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Course Overview and Objectives
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Course Overview

First half of ECON 622: Computational Economics with Data Science Applications

This section will cover a light version of important theory and methods from machine

learning

While we will cover applications, the emphasis will be on providing

mathematical/statistical foundations to

→ Understand these methods, and know their promises and limitations

→ Adapt methods used in other disciplines to economic problems

Want to understand deeply how these relate to classic methods like collocation
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Textbooks

All content in lecture notes, but some useful references from Kevin Murphy:

→ Murphy ( )

→ Murphy ( )

See online PDFs and code at 

Also see Zhang et al. ( )

→ Provides more applied introduction with code examples in Python

2022 Probabilistic Machine Learning: An Introduction

2023 Probabilistic Machine Learning: Advanced Topics

https://github.com/probml/pyprobml

2023
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Key Concepts and Topics

Statistical Learning

→ Supervised, unsupervised, self-supervised, generative

→ Regularization and inductive bias

Representation Learning (and Deep Learning)

→ Feature learning vs. hand-crafted features

→ Embeddings, geometry, and dimensionality reduction

→ Transfer learning and reuse of representations

High-Dimensional Optimization

→ High-dimensional probability and concentration of measure

→ Iterative and stochastic optimization methods

→ Differentiation, forward- and reverse-mode autodiff

Bayesian Methods and Uncertainty Quantification
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Teaser on Generative AI
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Google AI Studio and Gemini API

1. Sign up at 

There is a free tier with reasonable usage limits

Later we will look at OpenAI and others

2. Choose to “Get API key” in the sidebar (see  for details)

3. Set GEMINI_API_KEY as an 

aistudio.google.com

here

environment variable
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Python Packages

We will showcase a few examples using the Gemini API.

from google import genai1
from google.genai import types2
from IPython.display import display3
from IPython.display import Image as IPImage4
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Calling an API
model = "gemini-2.0-flash"  # or another model1
client = genai.Client()2

3
response = client.models.generate_content(4
    model=model,5
    contents="Describe the concept of generative AI in one sentence."6
)7

8
print(response.text)9

Generative AI uses algorithms to create new content, such as text, images, audio, and video, that resembles the data it 
was trained on.
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Take 2: Context/Conditioning
response = client.models.generate_content(1
    model=model,2
    contents="""3
  You are an expert econometrician. Describe the concept of generative AI in one sentence.4
    """5
)6
print(response.text)7

Generative AI refers to a class of machine learning models capable of producing novel, realistic data instances that 
resemble a given training dataset, including text, images, audio, and synthetic data useful for econometric 
applications.
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System Instructions (Persona)

In Gemini, “System Context” is a specific parameter in the configuration, ensuring the model

adheres to the persona throughout the generation.

For multi-step conversations, see 

config = types.GenerateContentConfig(1
    system_instruction="You are a helpful econometrician who speaks in clear, academic prose."2
)3
response = client.models.generate_content(4
    model=model,5
    config=config,6
    contents="Describe the concept of generative AI in one sentence."7
)8
print(response.text)9

Generative artificial intelligence encompasses algorithms and models capable of producing novel, realistic data 
instances that resemble a given training dataset, thereby enabling the creation of new content across various 
modalities, such as text, images, and audio.

▶ Chat Example

 12 / 58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html


Sampling Images
prompt = """1
A comic-book stylized visualization2
of mapping to an embedding manifold, showing data3
points clustering in lower dimensions."""4

5
response = client.models.generate_content(6
    model="gemini-2.5-flash-image",7
    contents=prompt,8
    config=types.GenerateContentConfig(9
        response_modalities=["IMAGE"]10
    )11
)12
generated_img = response.parts[0].as_image()13
display(IPImage(data=generated_img.image_bytes,14
format='png'))15
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How is this Possible?

The dimensionality of everything is enormous

TOPIC  Learn how to use these methods for traditional tasks

→ e.g., classification and digitization as in Dell ( )

Is there any benefit for using related methods for solving more traditional economic

problems?

