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Motivation

In preparation for the ML lectures we cover core numerical linear algebra concepts

Direct methods and matrix factorizations you’ll learn:

→ Computational complexity: Big-O notation and understanding what makes

operations expensive

→ Matrix structure: Exploiting sparsity, triangular, tridiagonal, and positive-definite

structure

→ Factorizations: LU, Cholesky, and eigenvalue decompositions for solving linear

systems

→ Applications: Continuous Time Markov Chains and Bellman equations

These methods solve problems to machine precision but scale with matrix size

In the , we’ll see iterative methods that trade precision for scalabilitynext lecture
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Packages and Materials

See  and associated notebooks

Python resources:

→  - JAX implementations of SciPy functions

→  - Linear solvers ( )

QuantEcon Numerical Linear Algebra

JAX SciPy Documentation

Lineax Documentation Rader, Lyons, and Kidger 2023

import jax1
import jax.numpy as jnp2
import jax.scipy.linalg as jla3
import lineax as lx4
import scipy.sparse as sp5
import scipy.sparse.linalg as spla6
import numpy as np7
import time8

9
# Set random seed for reproducibility10
key = jax.random.PRNGKey(42)11
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Complexity
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Basic Computational Complexity

Big-O Notation

For a function  and a positive constant , we say  is , if there exist positive

constants  and  such that:

Often crucial to know how problems scale asymptotically (as )

Caution! This is only an asymptotic limit, and can be misleading for small 

→  is 

→  is 

→ For roughly  use  algorithm, otherwise 

𝑓(𝑁) 𝐶 𝑓(𝑁) 𝑂(𝑔(𝑁))

𝐶 𝑁0

0 ≤ 𝑓(𝑁) ≤ 𝐶 ⋅ 𝑔(𝑁) for all 𝑁 ≥ 𝑁0

𝑁→∞

𝑁

𝑓1(𝑁) = 𝑁 3 +𝑁 𝑂(𝑁 3)

𝑓2(𝑁) = 1000𝑁 2 + 3𝑁 𝑂(𝑁 2)

𝑁 > 1000 𝑓2 𝑓1
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Examples of Computational Complexity

Simple examples:

→  is  since it requires  multiplications and additions

→  for  is  since it requires  dot products, each 

𝑥 ⋅ 𝑦 = ∑𝑁
𝑛=1 𝑥𝑛𝑦𝑛 𝑂(𝑁) 𝑁

𝐴𝑥 𝐴 ∈ ℝ𝑁×𝑁, 𝑥 ∈ ℝ𝑁 𝑂(𝑁 2) 𝑁 𝑂(𝑁)
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Computational Complexity

Ask yourself whether the following is a computationally expensive operation as the matrix

size increases

Multiplying two matrices?

→ Answer: It depends. Multiplying two diagonal matrices is trivial.

Solving a linear system of equations?

→ Answer: It depends. If the matrix is the identity, the solution is the vector itself.

Finding the eigenvalues of a matrix?

→ Answer: It depends. The eigenvalues of a triangular matrix are the diagonal

elements.
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Numerical Precision

Machine Epsilon

For a given datatype,  is defined as 

Computers have finite precision. 64-bit typical, but 32-bit on GPUs

𝜖 𝜖 = min𝛿>0 {𝛿 : 1 + 𝛿 > 1}

print(f"machine epsilon for float64 = {jnp.finfo(jnp.float64).eps}")1
print(f"1 + eps/2 == 1? {1.0 + 1.1e-16 == 1.0}")2
print(f"machine epsilon for float32 = {jnp.finfo(jnp.float32).eps}")3

machine epsilon for float64 = 2.220446049250313e-16
1 + eps/2 == 1? True
machine epsilon for float32 = 1.1920928955078125e-07

 10 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html


Matrix Structure
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Matrix Structure

A key principle is to ensure you don’t lose “structure”

→ e.g. if sparse, operations should keep it sparse if possible

→ If triangular, then use appropriate algorithms instead of converting back to a dense

matrix

Key structure is:

→ Symmetry, diagonal, tridiagonal, banded, sparse, positive-definite

The worse operations for losing structure are matrix multiplication and inversion
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Example Losing Sparsity

