-y

Introduction to Statistical Learning & Probabilistic Modeling

Machine Learning Fundamentals for Economists

Jesse Perla

jesse.perla@ubc.ca

University of British Columbia

f 1/58

mailto:jesse.perla@ubc.ca
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

miy
Table of contents

e Course Overview and Objectives

Teaser on Generative Al

Statistical Learning and Functional Equations
Representations

Computational Environment
Appendices

f 2/58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Course Overview and Objectives

-y

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

| 0/
Course Qverview

« First half of ECON 622: Computational Economics with Data Science Applications

» This section will cover a light version of important theory and methods from machine
learning

» While we will cover applications, the emphasis will be on providing
mathematical/statistical foundations to

Understand these methods, and know their promises and limitations
Adapt methods used in other disciplines to economic problems

» Want to understand deeply how these relate to classic methods like collocation

2) 4158

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

a7
Textbooks

» All content in lecture notes, but some useful references from Kevin Murphy:

— Murphy (2022) Probabilistic Machine Learning: An Introduction
— Murphy (2023) Probabilistic Machine Learning: Advanced Topics
e See online PDFs and code at https://github.com/probml/pyprobml
» Also see Zhang et al. (2023)

— Provides more applied introduction with code examples in Python

f 5/58

https://probml.github.io/pml-book/book1.html
https://probml.github.io/pml-book/book2.html
https://github.com/probml/pyprobml
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Key Concepts and Topics

 Statistical Learning
Supervised, unsupervised, self-supervised, generative
Regularization and inductive bias

» Representation Learning (and Deep Learning)
Feature learning vs. hand-crafted features
EFmbeddings, geometry, and dimensionality reduction
Transfer learning and reuse of representations

» High-Dimensional Optimization
High-dimensional probability and concentration of measure
'terative and stochastic optimization methods
Differentiation, forward- and reverse-mode autodiff

» Bayesian Methods and Uncertainty Quantiication
6 /58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Teaser on Generative Al

-y

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Google Al Studio and Gemini AP

1. Sign up at aistudio.google.com
e Thereis a free tier with reasonable usage limits

o Later we will look at OpenAl and others

2. Choose 1o “Get APl key” in the sidebar (see here for details)

3. Set GEMINI_API KEY as an environment variable

-y

8/58

https://aistudio.google.com/
https://ai.google.dev/gemini-api/docs/api-key
https://ai.google.dev/gemini-api/docs/api-key#set-api-env-var
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Python Packages

We will showcase a few examples using the Gemini API.

from google import genai

from google.genai import types

from IPython.display import display

from IPython.display import Image as IPImage

L] 9/58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Calling an AP|

model = "gemini-2.0-flash" # or another model
client = genai.Client()

response = client.models.generate_content(
mode l=model,
contents="Describe the concept of generative AI in one sentence."

print(response.text)

Generative AI uses algorithms to create new content, such as text, images, audio, and video, that resembles the data it
was trained on.

L] 10/58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Take 2: Context/Conditioning

response = client.models.generate_content(
mode l=model,
contents="""
You are an expert econometrician. Describe the concept of generative AI in one sentence.

)

print(response.text)

Generative AI refers to a class of machine learning models capable of producing novel, realistic data instances that
resemble a given training dataset, including text, images, audio, and synthetic data useful for econometric
applications.

L] 11 /58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

n s
System Instructions (Persona)

In Gemini, "System Context” is a specific parameter in the configuration, ensuring the model
adheres to the persona throughout the generation.

config = types.GenerateContentConfig(

system_instruction="You are a helpful econometrician who speaks in clear, academic prose."
)
response = client.models.generate_content(

mode l=model,

config=config,

contents="Describe the concept of generative AI in one sentence."