→ “Solving” functional equations with equilibrium conditions

→ Estimating structural models

→ Heterogeneous agent models

→ causal inference (in second half of course)

What is it actually doing, and how can we interpret it?

2025
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Statistical Learning and Functional
Equations
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Statistical Learning

Statistical learning studies how, given finite samples of random variables drawn from an

underlying joint distribution, we can infer functions or probabilistic models that generalize

beyond the observed sample

Function (often used for prediction or decision): maps inputs/conditions to outputs.

→ Examples: regression, classification, policy functions, surrogate mappings for PDE

solution operators.

Probabilistic model: represents uncertainty by modeling distributions.

→ Examples: estimating conditional distributions; generative modeling; uncertainty

quantification.
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What is Prediction?

“Predictive” does not mean “forecasting a time series,” and it does not imply a causal

claim one way or another.

It means the inferred object can be evaluated in some way on new, unseen realizations

from the same (or a specified) population/joint distribution.

For solving functional equations, it might mean that it has low residuals/errors on new

states drawn from the same distribution as the training states.
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Population Distribution

Observed “data” are realizations from an unknown population (data-generating)

distribution

→ : inputs / features / covariates / states

→ : targets / labels / dependent variables

→ As in ML and often in macro: abuse notation so  can be an RV or realization

→ Typically  is unknown and only observed through samples

→ For now, assume  is fixed (not innocuous, especially in econ applications)

In supervised learning, one object of interest is the conditional distribution 

→ If solving a functional equation,  may be absent and we consider 

(𝑥, 𝑦) ∼ 𝜇
∗

𝑥 ∈ X

𝑦 ∈ Y

𝑥

𝜇∗

𝜇∗

𝑦 ∣ 𝑥

𝑦 𝑥 ∼ 𝜇∗
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Risk Minimization

Many problems in ML, econometrics, and numerical analysis can be framed as finding a

function  (e.g., a function, policy, or operator) such that

One canonical example evaluates the squared error loss of “prediction”

→ This corresponds to modeling the conditional mean of 

𝑓 ∈ F

𝑓∗ = argmin
𝑓∈F

𝔼(𝑥,𝑦)∼𝜇∗[ℓ(𝑓,𝑥,𝑦)]
  φφφφφφφφφφ φφφφφφφφφφ

≡𝑅(𝑓,𝜇∗)

.

𝑓∗ = argmin
𝑓∈F

𝔼(𝑥,𝑦)∼𝜇∗ [‖𝑦 − 𝑓(𝑥)‖22] .

𝑦 ∣ 𝑥
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Likelihoods and Population MLE

More generally,  may parameterize a full conditional distribution of  given 

→ This is population MLE for the conditional model 

→ Squared-error regression corresponds to a Gaussian likelihood with fixed variance

→ Discrete-choice/classification corresponds to discrete conditional distributions

Equivalently, minimizes the expected KL divergence (see )

𝑓 𝑦 𝑥

𝑓∗ = argmin
𝑓∈F

𝔼(𝑥,𝑦)∼𝜇∗ [− logℙ𝑓(𝑦 ∣ 𝑥)] .

ℙ𝑓(⋅ ∣ 𝑥)

▶ KL Divergence

𝔼𝑥∼𝜇∗KL(𝜇∗(𝑦 ∣ 𝑥) ‖ℙ𝑓(𝑦 ∣ 𝑥)) ,
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Functional Equations

In many economic and numerical problems there is no target variable 

Instead, the goal is to find a function  satisfying conditions at each state 

→ The loss measures violations of a functional equation at state  (e.g., Euler errors)

If  for all , then  solves the functional equation pointwise

→ We almost always assume such solutions exist.

→ Risk minimization relaxes exact solution to an approximate solution in expectation,

which is weaker.

𝑦

𝑓 ∈ F 𝑥

𝑓∗ = argmin
𝑓∈F

𝔼𝑥∼𝜇∗ [ℓ(𝑓, 𝑥)] .

