scan(jacobi_step, x0, None, length=40)
error_jacobi = jnp.linalg.norm(x_jacobi - v_direct_jacobi, ord=jnp.inf)

print(f"Error after 40 iterations: {error_jacobi:.Ze}”)"

- - 44 [ 45
Error after 40 iterations: 1.77e-03
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