)

print(response.text)

Generative artificial intelligence encompasses algorithms and models capable of producing novel, realistic data
instances that resemble a given training dataset, thereby enabling the creation of new content across various
modalities, such as text, images, and audio.

e For multi-step conversations, see

L] 12 /58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Sampling Images

prompt = """

A comic-book stylized visualization

of mapping to an embedding manifold, showing data
points clustering in lower dimensions."""

response = client.models.generate_content(
model="gemini-2.5-flash-image",
contents=prompt,
config=types.GenerateContentConfig(
response_modalities=["IMAGE"]

Y

VAV \VAVAVAVAVAVAVAVAVA

X
XN

L\

)

generated_img = response.parts[0].as_image()
display(IPImage(data=generated_img.image_bytes,
format="'png'))

L]
v
"
L 1]

<

24l
.%g

] A

: 53

)

e
o
(o]

f 13/58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

. . .];1 /
How is this Possible?
» The dimensionality of everything is enormous

o BIOIEN® | carn how to use these methods for traditional tasks

e.g., classification and digitization as in Dell (2025)

* |s there any benefit for using related methods for solving more traditional economic
problems?

"Solving” functional equations with equilibrium conditions
Estimating structural models

Heterogeneous agent models

causal inference (in second half of course)

* What is it actually doing, and how can we interpret it?

f 14 /58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Statistical Learning and
-quations

-unctional

-y

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Statistical Learning

Statistical learning studies how, given finite samples of random variables drawn from an
underlying joint distribution, we can infer functions or probabilistic models that generalize
beyond the observed sample

 Function (often used for prediction or decision): maps inputs/conditions to outputs.

Examples: regression, classification, policy functions, surrogate mappings for PDE
solution operators.

» Probabilistic model: represents uncertainty by modeling distributions.

Examples: estimating conditional distributions; generative modeling; uncertainty
quantification.

f 16 /58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

n /7
What is Prediction?

» "Predictive’ does not mean "forecasting a time series,” and it does not imply a causal
claim one way or another.

[t means the inferred object can be evaluated in some way on new, unseen realizations
from the same (or a specified) population/joint distribution.

» For solving functional equations, it might mean that it has low residuals/errors on new
states drawn from the same distribution as the training states.

2) 17 /58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Population Distribution

» Observed “data” are realizations from an unknown population (data-generating)
distribution

(x/}/) ™~ ,U*

x € X inputs / features / covariates / states

y € Y targets / labels / dependent variables

As in ML and often in macro: abuse notation so x can be an RV or realization

Typically u* is unknown and only observed through samples

For now, assume p* is fixed (not innocuous, especially in econ applications)
e In supervised learning, one object of interest is the conditional distributiony | x

If solving a functional equation, y may be absent and we consider x ~ u”

f 18 /58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

n /7
Risk Minimization

» Many problems in ML, econometrics, and numerical analysis can be framed as finding a
function f € F (e.g., a function, policy, or operator) such that

= argmm IE(xy) o [f(f x,y)]

=R(f 1)

» One canonical example evaluates the squared error loss of "prediction’
. : B 2
f* = argmin By Iy = FOI5]-

This corresponds to modeling the conditional mean of y | x

f 19/58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Likelihoods and Population MLE

« More generally, f may parameterize a full conditional distribution of y given x

f* = arg IfIél?n IE(x'y)NIJ* [— log IPf(y | X)] .

This is population MLE for the conditional model P ¢(- | x)
Squared-error regression corresponds to a Gaussian likelihood with fixed variance

Discrete-choice/classification corresponds to discrete conditional distributions

» Equivalently, minimizes the expected KL divergence (see [y

B KL(u(y |) [IP4(y | x)),

f 20 /58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

| | 0/
Functional Equations
* In many economic and numerical problems there is no target variable y

* Instead, the goal is to find a function f € ¥ satisfying conditions at each state x
= inlE,. - [€(f,x)].
f* = argmin Ec [((f,)]

The loss measures violations of a functional equation at state x (e.qg., Euler errors)
o If€(f*,x) =0forallx € X, then f* solves the functional equation pointwise
We almost always assume such solutions exist.

