-y

Direct Methods and Matrix Factorizations

Machine Learning Fundamentals for Economists

Jesse Perla

jesse.perla@ubc.ca

University of British Columbia

! 2) 1/42

mailto:jesse.perla@ubc.ca
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

miy
Table of contents

e Qverview
Complexity
Matrix Structure

Factorizations
Continuous Time Markov Chains

! 2) 2142

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Qoverview

-y

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

iy
Motivation

* In preparation for the ML lectures we cover core numerical linear algebra concepts
» Direct methods and matrix factorizations you'll learn:

Computational complexity: Big-O notation and understanding what makes
operations expensive

Matrix structure: Exploiting sparsity, triangular, tridiagonal, and positive-definite
structure

Factorizations: LU, Cholesky, and eigenvalue decompositions for solving linear
systems

Applications: Continuous Time Markov Chains and Bellman equations

» These methods solve problems to machine precision but scale with matrix size

 Inthe next lecture, we'll see iterative methods that trade precision for scalability

f 442

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/slides/iterative_methods.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Packages and Materials

e See QuantEcon Numerical Linear Algebra and associated notebooks

» Python resources:

- JAX SciPy Documentation - JAX implementations of SciPy functions
— Lineax Documentation - Linear solvers (Rader, Lyons, and Kidger 2023)

import jax

import jax.numpy as jnp

import jax.scipy.linalg as jla
import lineax as 1x

import scipy.sparse as sp

import scipy.sparse.linalg as spla
import numpy as np

import time

Set random seed for reproducibility
key = jax.random.PRNGKey(42)

! 2) 5/ 42

https://julia.quantecon.org/tools_and_techniques/numerical_linear_algebra.html
https://jax.readthedocs.io/en/latest/jax.scipy.html
https://docs.kidger.site/lineax/
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Complexity

-y

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Basic Computational Complexity

Big-O Notation

For a function f(N) and a positive constant C, we say f(N) is O(g(N)), if there exist positive
constants C and Ny such that:

0< f(N)<C-g(N) forall N> Nj

» Often crucial to know how problems scale asymptotically (as N — oo)

» Caution! This is only an asymptotic limit, and can be misleading for small N
f1(N) = N? + N is O(N?)
f2(N) = 1000N2 + 3N is O(N?)
For roughly N > 1000 use f, algorithm, otherwise f;

2) 7142

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Examples of Computational Complexity

» Simple examples:
x-y=3N x,y,is OWN) since it requires N multiplications and additions
Ax for A € RN x e RN is O(N?) since it requires N dot products, each O(N)

2) 8/ 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Computational Complexity

Ask yourself whether the following is a computationally expensive operation as the matrix
size increases
» Multiplying two matrices?
Answer: It depends. Multiplying two diagonal matrices is trivial.
» Solving a linear system of equations?
Answer: It depends. If the matrix is the identity, the solution is the vector itself.
» Finding the eigenvalues of a matrix?

Answer: It depends. The eigenvalues of a triangular matrix are the diagonal
elements.

2) 9/ 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

. . .];l /
Numerical Precision

Machine Epsilon

For a given datatype, € is defined as € = mingsg {0 : 1 + 6 > 1}

» Computers have finite precision. 64-bit typical, but 32-bit on GPUs

print(f"machine epsilon for float64 = {jnp.finfo(jnp.float64).eps}")
print(f"1 + eps/2 == 1? {1.0 + 1.1e-16 == 1.0}")
print(f"machine epsilon for float32 = {jnp.finfo(jnp.float32).eps}")

machine epsilon for float64
1+ eps/2 == 1? True
machine epsilon for float32

2.220446049250313e-16

1.1920928955078125e-07

10/42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Matrix Structure

-y

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

iy
Matrix Structure

» Akey principle is to ensure you don't lose “structure’
e.q. If sparse, operations should keep it sparse if possible

f triangular, then use appropriate algorithms instead of converting back to a dense
matrix

» Key structure is:
Symmetry, diagonal, tridiagonal, banded, sparse, positive-definite

» The worse operations for losing structure are matrix multiplication and inversion

f 12 /42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Example Losing Sparsity

» Here the density increases substantially

» We use NumPy for sparse matrix creation (JAX sparse support is experimental)

Create sparse random matrix using scipy
np.random.seed(42)

A_sp = sp.random(10, 10, density=0.45, format='csr')
print(f"Non-zeros in A: {A_sp.nnz}")