Here the density increases substantially

We use NumPy for sparse matrix creation (JAX sparse support is experimental)

# Create sparse random matrix using scipy1
np.random.seed(42)2
A_sp = sp.random(10, 10, density=0.45, format='csr')3
print(f"Non-zeros in A: {A_sp.nnz}")4

5
# Invert (must convert to dense)6
A_dense = A_sp.toarray()7
invA_dense = jnp.linalg.inv(A_dense)8
# Count non-zeros (threshold for numerical zeros)9
invA_nnz = jnp.sum(jnp.abs(invA_dense) > 1e-10)10
print(f"Non-zeros in inv(A): {invA_nnz}")11

Non-zeros in A: 45
Non-zeros in inv(A): 100
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Losing Tridiagonal Structure

An even more extreme example. Tridiagonal has roughly  nonzeros. Inverses are

dense 

3𝑁

𝑁
2

N = 51
# Create tridiagonal matrix2
lower = jnp.concatenate([jnp.full(N-2, 0.1), jnp.array([0.2])])3
diag = jnp.full(N, 0.8)4
upper = jnp.concatenate([jnp.array([0.2]), jnp.full(N-2, 0.1)])5

6
# Build full matrix for inversion7
A_tri = jnp.diag(diag) + jnp.diag(lower, -1) + jnp.diag(upper, 1)8
print("Inverse of tridiagonal (all elements non-zero):")9
print(jnp.linalg.inv(A_tri))10

Inverse of tridiagonal (all elements non-zero):
[[ 1.2909946e+00 -3.2795697e-01  4.1666660e-02 -5.3763431e-03
   6.7204301e-04]
 [-1.6397849e-01  1.3118279e+00 -1.6666664e-01  2.1505373e-02
  -2.6881720e-03]
 [ 2.0833330e-02 -1.6666664e-01  1.2916665e+00 -1.6666664e-01
   2.0833334e-02]
 [-2.6881718e-03  2.1505374e-02 -1.6666666e-01  1.3118279e+00
  -1.6397850e-01]
 [ 6.7204307e-04 -5.3763445e-03  4.1666668e-02 -3.2795700e-01
   1.2909946e+00]]
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Forming the Covariance and/or Gram Matrix

Another common example is 𝐴𝑇
𝐴

A_sp = sp.random(20, 21, density=0.3, format='csr')1
print(f"Sparsity of A: {A_sp.nnz / (20*20):.2%}")2
ATA = A_sp.T @ A_sp3
print(f"Sparsity of A'A: {ATA.nnz / (21*21):.2%}")4

Sparsity of A: 31.50%
Sparsity of A'A: 85.94%
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Specialized Algorithms

Besides sparsity/storage, the real loss is you miss out on algorithms

We’ll compare dense vs. sparse vs. tridiagonal solvers
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Compare Dense vs. Sparse vs. Tridiagonal

Key insight: Lineax uses a direct parallel scan solver (O(N)), much faster than dense solve (O(N^3))

N = 10001
key, subkey = jax.random.split(key)2
b = jax.random.uniform(subkey, (N,))3

4
# Create tridiagonal matrix5
lower_diag = jnp.concatenate([jnp.full(N-2, 0.1), jnp.array([0.2])])6
main_diag = jnp.full(N, 0.8)7
upper_diag = jnp.concatenate([jnp.array([0.2]), jnp.full(N-2, 0.1)])8

9
# Lineax tridiagonal operator (uses parallel scan, O(N))10
A_tri_op = lx.TridiagonalLinearOperator(main_diag, lower_diag, upper_diag)11
# Dense matrix for comparison12
A_dense = jnp.diag(main_diag) + jnp.diag(lower_diag, -1) + jnp.diag(upper_diag, 1)13

14
# Warmup both solvers (JIT compilation happens on first call)15
_ = lx.linear_solve(A_tri_op, b).value.block_until_ready()16
_ = jnp.linalg.solve(A_dense, b).block_until_ready()17

18
start = time.perf_counter()19
x_tri = lx.linear_solve(A_tri_op, b).value20
x_tri.block_until_ready()21
tri_time = time.perf_counter() - start22