Risk minimization relaxes exact solution to an approximate solution in expectation,
which is weaker.

2) 21/58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

=
Learning the f* or u*(y | x)

» Outside of special cases, you cannot evaluate the objective directly.
» Several challenges:

1. The population distribution u* is unknown
2. The function class # may be too rich to optimize over directly
3. There may be (massive) multiplicity of functions which fulfill the objective
* |In practice, we need to
1. Use D = {((x1,y1), -, (xpm, ym))} C X X Y
2. Restrict to a smaller "hypothesis class” H(®) € F with elements fg € H(O)

3. Regularize directly or indirectly to choose among fg

2) 22 /58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Empirical Risk Minimization (ERM)

« Frequently, we will assume IID draws, D ™ u, but this can be relaxed

* The empirical counterpart to arg min fez Iy)~ .- [f(f, X, y)] S

0" = arg min — {(fo,x,
g6®|@|(§@ (fo.xy)

- -

=R(6,D)

Variations: 'reqularization’, auxiliary objectives, constraints
More advanced methods will also consider the sampling process for D

JI0IRI®) Fspecially challenging is when u* (-] £7), i.e., the distribution of future states
In a macro model depends on the underlying policy

f 23 /58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Example: Maximum Likelihood Estimation

» The MLE case uses the negative log-likelihood loss €(f g, x,y) = —log Po(y | x)

» The ERM objective becomes

1

0" = arg min — —log IP | x
5 e 1D (x,yz);z)[gIPo(y)]

Common variations add regularization terms such as LASSO:

1

0" = arg min — —logPo(y | x)|+ A||O|]
5%oe0 D (x,yé@[gPoy |)] !

This may introduce bias since it no longer is the empirical version of the population
MLE, but it may lead to better approximation on f* outside of D.

2) 24 /58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

. a J/
Special Cases of MLE
» Regression v | x ~ N(fg(x),0%) = least squares
» Classification: y € {1, ..., K} with multinomial logit. See Zhang et al. (2023, sec. 4.1)

"Softmax” in ML is just multinomial logit in econometrics

Could be others (e.g., probit) but softmax is computationally convenient and has nie
information theoretic properties

Denote fo(x)r as the k-th element of the output vector then

exp(fo(xX)k)

=k | x) = sof =
Py (y | x) = softmax(fg(x))x E]’K:l exp(f@(x)]-)

f 25/58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Example: Functional Equations

 Recall With x € X, population risk minimization is arg min fer By [f(f, x)]

» Then the empirical problem is

0" = arg%mél ﬁ z t(fo,x)

Typically there is interpolation and €(f e+, x) = 0 for allx € D

Nests collocation-style methods for solving functional equations

f 26 / 58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0 7
High-Dimensional Optimization
o How can we optimize this in practice for
— high dimensional X
~ large [D|
— high-dimensional 6
— complicated £(-) and fg
~ e.qg, stochastic optimization and iterative methods
. How can we get gradients for optimization methods?

— eg, V@g(f@/xly)
— Automatic differentiation (autodiff)

L] 27 /58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Clarity on our Goal

» The optimization problem is a means-to-and-end:

Want an fg- such that R(fg-, u*) is as close to R(f*, u*) as possible

Solving ERM accurately is neither necessary nor sufficient for this purpose
 BROIR®] How well does a fg- approximate the population risk minimizer?

 Crucially, this is not the same goal as minimizing the uniform error

' t(f,x,y)|.
TRy [0)

For low dimensional (x, y) this may be possible, but..

f 28 /58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Population vs. Empirical Risk

Population Risk Empirical Risk
f*=argminEq).+ | C(f,x,y) £ _ 1
feF y #[J v, argrgelg Di Z (fo,x,y)
~~ (x,y)ED
=R(1) -)
=R(6,D)

» Two separate sources of approximation error here (the bias-variance tradeoff):
1. Approximation error ¢, (i.€. bias): fg- € H(®) may not be able to represent f*