𝑥

ℓ(𝑓∗, 𝑥) = 0 𝑥 ∈ X 𝑓∗
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Learning the  or 

Outside of special cases, you cannot evaluate the objective directly.

Several challenges:

1. The population distribution  is unknown

2. The function class  may be too rich to optimize over directly

3. There may be (massive) multiplicity of functions which fulfill the objective

In practice, we need to

1. Use 

2. Restrict to a smaller “hypothesis class”  with elements 

3. Regularize directly or indirectly to choose among 

𝑓∗ 𝜇∗(𝑦 ∣ 𝑥)

𝜇∗

F

D ≡ {((𝑥1, 𝑦1), … , (𝑥𝑀, 𝑦𝑀))} ⊂ X ×Y

H(Θ) ⊆ F 𝑓𝜃 ∈ H(Θ)

𝑓𝜃
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Empirical Risk Minimization (ERM)

Frequently, we will assume IID draws, , but this can be relaxed

The empirical counterpart to  is

→ Variations: “regularization”, auxiliary objectives, constraints

→ More advanced methods will also consider the sampling process for 

→ TOPIC  Especially challenging is when , i.e., the distribution of future states

in a macro model depends on the underlying policy

D
iid
∼ 𝜇∗

argmin𝑓∈F 𝔼(𝑥,𝑦)∼𝜇∗ [ℓ(𝑓, 𝑥, 𝑦)]

𝜃∗
≡ argmin

𝜃∈Θ

1

|D|
∑

(𝑥,𝑦)∈D

ℓ(𝑓𝜃,𝑥,𝑦)

  φφφφφφφφφφφ φφφφφφφφφφφ

≡𝑅̂(𝜃,D)

D

𝜇∗(⋅ | 𝑓∗)
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Example: Maximum Likelihood Estimation

The MLE case uses the negative log-likelihood loss 

The ERM objective becomes

→ Common variations add regularization terms such as LASSO:

→ This may introduce bias since it no longer is the empirical version of the population

MLE, but it may lead to better approximation on  outside of .

ℓ(𝑓𝜃, 𝑥, 𝑦) = − logℙ𝜃(𝑦 ∣ 𝑥)

𝜃∗ = argmin
𝜃∈Θ

1

|D|
∑

(𝑥,𝑦)∈D

[− logℙ𝜃(𝑦 ∣ 𝑥)]

𝜃∗ = argmin
𝜃∈Θ

1

|D|
∑

(𝑥,𝑦)∈D

[− logℙ𝜃(𝑦 ∣ 𝑥)] + 𝜆‖𝜃‖1

𝑓∗ D
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Special Cases of MLE

Regression:  least squares

Classification:  with multinomial logit. See Zhang et al. ( )

→ “Softmax” in ML is just multinomial logit in econometrics

→ Could be others (e.g., probit) but softmax is computationally convenient and has nie

information theoretic properties

→ Denote  as the -th element of the output vector then

𝑦 ∣ 𝑥 ∼ N(𝑓𝜃(𝑥), 𝜎
2)⇒

𝑦 ∈ {1, … ,𝐾} 2023, sec. 4.1

𝑓𝜃(𝑥)𝑘 𝑘

ℙ𝜃(𝑦 = 𝑘 ∣ 𝑥) = softmax(𝑓𝜃(𝑥))𝑘 ≡
exp(𝑓𝜃(𝑥)𝑘)

∑𝐾
𝑗=1 exp(𝑓𝜃(𝑥)𝑗)
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Example: Functional Equations

Recall With , population risk minimization is 

Then the empirical problem is

→ Typically there is interpolation and  for all 

→ Nests collocation-style methods for solving functional equations

𝑥 ∈ X argmin𝑓∈F 𝔼𝑥∼𝜇∗ [ℓ(𝑓, 𝑥)]

𝜃∗ = argmin
𝜃∈Θ

1

|D|
∑
𝑥∈D

ℓ(𝑓𝜃, 𝑥)

ℓ(𝑓𝜃∗ , 𝑥) ≈ 0 𝑥 ∈ D
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High-Dimensional Optimization

TOPIC  How can we optimize this in practice for

→ high dimensional 

→ large 

→ high-dimensional 

→ complicated  and 

→ e.g., stochastic optimization and iterative methods

TOPIC  How can we get gradients for optimization methods?