Invert (must convert to dense)
A_dense = A_sp.toarray()
invA_dense = jnp.linalg.inv(A_dense)
Count non-zeros (threshold for numerical zeros)
invA_nnz = jnp.sum(jnp.abs(invA_dense) > 1e-10)
print(f"Non-zeros in inv(A): {invA_nnz}")
Non-zeros in A: 45
Non-zeros in inv(A): 100

13/42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Losing Tridiagonal Structure

* An even more extreme example. Tridiagonal has roughly 3N nonzeros. Inverses are

dense N2

N =25
Create tridiagonal matrix

lower = jnp.concatenate([jnp.full(N-2, 0.1), jnp.array([0.2])])

diag = jnp.full(N, 0.8)

upper = jnp.concatenate([jnp.array([0.2]), jnp.full(N-2, 0.1)])

Build full matrix for inversion

A_tri = jnp.diag(diag) + jnp.diag(lower, -1) + jnp.diag(upper, 1)

print("Inverse of tridiagonal (all elements non-zero):")

print(jnp.linalg.inv(A_tri))

Inverse of tridiagonal (all elements non-zero):

[[1.2909946e+00 -3.2795697e-01 4.1666660e-02
6.7204301e-04]

[-1.6397849e-01 1.3118279e+00 -1.6666664e-01
-2.6881720e-03]

[2.0833330e-02 -1.6666664e-01 1.2916665e+00
2.0833334€e-02]

[-2.6881718e-03 2.1505374e-02 -1.6666666e-01
-1.6397850e-01]

[6.7204307e-04 -5.3763445e-03 4.1666668e-02
1.2909946€+00]]

-5.3763431e-03
2.1505373e-02
-1.6666664e-01
1.3118279e+00

-3.2795700e-01

f

-y

14/ 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Forming the Covariance and/or Gram Matrix

« Another common example is AT A

A_sp = sp.random(20, 21, density=0.3, format='csr')
print(f"Sparsity of A: {A_sp.nnz / (20*20):.2%}")
ATA = A_sp.T @ A_sp

print(f"Sparsity of A'A: {ATA.nnz / (21*21):.2%}")

Sparsity of A: 31.50%
Sparsity of A'A: 85.94%

15/42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Specialized Algorithms

» Besides sparsity/storage, the real loss is you miss out on algorithms
» We'll compare dense vs. sparse vs. tridiagonal solvers

2) 16 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Compare Dense vs. Sparse vs. Tridiagonal

N = 1000
key, subkey = jax.random.split(key)
b = jax.random.uniform(subkey, (N,))

Create tridiagonal matrix
lower_diag = jnp.concatenate([jnp.full(N-2, 0.1), jnp.array([0.2])])
main_diag = jnp.full(N, 0.8)
upper_diag = jnp.concatenate([jnp.array([0.2]), jnp.full(N-2, 0.1)])

Lineax tridiagonal operator (uses parallel scan, O(N))

A_tri_op = 1lx.TridiagonalLinearOperator(main_diag, lower_diag, upper_diag)

Dense matrix for comparison

A_dense = jnp.diag(main_diag) + jnp.diag(lower_diag, -1) + jnp.diag(upper_diag, 1)
Warmup both solvers (JIT compilation happens on first call)

_ = Ix.linear_solve(A_tri_op, b).value.block_until_ready()

_ = jnp.linalg.solve(A_dense, b).block _until_ready()

start = time.perf_counter()

x_tri = 1lx.linear_solve(A_tri_op, b).value
X_tri.block_until_ready()

tri_time = time.perf_counter() - start

Dense solve (O(NA3))

start = time.perf_counter()

x_dense = jnp.linalg.solve(A_dense, b)
X_dense.block_until_ready()

Tridiagonal (Lineax): 2.01 ms
Dense (JAX): 14.95 ms
Speedup: 7.4x

Key insight: Lineax uses a direct parallel scan solver (O(N)), much faster than dense solve (O(N"3))

h

-y

171742

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

B/
Triangular Matrices and Back/Forward Substitution

» A key example of a better algorithm is for triangular matrices

« Upper or lower triangular matrices can be solved in O(N?) instead of O(N?3)

b_small = jnp.array([1.0, 2.0, 3.0])

U= jnp.array([[1.0, 2.0, 3.0],
[0.0, 5.0, 6.0],
[0.0, 0.0, 9.0]])

X = jla.solve_triangular(U, b_small, lower=False)
print(f"Solution: {x}")

Solution: [O. 0. 0.33333334]

18 /42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Backwards Substitution Example

Solving bottom row for x»
2x, =2, x,=1
Move up a row, solving for x1, substituting for x»
3x1+1x,=7, 3x1+1%x1=7, x1=2

Generalizes to many rows. For L it is "forward substitution’