2. Generalization error ¢, (i.€. variance): Finite sample size of D id u’

f 29 /58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

N i
Error Decomposition

» Abuse notation and decompose following Bottou and Bousquet (2007), Murphy (2022)

E i, [fggg R(0, D) - min R(f, 1) | = lj(f o st)~R(f",u7) +]E@iigw[R(@ D)-R(fo-u1")]

-

Eeapp(fe*) Eege:lr(fQ*)

o BRGIR®] \odern ML shows we can often reduce both

Will discuss the double-descent literature

Punchline: simplicity leads to better generalization, but # parameters is poor
heuristic for simplicity

* With a very flexible H(®) such as neural networks often €app(fo+) = 0

e Then erroris €gen(f9*) ~]A{(Q*’Z)) — f{(@*l Diest) given new samples Diest iid ut

f 30/58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

-y

Out-of-Sample vs. Qut-of-Distribution

* Having a low R(G*, P) is a means to an end, especially if D is measure zeroin X

Uniform errors (i.e., worst case x € X) are usually impossible with higher dimensions

Out-of-Sample: consider Diest id u

Small egen(f o) Means it generalizes well in-distribution

Out-of-Distribution: consider D ~ uj but Diegt ~ U5

If this generalizes well for reasonable i, which are not too far from uy, we say it
generalizes well out-of-distribution.

JOR(® Robustness to distribution-shift is a major concern in practice

e.g., if we solve a macro model with D generated from one discount factor, can we
use the same samples to fit another?

31/58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

rRepresentations

-y

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Dimensionality with LLMs

» Consider the scale of generalization in modern deep learning

» Generative Pretrained Transformers (GPTs) approximate the conditional distribution of
the next token

P [xT+1 | XTy /xl]

 Given a sequence xy, ..., x7 of discrete random variables (tokens)

o Fit with variations on MLE over massive text corpora

f 33/58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

N/
LM Scale

o Frontier LLMs circa 2025: of K = 100,000, context windows of T = 1-2 million

» GPT-4 class models: |O| = 1-2 trillion parameters approximating

IP: {1, ,K}T+1 N [0,1], KT+1 ~ (105)106 — 105><106

Trained on = 10-15 trillion tokens of text data

A tiny amount of data relative to the size of the function being approximated
» Paraphrasing Belkin (2023): like reconstructing an entire library from a molecule of ink

» They cannot possibly work on the entire space, or directly estimate IP as a table

f 34 /58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Transformations of the Input

 Could approximate a function f(x) with a "shallow” approximation, e.g. polynomials of x.
Alternatively, nest functions h(-) and ¢(-)

f() = h($(x))

First, the ¢(x) will transform the state into something more amenable for the
downstream task (e.qg. prediction, classification, etc.)

Or, could include a fixed basis such as orthogonal polynomials

Then the h(-) maps that transformed state into the output.

* "Finding the State is an Art”

f 35/58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0 7
some ML Terminology
» With h(¢(x)) they will often call these
h(-) the head or output layer
¢(-) the feature map, encoder, or sometimes the backbone
 The representation ¢(x) is because it is often reused for multiple tasks
Swap the "head” h(-) but use the same ¢(x) - which is transferred
Often ¢ does not require re-estimated/learning and can be fixed

 Foundation models: a good ¢ () learned from a variety of different data sources that can
be reused for many tasks

f 36 /58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

3 7/
Latent State/Representation
* The ¢ : X — Z maps the original state x € X into a latent representation

Z is often lower-dimensional than X, but might be higher-dimensional

f it has a interpretable norm, then often call it an embedding

 Thenh : Z — Y maps from the latent representation to the output

» Feature Engineering (i.e, ‘finding the state is an art”):

Design ¢(-) by hand (e.g., take means, logs, first-differences)

f 37158

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

s
Notation for Parameters

» In many cases within ML there will be a collection of parameters for various parts of the
functions