→ e.g., 

→ Automatic differentiation (autodiff)

X

|D|

𝜃

ℓ(⋅) 𝑓𝜃

∇𝜃ℓ(𝑓𝜃, 𝑥, 𝑦)
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Clarity on our Goal

The optimization problem is a means-to-and-end:

→ Want an  such that  is as close to  as possible

→ Solving ERM accurately is neither necessary nor sufficient for this purpose

TOPIC  How well does a  approximate the population risk minimizer?

Crucially, this is not the same goal as minimizing the uniform error

→ For low dimensional  this may be possible, but…

𝑓𝜃∗ 𝑅(𝑓𝜃∗ ,𝜇∗) 𝑅(𝑓∗,𝜇∗)

𝑓𝜃∗

argmin
𝑓∈F

max
(𝑥,𝑦)∈X×Y

[ℓ(𝑓, 𝑥, 𝑦)] .

(𝑥, 𝑦)
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Population vs. Empirical Risk

Population Risk Empirical Risk

Two separate sources of approximation error here (the bias-variance tradeoff):

1. Approximation error  (i.e. bias):  may not be able to represent 

2. Generalization error  (i.e. variance): Finite sample size of 

𝑓∗ = argmin
𝑓∈F

𝔼(𝑥,𝑦)∼𝜇∗[ℓ(𝑓,𝑥,𝑦)]
  φφφφφφφφφφ φφφφφφφφφφ

≡𝑅(𝑓,𝜇∗)

𝜃∗ = argmin
𝜃∈Θ

1

|D|
∑

(𝑥,𝑦)∈D

ℓ(𝑓𝜃,𝑥,𝑦)

  φφφφφφφφφφφ φφφφφφφφφφφ

≡𝑅̂(𝜃,D)

𝜀app 𝑓𝜃∗ ∈ H(Θ) 𝑓∗

𝜀gen D
iid
∼ 𝜇∗
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Error Decomposition

Abuse notation and decompose following Bottou and Bousquet ( ), Murphy ( )

TOPIC  Modern ML shows we can often reduce both

→ Will discuss the double-descent literature

→ Punchline: simplicity leads to better generalization, but # parameters is poor

heuristic for simplicity

With a very flexible  such as neural networks often 

Then error is  given new samples 

2007 2022

𝔼
D

iid
∼𝜇∗ [min

𝜃∈Θ
𝑅̂(𝜃,D) −min

𝑓∈F
𝑅(𝑓,𝜇∗)] = 𝑅(𝑓𝜃∗ ,𝜇

∗)−𝑅(𝑓∗,𝜇∗)
  φφφφφφφφφφφ φφφφφφφφφφφ

≡𝜀app(𝑓𝜃∗)

+𝔼
D

iid
∼𝜇∗

[𝑅̂(𝜃∗,D)−𝑅(𝑓𝜃∗ ,𝜇
∗)]

  φφφφφφφφφφφφφφφφφ φφφφφφφφφφφφφφφφφ

≡𝜀gen(𝑓𝜃∗)

H(Θ) 𝜀app(𝑓𝜃∗) ≈ 0

𝜀gen(𝑓𝜃∗) ≈ 𝑅̂(𝜃∗,D) − 𝑅̂(𝜃∗,Dtest) Dtest
iid
∼ 𝜇∗
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Out-of-Sample vs. Out-of-Distribution

Having a low  is a means to an end, especially if  is measure zero in 

Uniform errors (i.e., worst case ) are usually impossible with higher dimensions

Out-of-Sample: consider 

→ Small  means it generalizes well in-distribution

Out-of-Distribution: consider  but 

→ If this generalizes well for reasonable  which are not too far from , we say it

generalizes well out-of-distribution.