23
# Dense solve (O(N^3))24
start = time.perf_counter()25
x_dense = jnp.linalg.solve(A_dense, b)26
x_dense.block_until_ready()27
dense time = time perf counter() start28

Tridiagonal (Lineax): 2.01 ms
Dense (JAX): 14.95 ms
Speedup: 7.4x
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Triangular Matrices and Back/Forward Substitution

A key example of a better algorithm is for triangular matrices

Upper or lower triangular matrices can be solved in  instead of 𝑂(𝑁 2) 𝑂(𝑁 3)

b_small = jnp.array([1.0, 2.0, 3.0])1
U = jnp.array([[1.0, 2.0, 3.0],2
               [0.0, 5.0, 6.0],3
               [0.0, 0.0, 9.0]])4
x = jla.solve_triangular(U, b_small, lower=False)5
print(f"Solution: {x}")6

Solution: [0.         0.         0.33333334]
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Backwards Substitution Example

Solving bottom row for 

Move up a row, solving for , substituting for 

Generalizes to many rows. For  it is “forward substitution”

𝑈𝑥 = 𝑏

𝑈 ≡ [3 1

0 2
] , 𝑏 = [7

2
]

𝑥2

2𝑥2 = 2, 𝑥2 = 1

𝑥1 𝑥2

3𝑥1 + 1𝑥2 = 7, 3𝑥1 + 1 × 1 = 7, 𝑥1 = 2

𝐿
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Factorizations
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Factorizing Matrices

Just like you can factor , you can factor matrices

Unlike integers, you have more choice over the properties of the factors

Many operations (e.g., solving systems of equations, finding eigenvalues, inverting,

finding determinants) have a factorization done internally

→ Instead you can often just find the factorization and reuse it

Key factorizations: LU, QR, Cholesky, SVD, Schur, Eigenvalue

6 = 2 ⋅ 3
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LU(P) Decompositions

We can “factor” any square  into  for triangular  and . P is for partial-

pivoting

If invertible, then a  exists, but may not be numerically stable without pivoting

Returns explicit matrices P, L, U (not a factorization object)

𝐴 𝑃𝐴 = 𝐿𝑈 𝐿 𝑈

𝐴 = 𝐿𝑈

N_lu = 41
key, subkey = jax.random.split(key)2
A = jax.random.uniform(subkey, (N_lu, N_lu))3
key, subkey = jax.random.split(key)4
b_lu = jax.random.uniform(subkey, (N_lu,))5

6
# LU factorization returns explicit matrices7
P, L, U = jla.lu(A)8
print(f"P @ A ≈ L @ U? {jnp.allclose(P @ A, L @ U)}")9

P @ A ≈ L @ U? True
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Using LU Factorization

To solve, use triangular solves manually or use jnp.linalg.solve

# Manual solve using LU: solve L(Ux) = Pb1
y = jla.solve_triangular(L, P @ b_lu, lower=True)2
x_lu = jla.solve_triangular(U, y, lower=False)3

4
# Direct solve for comparison5
x_direct = jnp.linalg.solve(A, b_lu)6

7
print(f"LU solution: {x_lu}")8
print(f"Direct solution: {x_direct}")9
print(f"Solutions match? {jnp.allclose(x_lu, x_direct)}")10

LU solution: [-2.7407506   0.50105435  2.7111826   1.1074696 ]
Direct solution: [-2.7407506   0.50105435  2.7111826   1.1074696 ]
Solutions match? True
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LU Decompositions and Systems of Equations

Pivoting is typically implied when talking about “LU”

Used in the default solve algorithm (without more structure)

Solving systems of equations with triangular matrices: for 

1. Define 

2. Solve  for  and  for 

Since both are triangular, process is  (but LU itself )

Could be used to find inv

→  then 

→ Solve for  in , then solve 

Tight connection to textbook Gaussian elimination (including pivoting)

𝐴𝑥 = 𝐿𝑈𝑥 = 𝑏

𝑦 = 𝑈𝑥

𝐿𝑦 = 𝑃𝑏 𝑦 𝑈𝑥 = 𝑦 𝑥

𝑂(𝑁 2) 𝑂(𝑁 3)