» We will denote the collection of all parameters as 8 € ©, where functions may only use a
subset of those parameters

e.g., ¢g(x) and hg(z) may use non-overlapping subsets of 6, or share them.
» This will become especially important when we consider gradients and optimization
[N some cases we may ‘freeze” the 6, in 6 = {64, 85} and only optimize over 64

* In cases where a function does not have any parameters we might ‘learn” (i.e., optimize
over) we will drop the subscript

f 38 /58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Example: Polynomial Basis

» Suppose x € R and we want to approximate f(x) with a polynomial of degree d

» For some polynomial basis T1(x), ..., T4(x) (e.g., monomials, Chebyshev, Legendre, etc.)

o(x)=[1 Ti(x) Ta(x) - Ta()]"

Note that there are no “learned” parameters!
» Approximate fg(x) with hg(z) = W Tz, where W € R*! and W € 0

d
for) = W) = Y WiTi(x)
=0

f 39/58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Example: Discrete-valued Probability Distributions

» Recall cases of Po(y =k | x) fork € {1, ..., K}

» Stack the into a vector using softmax : R* — R* and pointwise exp(-)

exp(z)
17 exp(z)

softmax(z) = e RX, where 1"softmax(z) =1

» Nesting the transformations with ¢ : X — R and head hg : RF — RX

Po(y | x) = ho(Po(x)) € R*

$g : X = REis a nonlinear feature map to the latent space
ho(z) = softmax(Wz), where W € R** is part of 0

f 40/ 58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Example: Functional Equations

» Recall ERM was arg mingeg Ilﬁl Yiven t(fo,x)

 Traditionally: use "shallow” approximation such as Chebyshev polynomials
e, for fo(x) = WTox)withp(x) =[1 To(x) -+ Tu(x)] onagridDc X
« Alternatively: change of variables to a better latent representation

fo(x) = ho(po(x))

With ¢g : X — R finding an efficient latent representation, and hg : RF — Y
These could be constructed (e.g., homotheticity) or “learned’

Interpret ¢g(-) as an adaptive basis (see Wilson (2025))

2) 41 /58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Example: LLMs/ Transformers

» LLMs roughly build a latent representation ¢(-) and h(-)

Po(y | x) = ho(da(x)) € R®

¢ encodes the context [x; ... xr]intoa latent vectorz e RE
Design of ¢g(+) with LLMs uses the transformer architecture
ho(z) = softmax(Wz) with W € R¥*E

Output is the K simplex, Ax = {p € RX : Zle px = 1} (probability distributions over
K values)

 Once learned, ¢g(-) is useful for downstream tasks: embeddings, imputation,
classification, etc.

42 /58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

iy
Learning Representations

e Instead of hand-crafting ¢¢(:), we can learn it from data

» BIOIRN®] This process is called representation learning

» Good representations:
Capture essential characteristics of the data
Discard irrelevant information (compression/denoising)
Orthogonalize sources of variation (disentanglement)

» Once learned, ¢g(-) is often reusable for multiple downstream tasks by fixing the 0

f 43 /58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Depth and Representation Learning

» The mapping to outputs h(-) is often “shallow” (e.g., linear or low-order polynomial)

e In contrast, the transformation ¢(-) into representation space is usually "deep’

P=Qro-od

» As data becomes richer, unstructured, and higher-dimensional, transformations become
harder to design manually

» BEOIRI® Neural networks compose simple nonlinear functions to learn complicated
transformations

Depth leads to a combinatorial explosion in representational capacity

f 44] 58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Representation Learning (Visual)

prompt = """
A stylized illustration of representation learning as a
smooth change of variables: a tangled, high-dimensional
data manifold being unfolded into a flat, low-dimension
coordinate system. The left side shows intertwined curv
and knots; the right side shows clean, orthogonal axes
with separated clusters. Etching / wood-cut / scientifi
engraving style, high contrast, minimal color palette."
response = client.models.generate_content(
model="gemini-2.5-flash-image",
contents=prompt,
config=types.GenerateContentConfig(
response_modalities=["IMAGE"]