TOPIC  Robustness to distribution-shift is a major concern in practice

→ e.g., if we solve a macro model with  generated from one discount factor, can we

use the same samples to fit another?

𝑅̂(𝜃∗,D) D X

𝑥 ∈ X

Dtest
iid
∼ 𝜇∗

𝜀gen(𝑓𝜃∗)

D ∼ 𝜇∗

1 Dtest ∼ 𝜇∗

2

𝜇∗

2 𝜇∗

1

D
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Representations
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Dimensionality with LLMs

Consider the scale of generalization in modern deep learning

Generative Pretrained Transformers (GPTs) approximate the conditional distribution of

the next token

Given a sequence  of discrete random variables (tokens)

Fit with variations on MLE over massive text corpora

ℙ [𝑥𝑇+1 | 𝑥𝑇, … , 𝑥1]

𝑥1, … , 𝑥𝑇
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LLM Scale

Frontier LLMs circa 2025: of , context windows of  million

GPT-4 class models:  trillion parameters approximating

→ Trained on  trillion tokens of text data

→ A tiny amount of data relative to the size of the function being approximated

Paraphrasing Belkin ( ): like reconstructing an entire library from a molecule of ink

They cannot possibly work on the entire space, or directly estimate  as a table

𝐾 ≈ 100,000 𝑇 ≈ 1−2

|Θ| ≈ 1−2

ℙ : {1, … ,𝐾}𝑇+1 → [0, 1], 𝐾
𝑇+1

≈ (105)10
6

= 105×106

≈ 10−15

2023

ℙ

 34 / 58

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html


Transformations of the Input

Could approximate a function  with a “shallow” approximation, e.g. polynomials of .

Alternatively, nest functions  and 

→ First, the  will transform the state into something more amenable for the

downstream task (e.g. prediction, classification, etc.)

→ Or, could include a fixed basis such as orthogonal polynomials

→ Then the  maps that transformed state into the output.

“Finding the State is an Art”

𝑓(𝑥) 𝑥

ℎ(⋅) 𝜙(⋅)

𝑓(𝑥) ≈ ℎ(𝜙(𝑥))

𝜙(𝑥)

ℎ(⋅)
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Some ML Terminology

With  they will often call these

→  the head or output layer

→  the feature map, encoder, or sometimes the backbone

The representation  is because it is often reused for multiple tasks

→ Swap the “head”  but use the same  - which is transferred

→ Often  does not require re-estimated/learning and can be fixed

Foundation models: a good  learned from a variety of different data sources that can

be reused for many tasks

ℎ(𝜙(𝑥))

ℎ(⋅)

𝜙(⋅)

𝜙(𝑥)

ℎ(⋅) 𝜙(𝑥)

𝜙

𝜙(⋅)
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Latent State/Representation

The  maps the original state  into a latent representation

→  is often lower-dimensional than , but might be higher-dimensional

→ If it has a interpretable norm, then often call it an embedding

Then  maps from the latent representation to the output

Feature Engineering (i.e, “finding the state is an art”):

→ Design  by hand (e.g., take means, logs, first-differences)

𝜙 : X→ Z 𝑥 ∈ X

Z X

ℎ : Z→ Y

𝜙(⋅)
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Notation for Parameters

In many cases within ML there will be a collection of parameters for various parts of the

functions

We will denote the collection of all parameters as , where functions may only use a

subset of those parameters

→ e.g.,  and  may use non-overlapping subsets of , or share them.

This will become especially important when we consider gradients and optimization

→ In some cases we may “freeze” the  in  and only optimize over 

In cases where a function does not have any parameters we might “learn” (i.e., optimize

over) we will drop the subscript

𝜃 ∈ Θ

𝜙𝜃(𝑥) ℎ𝜃(𝑧) 𝜃

𝜃2 𝜃 ≡ {𝜃1,𝜃2} 𝜃1
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Example: Polynomial Basis

Suppose  and we want to approximate  with a polynomial of degree 

For some polynomial basis  (e.g., monomials, Chebyshev, Legendre, etc.)