𝐴 = 𝐿𝑈 𝐴𝐴−1 = 𝐼 = 𝐿𝑈𝐴−1 = 𝐼

𝑌 𝐿𝑌 = 𝑃 𝑈𝐴−1 = 𝑌
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Cholesky

LU is for general invertible matrices, but it doesn’t use positive-definiteness or symmetry

The Cholesky is the right factorization for positive-definite matrices

 for lower triangular  (or  for upper triangular)𝐴 = 𝐿𝐿𝑇 𝐿 𝐴 = 𝑈𝑇𝑈

N_chol = 5001
key, subkey = jax.random.split(key)2
B = jax.random.uniform(subkey, (N_chol, N_chol))3
A_pd = B.T @ B  # Easy way to generate positive definite matrix4
print(f"A is symmetric? {jnp.allclose(A_pd, A_pd.T)}")5

A is symmetric? True
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Comparing Cholesky
key, subkey = jax.random.split(key)1
b_chol = jax.random.uniform(subkey, (N_chol,))2

3
# Cholesky factorization4
L_chol = jla.cholesky(A_pd, lower=True)5

6
# Solve using Cholesky7
y_chol = jla.solve_triangular(L_chol, b_chol, lower=True)8
x_chol = jla.solve_triangular(L_chol.T, y_chol, lower=False)9

10
# Warmup both solvers (JIT compilation happens on first call)11
_ = jnp.linalg.solve(A_pd, b_chol).block_until_ready()12
_ = jla.cholesky(A_pd, lower=True).block_until_ready()13
_ = jla.solve_triangular(L_chol, b_chol, lower=True).block_until_ready()14
_ = jla.solve_triangular(L_chol.T, y_chol, lower=False).block_until_ready()15

16
# Direct solve (doesn't know it's positive definite)17
start = time.perf_counter()18
x_direct = jnp.linalg.solve(A_pd, b_chol)19
x_direct.block_until_ready()20
direct_time = time.perf_counter() - start21

22
# Cholesky solve23
start = time.perf_counter()24
L_chol = jla.cholesky(A_pd, lower=True)25
y_chol = jla.solve_triangular(L_chol, b_chol, lower=True)26
x_chol = jla.solve_triangular(L_chol.T, y_chol, lower=False)27
x chol block until ready()28

Direct solve: 3.02 ms
Cholesky solve: 2.63 ms
Speedup: 1.1x
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Eigen Decomposition

For square, symmetric, non-singular matrix  factor into

 is a matrix of eigenvectors,  is a diagonal matrix of paired eigenvalues

For symmetric matrices, the eigenvectors are orthogonal and  which

form an orthonormal basis

Orthogonal matrices can be thought of as rotations without stretching

More general matrices all have a Singular Value Decomposition (SVD)

With symmetric , an interpretation of  is that we can first rotate  into the  basis,

then stretch by , then rotate back

𝐴

𝐴 = 𝑄Λ𝑄−1

𝑄 Λ

𝑄−1𝑄 = 𝑄𝑇𝑄 = 𝐼

𝐴 𝐴𝑥 𝑥 𝑄

Λ
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Calculating the Eigen Decomposition
key, subkey = jax.random.split(key)1
A_sym = jax.random.uniform(subkey, (5, 5))2
A_sym = (A_sym + A_sym.T) / 2  # Make symmetric3

4
# Eigenvalue decomposition5
eigenvalues, Q = jnp.linalg.eigh(A_sym)  # eigh for symmetric/Hermitian6
Lambda = jnp.diag(eigenvalues)7

8
print(f"||Q Λ Q^-1 - A||: {jnp.linalg.norm(Q @ Lambda @ jnp.linalg.inv(Q) - A_sym):.2e}")9
print(f"||Q Λ Q^T - A||: {jnp.linalg.norm(Q @ Lambda @ Q.T - A_sym):.2e}")10

||Q Λ Q^-1 - A||: 7.66e-07
||Q Λ Q^T - A||: 6.90e-07
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Eigendecompositions and Matrix Powers

Can be used to find  for large  (e.g. for Markov chains)