2) 19/ 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

—actorizations

-y

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

s
Factorizing Matrices

e Just like you can factor 6 = 2 - 3, you can factor matrices
» Unlike integers, you have more choice over the properties of the factors

» Many operations (e.g., solving systems of equations, finding eigenvalues, inverting,
finding determinants) have a factorization done internally

Instead you can often just find the factorization and reuse it

» Key factorizations: LU, QR, Cholesky, SVD, Schur, Eigenvalue

211742

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
LU(P) Decompositions

» We can "factor” any square A into PA = LU for triangular L and U. P is for partial-
pivoting

 If invertible, then a A = LU exists, but may not be numerically stable without pivoting
» Returns explicit matrices P, L, U (not a factorization object)

N_1lu = 4

key, subkey = jax.random.split(key)

A = jax.random.uniform(subkey, (N_1lu, N_1lu))
key, subkey = jax.random.split(key)

b_lu = jax.random.uniform(subkey, (N_1lu,))

LU factorization returns explicit matrices
P, L, U= jla.lu(A)
print(f"P @ A = L @ U? {jnp.allclose(P @ A, L @ U)}")

P@A=1L1LG® U? True

22142

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

s
Using LU Factorization

» To solve, use triangular solves manually or use jnp.linalg.solve

Manual solve using LU: solve L(Ux) = Pb
y = jla.solve_triangular(L, P @ b_lu, lower=True)
x_lu = jla.solve_triangular(U, y, lower=False)

Direct solve for comparison
x_direct = jnp.linalg.solve(A, b_1lu)

print(f"LU solution: {x_1lu}")
print(f"Direct solution: {x_direct}")
print(f"Solutions match? {jnp.allclose(x_lu, x_direct)}")

LU solution: [-2.7407506 0.50105435 2.7111826 1.1074696 |
Direct solution: [-2.7407506 0.50105435 2.7111826 1.1074696]
Solutions match? True

L] 23 /42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

LU Decompositions and Systems of Equations

» Pivoting is typically implied when talking about "LU’

Used in the default solve algorithm (without more structure)

Solving systems of equations with triangular matrices: for Ax = LUx = b
1. Definey = Ux
2. Solve Ly = Pb fory and Ux =y for x
Since both are triangular, process is O(N?) (but LU itself O(N?))
Could be used to find inv
A=LUthen AA7 =1=LUA" =1
Solve for YinLY = P, then solve UA™ = Y

Tight connection to textbook Gaussian elimination (including pivoting)

-y

24 | 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Cholesky

» LU is for general invertible matrices, but it doesnt use positive-definiteness or symmetry
» The Cholesky is the right factorization for positive-definite matrices

« A =LL" for lower triangular L (or A = U"U for upper triangular)

N_chol = 500

key, subkey = jax.random.split(key)

B = jax.random.uniform(subkey, (N_chol, N_chol))

A_pd = B.T @ B # Easy way to generate positive definite matrix
print(f"A is symmetric? {jnp.allclose(A_pd, A_pd.T)}")

A 1s symmetric? True

L] 25/42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Comparing Cholesky

key, subkey = jax.random.split(key)
b_chol = jax.random.uniform(subkey, (N_chol,))

Cholesky factorization
L_chol = jla.cholesky(A_pd, lower=True)

Solve using Cholesky
y_chol = jla.solve_triangular(L_chol, b_chol, lower=True)
x_chol = jla.solve_triangular(L_chol.T, y_chol, lower=False)

Warmup both solvers (JIT compilation happens on first call)
jnp.linalg.solve(A_pd, b_chol).block_until_ready()

jla.cholesky(A_pd, lower=True).block_ until_ready()
jla.solve_triangular(L_chol, b_chol, lower=True).block_until_ready()

= jla.solve_triangular(L_chol.T, y_chol, lower=False).block_until_ready()

Direct solve (doesn't know it's positive definite)
start = time.perf_counter()

X_direct = jnp.linalg.solve(A_pd, b_chol)
x_direct.block_until_ready()

direct_time = time.perf_counter() - start

Cholesky solve

start = time.perf_counter()

L_chol = jla.cholesky(A_pd, lower=True)

y_chol = jla.solve_triangular(L_chol, b_chol, lower=True)
x_chol = jla.solve_triangular(L_chol.T, y_chol, lower=False)

Direct solve: 3.02 ms
Cholesky solve: 2.63 ms
Speedup: 1.1x

f 26 /42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

iy
Eigen Decomposition

» For square, symmetric, non-singular matrix A factor into

A=QAQ™!