→ Note that there are no “learned” parameters!

Approximate  with , where  and 

𝑥 ∈ ℝ 𝑓(𝑥) 𝑑

𝑇1(𝑥), … ,𝑇𝑑(𝑥)

𝜙(𝑥) = [1 𝑇1(𝑥) 𝑇2(𝑥) ⋯ 𝑇𝑑(𝑥)]
⊤

𝑓𝜃(𝑥) ℎ𝜃(𝑧) = 𝑊⊤𝑧 𝑊 ∈ ℝ
𝑑+1 𝑊 ∈ 𝜃

𝑓𝜃(𝑥) ≡𝑊⊤𝜙(𝑥) =
𝑑

∑
𝑖=0

𝑊𝑖𝑇𝑖(𝑥)
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Example: Discrete-valued Probability Distributions

Recall cases of  for 

Stack the into a vector using  and pointwise 

Nesting the transformations with  and head 

→  is a nonlinear feature map to the latent space

→ , where  is part of 

ℙ𝜃(𝑦 = 𝑘 ∣ 𝑥) 𝑘 ∈ {1, … ,𝐾}

softmax : ℝ𝐾 → ℝ
𝐾 exp(⋅)

softmax(𝑧) ≡
exp(𝑧)

𝟏⊤ exp(𝑧)
∈ ℝ𝐾, where 𝟏

⊤softmax(𝑧) = 1

𝜙𝜃 : X→ ℝ
𝐿 ℎ𝜃 : ℝ𝐿 → ℝ

𝐾

ℙ𝜃(𝑦 ∣ 𝑥) = ℎ𝜃(𝜙𝜃(𝑥)) ∈ ℝ
𝐾

𝜙𝜃 : X→ ℝ
𝐿

ℎ𝜃(𝑧) = softmax(𝑊𝑧) 𝑊 ∈ ℝ𝐾×𝐿 𝜃
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Example: Functional Equations

Recall ERM was 

Traditionally: use “shallow” approximation such as Chebyshev polynomials

→ i.e., for  with  on a grid 

Alternatively: change of variables to a better latent representation

→ With  finding an efficient latent representation, and 

→ These could be constructed (e.g., homotheticity) or “learned”

→ Interpret  as an adaptive basis (see Wilson ( ))

argmin𝜃∈Θ
1
|D|
∑

𝑥∈D ℓ(𝑓𝜃, 𝑥)

𝑓𝜃(𝑥) = 𝑊⊤𝜙(𝑥) 𝜙(𝑥) ≡ [1 𝑇0(𝑥) ⋯ 𝑇𝑑(𝑥)]
⊤

D ⊂ X

𝑓𝜃(𝑥) = ℎ𝜃(𝜙𝜃(𝑥))

𝜙𝜃 : X→ ℝ
𝐿 ℎ𝜃 : ℝ𝐿 → Y

𝜙𝜃(⋅) 2025
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Example: LLMs/Transformers

LLMs roughly build a latent representation  and 

→  encodes the context  into a latent vector 

→ Design of  with LLMs uses the transformer architecture

→  with 

→ Output is the  simplex,  (probability distributions over

 values)

Once learned,  is useful for downstream tasks: embeddings, imputation,

classification, etc.

𝜙(⋅) ℎ(⋅)

ℙ𝜃(𝑦 ∣ 𝑥) = ℎ𝜃(𝜙𝜃(𝑥)) ∈ ℝ
𝐾

𝜙𝜃 [𝑥1 … 𝑥𝑇] 𝑧 ∈ ℝ𝐿

𝜙𝜃(⋅)

ℎ𝜃(𝑧) = softmax(𝑊𝑧) 𝑊 ∈ ℝ𝐾×𝐿

𝐾 Δ𝐾 ≡ {𝑝 ∈ ℝ𝐾
+ : ∑𝐾

𝑘=1 𝑝𝑘 = 1}

𝐾

𝜙𝜃(⋅)
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Learning Representations