→ , i.e.   for  times

→  then  where  is just the pointwise power

Related can find matrix exponential  for square matrices

→  where  is just the pointwise exponential

→ Useful for solving differential equations, e.g.   for  is 

𝐴𝑡 𝑡

𝑃𝑡 𝑃 ⋅ 𝑃 ⋅… ⋅ 𝑃 𝑡

𝑃 = 𝑄Λ𝑄−1 𝑃𝑡 = 𝑄Λ𝑡𝑄−1 Λ𝑡

𝑒𝐴

𝑒𝐴 = 𝑄𝑒Λ𝑄−1 𝑒Λ

𝑦′ = 𝐴𝑦 𝑦(0) = 𝑦0 𝑦(𝑡) = 𝑒𝐴𝑡𝑦0
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More on Factorizations

Plenty more used in different circumstances. Start by looking at structure

Usually have some connection to textbook algorithms, for example LU is Gaussian

elimination with pivoting and QR is Gram-Schmidt Process

Just as shortcuts can be done with sparse matrices in textbook examples, direct sparse

methods can be faster given enough sparsity

→ But don’t assume sparsity will be faster. Often slower unless matrices are big and

especially sparse

→ Dense algorithms on GPUs can be very fast because of parallelism

Keep in mind that barring numerical roundoff issues, these are “exact” methods. They

don’t become more accurate with more iterations
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Sparse Direct Solvers: The SciPy Fallback

JAX limitation: No native direct sparse solver (like UMFPACK/SuperLU)

For sparse systems, we fall back to SciPy

Note: For production sparse linear solves, use SciPy or interface with PETSc, not JAX

# Create sparse system1
N_sparse = 10002
A_sparse = sp.random(N_sparse, N_sparse, density=0.01, format='csr')3
A_sparse = A_sparse + sp.eye(N_sparse) * 10  # Make diagonally dominant4
b_sparse = np.random.rand(N_sparse)5

6
# Solve using SciPy's sparse solver (uses UMFPACK/SuperLU)7
x_sparse = spla.spsolve(A_sparse, b_sparse)8
print(f"Solved sparse system of size {N_sparse}x{N_sparse} with {A_sparse.nnz} non-zeros")9
print(f"Residual: {np.linalg.norm(A_sparse @ x_sparse - b_sparse):.2e}")10

Solved sparse system of size 1000x1000 with 10987 non-zeros
Residual: 1.71e-14
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Large Scale Systems of Equations

Packages that solve BIG problems with “direct methods” include , ,

, and many others

Sparse solvers are bread-and-butter scientific computing, so they can crush huge

problems, parallelize on a cluster, etc.

But for smaller problems they may not be ideal. Profile and test, and only if you need it.

On Python: scipy has many built in (UMFPACK, SuperLU, etc.) and many wrappers exist.

Same with Matlab

MUMPS Pardiso

UMFPACK
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Preview of Conditioning

It will turn out that for iterative methods, a different style of algorithm, it is often

necessary to multiply by a matrix to transform the problem

The ideal transform would be the matrix’s inverse, which requires a full factorization

But instead, you can do only part of the way towards the factorization. e.g., part of the

way on gaussian elimination

Called “Incomplete Cholesky”, “Incomplete LU”, etc.
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Continuous Time Markov Chains
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Markov Chains Transitions in Continuous Time

For a discrete number of states, we cannot have instantaneous transitions between

states or it ceases to be measurable

Instead: intensity of switching from state  to  as a  where

With  is . That is, .

𝑖 𝑗 𝑞𝑖𝑗

ℙ{𝑋(𝑡 + Δ) = 𝑗 |𝑋(𝑡)} = {𝑞𝑖𝑗Δ + 𝑜(Δ) 𝑖 ≠ 𝑗

1 + 𝑞𝑖𝑖Δ + 𝑜(Δ) 𝑖 = 𝑗

𝑜(Δ) little-o notation limΔ→0 𝑜(Δ)/Δ = 0
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Intensity Matrix

 for  and 

Rows sum to 0

For example, consider a counting process

𝑄𝑖𝑗 = 𝑞𝑖𝑗 𝑖 ≠ 𝑗 𝑄𝑖𝑖 = −∑𝑗≠𝑖 𝑞𝑖𝑗

𝑄 =

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

−0.1 0.1 0 0 0 0

0.1 −0.2 0.1 0 0 0

0 0.1 −0.2 0.1 0 0

0 0 0.1 −0.2 0.1 0

0 0 0 0.1 −0.2 0.1

0 0 0 0 0.1 −0.1

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
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Probability Dynamics

The  is the  of the stochastic process.