)

generated_img = response.parts[0].as_image()
display(IPImage(data=generated_img.image_bytes,
format="'png'))

Representation Learning:
Unfolding Data Manifolds

L] 45/ 58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Representation Learning 2

prompt = """
An artistic visualization of representation learning
where entangled threads of data are transformed into
independent latent factors. On the left, a dense braid
of overlapping fibers; on the right, parallel strands
aligned along clear axes. Emphasize symmetry, order,
and factorization. Rendered in a vintage wood-engraving
or linocut style."""
response = client.models.generate_content(
model="gemini-2.5-flash-image",
contents=prompt,
config=types.GenerateContentConfig(
response_modalities=["IMAGE"]

)

generated_img = response.parts[0].as_image()
display(IPImage(data=generated_img.image_bytes,
format="'png'))

-y

46/ 58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

s
Representation Learning 3

prompt = """

A visual metaphor for representation learning as
information compression: raw, noisy data clouds
are compressed through a narrow bottleneck into
a compact latent space that preserves structure.
Before-and-after panels. Use engraved, chalkboard,
or woodcut academic illustration style."""

response = client.models.generate_content(‘ _ .

model="gemini-2.5-flash-image", S @ ; COMPRESSION

contents=prompt, ! : yia

config=types.GenerateContentConfig(
response_modalities=["IMAGE"]

RAW DATA LATENT SPACE

)

generated_img = response.parts[0].as_image()
display(IPImage(data=generated_img.image_bytes,
format="png'))

2) 47 /58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Representation Learning 4

© 00 N O o~ WODN PR

T O O
N~ o 0N ®WNRO

prompt = """
A two-panel educational illustration explaining
representation learning. Left panel: high-dimensional,
entangled observations with overlapping features. Right
panel: low-dimensional latent representation with
disentangled, interpretable axes. Clean academic diagra
style with subtle wood-engraving texture."""
response = client.models.generate_content(
model="gemini-2.5-flash-image",
contents=prompt,
config=types.GenerateContentConfig(
response_modalities=["IMAGE"]

)

generated_img = response.parts[0].as_image()
display(IPImage(data=generated_img.image_bytes,
format="'png'))

HIGH-DIMENSINAL,
ENTAINGLED
OBSERVATIONS

E

¢ CEHE

INTERPRETABLE

Shape Type cp
(Cube, Pymarid) 4

Color

- Red, (Blue,
Pymain)

LOW-DIMENSINAL,
DISENTANGLED LATENT
REPRESNTATION

-y

48 / 58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Computational

-Nvironment

-y

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

7
Programming Languages
* Python
"Raw” Numpy/skit-learn/etc.
Torch, JAX, etc.
» Julia

* In this half we will focus on Python, but Julia has advantages in other areas.

f 50 /58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Summary of Python Installation

See here for more details.

1. Install git
2. Install VS Code

3. Install uv from terminal:

e MacOS or Linux: curl -sSfL https://raw.githubusercontent.com/astral-
sh/uv/main/install.sh | sh

e Windows: powershell -c "irm https://astral.sh/uv/install.psl | more"
from powershell terminal

f 51/58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/pages/python_setup.html
https://git-scm.com/downloads
https://code.visualstudio.com/
https://github.com/astral-sh/uv
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Clone Notebooks and Install Packages

1. Open the command palette with <Ctr 1+Shift+P> or <Cmd+Shift+P> on mac and type >
Git: Clone and choose https://github.com/jlperla/grad_econ_ML_notebooks
2. In VS Code terminal in that repo, uv sync

3. Then use VS Code to open any of the notebooks in that folder

f 52 /58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Summary of Julia Installation

See here for more details.