Instead of hand-crafting , we can learn it from data

TOPIC  This process is called representation learning

Good representations:

→ Capture essential characteristics of the data

→ Discard irrelevant information (compression/denoising)

→ Orthogonalize sources of variation (disentanglement)

Once learned,  is often reusable for multiple downstream tasks by fixing the 

𝜙𝜃(⋅)

𝜙𝜃(⋅) 𝜃
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Depth and Representation Learning

The mapping to outputs  is often “shallow” (e.g., linear or low-order polynomial)

In contrast, the transformation  into representation space is usually “deep”

As data becomes richer, unstructured, and higher-dimensional, transformations become

harder to design manually

TOPIC  Neural networks compose simple nonlinear functions to learn complicated

transformations

→ Depth leads to a combinatorial explosion in representational capacity

ℎ(⋅)

𝜙(⋅)

𝜙 ≡ 𝜙𝐿 ∘ ⋯ ∘ 𝜙1
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Representation Learning (Visual)
prompt = """1
A stylized illustration of representation learning as a2
smooth change of variables: a tangled, high-dimensional3
data manifold being unfolded into a flat, low-dimension4
coordinate system. The left side shows intertwined curv5
and knots; the right side shows clean, orthogonal axes6
with separated clusters. Etching / wood-cut / scientifi7
engraving style, high contrast, minimal color palette."8
response = client.models.generate_content(9
    model="gemini-2.5-flash-image",10
    contents=prompt,11
    config=types.GenerateContentConfig(12
        response_modalities=["IMAGE"]13
    )14
)15
generated_img = response.parts[0].as_image()16
display(IPImage(data=generated_img.image_bytes,17
format='png'))18
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Representation Learning 2
prompt = """1
An artistic visualization of representation learning2
where entangled threads of data are transformed into3
independent latent factors. On the left, a dense braid4
of overlapping fibers; on the right, parallel strands5
aligned along clear axes. Emphasize symmetry, order,6
and factorization. Rendered in a vintage wood-engraving7
or linocut style."""8
response = client.models.generate_content(9
    model="gemini-2.5-flash-image",10
    contents=prompt,11
    config=types.GenerateContentConfig(12
        response_modalities=["IMAGE"]13
    )14
)15
generated_img = response.parts[0].as_image()16
display(IPImage(data=generated_img.image_bytes,17
format='png'))18
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Representation Learning 3
prompt = """1
A visual metaphor for representation learning as2
 information compression: raw, noisy data clouds3
 are compressed through a narrow bottleneck into4
 a compact latent space that preserves structure.5
 Before-and-after panels. Use engraved, chalkboard,6
 or woodcut academic illustration style."""7
response = client.models.generate_content(8
    model="gemini-2.5-flash-image",9
    contents=prompt,10
    config=types.GenerateContentConfig(11
        response_modalities=["IMAGE"]12
    )13
)14
generated_img = response.parts[0].as_image()15
display(IPImage(data=generated_img.image_bytes,16
format='png'))17
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Representation Learning 4
prompt = """1
A two-panel educational illustration explaining2
representation learning. Left panel: high-dimensional,3
entangled observations with overlapping features. Right4
panel: low-dimensional latent representation with5
disentangled, interpretable axes. Clean academic diagra6
style with subtle wood-engraving texture."""7
response = client.models.generate_content(8
    model="gemini-2.5-flash-image",9
    contents=prompt,10
    config=types.GenerateContentConfig(11
        response_modalities=["IMAGE"]12
    )13
)14
generated_img = response.parts[0].as_image()15
display(IPImage(data=generated_img.image_bytes,16
format='png'))17
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Computational Environment
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Programming Languages

Python

→ “Raw” Numpy/skit-learn/etc.

→ Torch, JAX, etc.

Julia

In this half we will focus on Python, but Julia has advantages in other areas.
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Summary of Python Installation

See  for more details.