Let  with 

Then the probability distribution evolution (Fokker-Planck or KFE), is

Or, often written as , i.e. in terms of the “adjoint” of the linear operator 

A steady state is then a solution to 

→ i.e., the  left-eigenvector associated with eigenvalue 0 (i.e.  )

𝑄 infinitesimal generator

𝜋(𝑡) ∈ ℝ𝑁 𝜋𝑖(𝑡) ≡ ℙ[𝑋𝑡 = 𝑖 |𝑋0]

𝑑

𝑑𝑡
𝜋(𝑡) = 𝜋(𝑡)𝑄, given 𝜋(0)

𝑑
𝑑𝑡
𝜋(𝑡) = 𝑄⊤

⋅ 𝜋(𝑡) 𝑄

𝑄⊤
⋅ ¯𝜋 = 0

¯𝜋 ¯𝜋𝑄 = 0 × ¯𝜋
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Setting up a Counting Process
alpha = 0.11
N_ctmc = 62

3
# Create tridiagonal Q matrix4
lower_ctmc = jnp.full(N_ctmc-1, alpha)5
main_ctmc = jnp.concatenate([jnp.array([-alpha]),6
                             jnp.full(N_ctmc-2, -2*alpha),7
                             jnp.array([-alpha])])8
upper_ctmc = jnp.full(N_ctmc-1, alpha)9

10
# Build dense matrix for display11
Q = jnp.diag(main_ctmc) + jnp.diag(lower_ctmc, -1) + jnp.diag(upper_ctmc, 1)12
print("Q matrix:")13
print(Q)14

Q matrix:
[[-0.1  0.1  0.   0.   0.   0. ]
 [ 0.1 -0.2  0.1  0.   0.   0. ]
 [ 0.   0.1 -0.2  0.1  0.   0. ]
 [ 0.   0.   0.1 -0.2  0.1  0. ]
 [ 0.   0.   0.   0.1 -0.2  0.1]
 [ 0.   0.   0.   0.   0.1 -0.1]]
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Finding the Stationary Distribution

There will always be at least one eigenvalue of 0, and the corresponding eigenvector is

the stationary distribution

We use dense eigenvalue decomposition here (for iterative methods, see next lecture)

# Eigenvalue decomposition of Q^T1
eigenvalues, eigenvectors = jnp.linalg.eig(Q.T)2

3
# Find eigenvector corresponding to eigenvalue ≈ 04
idx = jnp.argmin(jnp.abs(eigenvalues))5
pi_stationary = eigenvectors[:, idx].real6
pi_stationary = pi_stationary / jnp.sum(pi_stationary)7

8
print(f"Eigenvalues:\n{eigenvalues.real}")9
print(f"\nStationary distribution:")10
print(pi_stationary)11

Eigenvalues:
[-3.7320518e-01 -3.0000022e-01 -2.0000000e-01 -9.9999972e-
02
 -1.0465228e-08 -2.6794920e-02]

Stationary distribution:
[0.16666669 0.16666669 0.16666669 0.16666666 0.16666664 
0.16666664]
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Using the Generator in a Bellman Equation

Let  be a vector of payoffs in each state, and  a discount rate

Then we can use the  generator as a simple Bellman Equation (using the Kolmogorov

Backwards Equation) to find the value  in each state

Rearranging, 

𝑟 ∈ ℝ𝑁 𝜌 > 0

𝑄

𝑣

𝜌𝑣 = 𝑟 +𝑄𝑣

(𝜌𝐼 −𝑄)𝑣 = 𝑟
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Implementing the Bellman Equation

Teaser: Can we use iterative methods to avoid forming the full matrix? See next lecture!

rho = 0.051
r = jnp.linspace(0.0, 10.0, N_ctmc)2

3
# Solve (rho * I - Q) v = r4
A_bellman = rho * jnp.eye(N_ctmc) - Q5
v = jnp.linalg.solve(A_bellman, r)6

7
print(f"Value function:")8
print(v)9

Value function:
[ 38.153847  57.230774  84.92308  115.076935 142.76924  
161.84616 ]
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