1. Install Git
2. Install VS Code
3. Install Julia following the Juliaup instructions

e Windows: winget install julia -s msstoreinaterminal

e Linux/Mac: curl -fsSL https://install.julialang.org | shinaterminal

4. |Install the VS Code Julia extension

f 53/58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/pages/julia_setup.html
https://git-scm.com/install/
https://code.visualstudio.com/
https://github.com/JuliaLang/juliaup#installation
https://marketplace.visualstudio.com/items?itemName=julialang.language-julia
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Clone Notebooks and Install Packages

1. Open the command palette with <Ctr 1+Shift+P> or <Cmd+Shift+P> on mac and type >
Git: Clone and choose https://github.com/jlperla/grad_econ_ML_notebooks
2. Instantiate packages by running VS Code terminal
e] instantiate, where] enters package mode

3. Then use VS Code to open any of the notebooks in that folder

Note: the same cloned repo can work for both Julia and Python

L] 54 /58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Appendices

-y

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

=
Multi-step Conversations (Chat)

Useclient.chats.create() to manage state. The chat object automatically tracks history
SO you don't have to pass it back manually.

chat client.chats.create(model=model, config=config)

resi chat.send_message('"Describe the concept of generative AI in one sentence.'")
print(f"Step 1: {resl.text}\n")

Contextual follow-up

res2 = chat.send_message("Explain in one sentence how that relates to sampling from probability distributions.")
print(f"Step 2: {res2.text}")

Step 1: Generative artificial intelligence refers to a class of algorithms capable of generating novel, realistic, and
often complex data instances that resemble a training dataset, effectively learning the underlying distribution of that
data and sampling from it to create new content.

Step 2: Generative AI models, having learned the probability distribution of the training data, function by effectively
drawing samples from this learned distribution to create new data instances.

56 /58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

=
Population MLE and KL Divergence

 Let u*(y | x) denote the true conditional distribution, and IP¢(y | x) the model-implied
conditional distribution

» Take the the expected negative log-likelihood, condition on x and use the LIE
Egpyi [~ 108 Ps(y |)] = Exeyr [Eympecin [~ log Ps(y | 0)]].

» Add and subtract log u*(y | x) inside the inner expectation

1 (ylx) .
= IEXNW[]EyN#*(.m |log Py %)] -+ lEyww(.m[—logy (ylx)]]
T KL P o) does not depend on f

» Therefore, minimizing expected log-loss is equivalent to minimizing KL

]E(x,y)~u* [_ log IPf(y | x)] -]Ex’“ﬁ‘* H<L(u*(y | x) | IPf(}/ | x))] + constant. 57 /58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Iy
References

Belkin, Mikhail. 2023. “Copernicus, Darwin and chatGPT.” September 2023. https://mishabelkin.substack.com/p/copernicus-
darwin-and-chatgpt.

Bottou, Léon, and Olivier Bousquet. 2007. “The Tradeoffs of Large Scale Learning.” Advances in Neural Information Processing

Systems 20.
Dell, Melissa. 2025. “Deep Learning for Economists.” Journal of Economic Literature 63 (1): 5—58.

https://doi.org/10.1257/jel.20241733.

Murphy, Kevin P. 2022. Probabilistic Machine Learning: An Introduction. Adaptive Computation and Machine Learning. MIT
Press. https://github.com/probml/pml-book.

———.2023. Probabilistic Machine Learning: Advanced Topics. Adaptive Computation and Machine Learning. MIT Press.
https://github.com/probml/pml-book.

Wilson, Andrew Gordon. 2025. “Deep Learning Is Not so Mysterious or Different.” https://arxiv.org/abs/2503.02113.

Zhang, Aston, Zachary C. Lipton, Mu Li, and Alexander J. Smola. 2023. Dive into Deep Learning. 1st ed. Cambridge University
Press.

f 58 /58

https://mishabelkin.substack.com/p/copernicus-darwin-and-chatgpt
https://mishabelkin.substack.com/p/copernicus-darwin-and-chatgpt
https://doi.org/10.1257/jel.20241733
https://github.com/probml/pml-book
https://github.com/probml/pml-book
https://arxiv.org/abs/2503.02113
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