1. Install 

2. Install 

3. Install  from terminal:

MacOS or Linux: curl -sSfL https://raw.githubusercontent.com/astral-
sh/uv/main/install.sh | sh

Windows: powershell -c "irm https://astral.sh/uv/install.ps1 | more"
from powershell terminal

here

git

VS Code

uv
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Clone Notebooks and Install Packages

1. Open the command palette with <Ctrl+Shift+P> or <Cmd+Shift+P> on mac and type > 
Git: Clone and choose https://github.com/jlperla/grad_econ_ML_notebooks

2. In VS Code terminal in that repo, uv sync

3. Then use VS Code to open any of the notebooks in that folder
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Summary of Julia Installation

See  for more details.

1. Install 

2. Install 

3. Install Julia following the 

Windows: winget install julia -s msstore in a terminal

Linux/Mac: curl -fsSL https://install.julialang.org | sh in a terminal

4. Install the 

here

Git

VS Code

Juliaup instructions

VS Code Julia extension
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Clone Notebooks and Install Packages

1. Open the command palette with <Ctrl+Shift+P> or <Cmd+Shift+P> on mac and type > 
Git: Clone and choose https://github.com/jlperla/grad_econ_ML_notebooks

2. Instantiate packages by running VS Code terminal

] instantiate, where ] enters package mode

3. Then use VS Code to open any of the notebooks in that folder

Note: the same clone’d repo can work for both Julia and Python
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Appendices
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Multi-step Conversations (Chat) 

Use client.chats.create() to manage state. The chat object automatically tracks history

so you don’t have to pass it back manually.

▶ Back

chat = client.chats.create(model=model, config=config)1
res1 = chat.send_message("Describe the concept of generative AI in one sentence.")2
print(f"Step 1: {res1.text}\n")3

4
# Contextual follow-up5
res2 = chat.send_message("Explain in one sentence how that relates to sampling from probability distributions.")6
print(f"Step 2: {res2.text}")7

Step 1: Generative artificial intelligence refers to a class of algorithms capable of generating novel, realistic, and 
often complex data instances that resemble a training dataset, effectively learning the underlying distribution of that 
data and sampling from it to create new content.

Step 2: Generative AI models, having learned the probability distribution of the training data, function by effectively 
drawing samples from this learned distribution to create new data instances.
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Population MLE and KL Divergence 

Let  denote the true conditional distribution, and  the model-implied

conditional distribution

Take the the expected negative log-likelihood, condition on  and use the LIE

Add and subtract  inside the inner expectation

Therefore, minimizing expected log-loss is equivalent to minimizing KL

▶ Back

𝜇∗(𝑦 ∣ 𝑥) ℙ𝑓(𝑦 ∣ 𝑥)

𝑥

𝔼(𝑥,𝑦)∼𝜇∗ [− logℙ𝑓(𝑦 ∣ 𝑥)] = 𝔼𝑥∼𝜇∗ [𝔼𝑦∼𝜇∗(⋅∣𝑥) [− logℙ𝑓(𝑦 ∣ 𝑥)]] .

log𝜇∗(𝑦 ∣ 𝑥)

= 𝔼𝑥∼𝜇∗[𝔼𝑦∼𝜇∗(⋅∣𝑥)[log 𝜇∗(𝑦∣𝑥)

ℙ𝑓(𝑦∣𝑥)
]

  φφφφφφφφφφφφφφ φφφφφφφφφφφφφφ

KL(𝜇∗(𝑦∣𝑥) ‖ ℙ𝑓(𝑦∣𝑥))

+𝔼𝑦∼𝜇∗(⋅∣𝑥)[−log𝜇∗(𝑦∣𝑥)]
  φφφφφφφφφφφφφ φφφφφφφφφφφφφ

does not depend on 𝑓

].

𝔼(𝑥,𝑦)∼𝜇∗ [− logℙ𝑓(𝑦 ∣ 𝑥)] = 𝔼𝑥∼𝜇∗ [KL(𝜇∗(𝑦 ∣ 𝑥) ‖ℙ𝑓(𝑦 ∣ 𝑥))] + constant.
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