* Qisamatrix of eigenvectors, A is a diagonal matrix of paired eigenvalues

« For symmetric matrices, the eigenvectors are orthogonal and Q71Q = Q'Q = I which
form an orthonormal basis

» Orthogonal matrices can be thought of as rotations without stretching
» More general matrices all have a Singular Value Decomposition (SVD)

« With symmetric A, an interpretation of Ax is that we can first rotate x into the Q basis,
then stretch by A, then rotate back

2) 27/ 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Calculating the Eigen Decomposition

key, subkey = jax.random.split(key)
A_sym = jax.random.uniform(subkey, (5, 5))
A_sym = (A_sym + A_sym.T) / 2 # Make symmetric

Eigenvalue decomposition
eigenvalues, Q = jnp.linalg.eigh(A_sym) # eigh for symmetric/Hermitian
Lambda = jnp.diag(eigenvalues)

print(f"|[Q A QA-1 - Al|: {jnp.linalg.norm(Q @ Lambda @ jnp.linalg.inv(Q) - A_sym):.2e}")
print(f"|[Q A QAT - A||: {jnp.linalg.norm(Q @ Lambda @ Q.T - A_sym):.2e}")

|1Q A QA-1 - A||: 7.66e-07
|1Q A QAT - A||: 6.90e-07

L] 28142

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Figendecompositions and Matrix Powers

 Can be used to find Af for large ¢t (e.g. for Markov chains)

Pt ie P-P- .. -Pforttimes

P = QAQ™! then Pt = QA'Q™! where Af is just the pointwise power
» Related can find matrix exponential e for square matrices

e = Qe Q7! where e is just the pointwise exponential

Useful for solving differential equations, e.q. vy’ = Ay for y(0) = yo is y(t) = eAtyo

f 29/42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

| | L/
More on Factorizations

» Plenty more used in different circumstances. Start by looking at structure

Usually have some connection to textbook algorithms, for example LU is Gaussian
elimination with pivoting and QR is Gram-Schmidt Process

Just as shortcuts can be done with sparse matrices in textbook examples, direct sparse
methods can be faster given enough sparsity

But don't assume sparsity will be faster. Often slower unless matrices are big and
especially sparse

Dense algorithms on GPUs can be very fast because of parallelism

Keep in mind that barring numerical roundoff issues, these are "exact” methods. They
don't become more accurate with more iterations

L 30/42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Sparse Direct Solvers: The SciPy Fallback

« JAX limitation: No native direct sparse solver (like UMFPACK/SuperlLLU)
» For sparse systems, we fall back to SciPy

Create sparse system

N_sparse = 1000

A_sparse = sp.random(N_sparse, N_sparse, density=0.01, format='csr')
A_sparse = A_sparse + sp.eye(N_sparse) * 10 # Make diagonally dominant
b_sparse = np.random.rand(N_sparse)

Solve using SciPy's sparse solver (uses UMFPACK/SuperLU)

X_sparse = spla.spsolve(A_sparse, b_sparse)

print(f"Solved sparse system of size {N_sparse}x{N_sparse} with {A_sparse.nnz} non-zeros'")
print(f"Residual: {np.linalg.norm(A_sparse @ x_sparse - b_sparse):.2e}")

Solved sparse system of size 1000x1000 with 10987 non-zeros
Residual: 1.71e-14

Note: For production sparse linear solves, use SciPy or interface with PETSc, not JAX

L] 31/42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

iy
Large Scale Systems of Equations

» Packages that solve BIG problems with “direct methods” include MUMPS, Pardiso,
UMFPACK, and many others

» Sparse solvers are bread-and-butter scientific computing, so they can crush huge
problems, parallelize on a cluster, etc.

» But for smaller problems they may not be ideal. Profile and test, and only if you need it.

» On Python: scipy has many built in (UMFPACK, SuperLU, etc.) and many wrappers exist.
Same with Matlab

f 32/42

https://mumps-solver.org/index.php
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-0/onemkl-pardiso-parallel-direct-sparse-solver-iface.html
https://en.wikipedia.org/wiki/UMFPACK
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Preview of Conditioning

« [t will turn out that for iterative methods, a different style of algorithm, it is often
necessary to multiply by a matrix to transform the problem
» Theideal transform would be the matrix’s inverse, which requires a full factorization

» But instead, you can do only part of the way towards the factorization. e.g., part of the
way on gaussian elimination

 Called "Incomplete Cholesky”, ‘Incomplete LU’ etc.

L 33/42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

cContinuous Time Markov Chains

-y

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

n /7
Markov Chains Transitions in Continuous Time

o For adiscrete number of states, we cannot have instantaneous transitions between
states or it ceases to be measurable

» Instead: intensity of switching from state ito j as a g;; where

C]i]'A + 0(A) =]

P{X(t+ A) =71 X()} = {1 +qiA+0o(A) i=j

» With o(A) is little-o notation. That is, ima_,g 0(A)/A = 0.

f 35/42

https://en.wikipedia.org/wiki/Big_O_notation#Little-o_notation
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Intensity Matrix

J Qij = gij fori #] and Q;; = — Zj;ti qij
* Rows sumto 0

» Forexample, consider a counting process

01 01 0 0 0 0

01 -02 01 0 0 O

01 -02 01 0 0

0 01 -02 01 0

0 0 01 -02 o1
0 0 0 01 -01

o O O O

L 36/42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Probability Dynamics

The Q is the infinitesimal generator of the stochastic process.
Let (t) € RN with 7t;(t) = P[X; = i| Xo]
Then the probability distribution evolution (Fokker-Planck or KFE), is

%n(t) =7n(t)Q, given 7(0)

Or, often written as %n(t) = Q" - n(t), i.e.interms of the "adjoint” of the linear operator Q

A steady state isthen a solutionto Q" -7 =0

.e., the 7 left-eigenvector associated with eigenvalue 0 (i.e. 7Q = 0 X 7)

2) 37/ 42

https://en.wikipedia.org/wiki/Infinitesimal_generator_(stochastic_processes)
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

s
Setting up a Counting Process

alpha = 0.1
N_ctmc = 6

Create tridiagonal Q matrix

lower_ctmc = jnp.full(N_ctmc-1, alpha)

main_ctmc = jnp.concatenate([jnp.array([-alpha]),
jnp.full(N_ctmc-2, -2*alpha),
jnp.array([-alpha])])

upper_ctmc = jnp.full(N_ctmc-1, alpha)

Build dense matrix for display
Q = jnp.diag(main_ctmc) + jnp.diag(lower_ctmc, -1) + jnp.diag(upper_ctmc, 1)
print("Q matrix:")

print(Q)

Q matrix:

[[-6.1 0.1 0. ©6. 0. 0.]
[0.1 -0.2 0.1 0. 0. 0.]
[0. 0.1 -0.2 0.1 0. 0.]
[O. 0. 0.1 -0.2 0.1 0.]
[6. ©. 0. 0.1 -0.2 0.1]
[0. 0. 0. 0. 0.1 -0.1]]

L] 38/42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

i
Finding the Stationary Distribution

» There will always be at least one eigenvalue of 0, and the corresponding eigenvector is
the stationary distribution

» We use dense eigenvalue decomposition here (for iterative methods, see next lecture)

Eigenvalue decomposition of QAT Eigenvalues:
eigenvalues, eigenvectors = jnp.linalg.eig(Q.T) £é3.73205186-01 -3.0000022e-01 -2.0000000e-01 -9.9999972e-

. : . . -1.0465228e-08 -2.6794920e-02]
Find eigenvector corresponding to eigenvalue = 0

idx = jnp.argmin(jnp.abs(eigenvalues)) Stationary distribution:

pi_stationary = eigenvectors[:, idx].real [0.16666669 0.16666669 0.16666669 0.16666666 0.16666664
pi_stationary = pi_stationary / jnp.sum(pi_stationary) ©.16666664]

print(f"Eigenvalues:\n{eigenvalues.real}")

print(f"\nStationary distribution:")
print(pi_stationary)

39/42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Using the Generator in a Bellman Equation

» Letr € RY be a vector of payoffs in each state, and p > 0 a discount rate

» Then we can use the Q generator as a simple Bellman Equation (using the Kolmogorov
Backwards Equation) to find the value v in each state

po =1+ Qu

» Rearranging, (pI - Q)v =r

2) 40/ 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Implementing the Bellman Equation

rho = 0.05 Value function:
r = jnp.linspace(0.0, 10.0, N_ctmc) £6i8é22i24§ 57.230774 84.92308 115.076935 142.76924

Solve (rho * I - Q) v =1r
A_bellman = rho * jnp.eye(N_ctmc) - Q
v = jnp.linalg.solve(A_bellman, r)

print(f"Value function:")
print(v)

Teaser: Can we use iterative methods to avoid forming the full matrix? See next lecture!

411742

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Iy
References

Rader, Jason, Terry Lyons, and Patrick Kidger. 2023. “Lineax: Unified Linear Solves and Linear Least-Squares in JAX and
Equinox.” Al for Science Workshop at Neural Information Processing Systems 2023. https://arxiv.org/abs/2311.17283.

f 42142

https://arxiv.org/abs/2311.17283
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

