
Direct Methods and Matrix Factorizations

Machine Learning Fundamentals for Economists

Jesse Perla

University of British Columbia

jesse.perla@ubc.ca

 1 / 42

mailto:jesse.perla@ubc.ca
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Table of contents

Overview

Complexity

Matrix Structure

Factorizations

Continuous Time Markov Chains

 2 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Overview

 3 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Motivation

In preparation for the ML lectures we cover core numerical linear algebra concepts

Direct methods and matrix factorizations you’ll learn:

→ Computational complexity: Big-O notation and understanding what makes

operations expensive

→ Matrix structure: Exploiting sparsity, triangular, tridiagonal, and positive-definite

structure

→ Factorizations: LU, Cholesky, and eigenvalue decompositions for solving linear

systems

→ Applications: Continuous Time Markov Chains and Bellman equations

These methods solve problems to machine precision but scale with matrix size

In the , we’ll see iterative methods that trade precision for scalabilitynext lecture

 4 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/slides/iterative_methods.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Packages and Materials

See and associated notebooks

Python resources:

→ - JAX implementations of SciPy functions

→ - Linear solvers ()

QuantEcon Numerical Linear Algebra

JAX SciPy Documentation

Lineax Documentation Rader, Lyons, and Kidger 2023

import jax1
import jax.numpy as jnp2
import jax.scipy.linalg as jla3
import lineax as lx4
import scipy.sparse as sp5
import scipy.sparse.linalg as spla6
import numpy as np7
import time8

9
Set random seed for reproducibility10
key = jax.random.PRNGKey(42)11

 5 / 42

https://julia.quantecon.org/tools_and_techniques/numerical_linear_algebra.html
https://jax.readthedocs.io/en/latest/jax.scipy.html
https://docs.kidger.site/lineax/
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Complexity

 6 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Basic Computational Complexity

Big-O Notation

For a function and a positive constant , we say is , if there exist positive

constants and such that:

Often crucial to know how problems scale asymptotically (as)

Caution! This is only an asymptotic limit, and can be misleading for small

→ is

→ is

→ For roughly use algorithm, otherwise

𝑓(𝑁) 𝐶 𝑓(𝑁) 𝑂(𝑔(𝑁))

𝐶 𝑁0

0 ≤ 𝑓(𝑁) ≤ 𝐶 ⋅ 𝑔(𝑁) for all 𝑁 ≥ 𝑁0

𝑁→∞

𝑁

𝑓1(𝑁) = 𝑁 3 +𝑁 𝑂(𝑁 3)

𝑓2(𝑁) = 1000𝑁 2 + 3𝑁 𝑂(𝑁 2)

𝑁 > 1000 𝑓2 𝑓1

 7 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Examples of Computational Complexity

Simple examples:

→ is since it requires multiplications and additions

→ for is since it requires dot products, each

𝑥 ⋅ 𝑦 = ∑𝑁
𝑛=1 𝑥𝑛𝑦𝑛 𝑂(𝑁) 𝑁

𝐴𝑥 𝐴 ∈ ℝ𝑁×𝑁, 𝑥 ∈ ℝ𝑁 𝑂(𝑁 2) 𝑁 𝑂(𝑁)

 8 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Computational Complexity

Ask yourself whether the following is a computationally expensive operation as the matrix

size increases

Multiplying two matrices?

→ Answer: It depends. Multiplying two diagonal matrices is trivial.

Solving a linear system of equations?

→ Answer: It depends. If the matrix is the identity, the solution is the vector itself.

Finding the eigenvalues of a matrix?

→ Answer: It depends. The eigenvalues of a triangular matrix are the diagonal

elements.

 9 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Numerical Precision

Machine Epsilon

For a given datatype, is defined as

Computers have finite precision. 64-bit typical, but 32-bit on GPUs

𝜖 𝜖 = min𝛿>0 {𝛿 : 1 + 𝛿 > 1}

print(f"machine epsilon for float64 = {jnp.finfo(jnp.float64).eps}")1
print(f"1 + eps/2 == 1? {1.0 + 1.1e-16 == 1.0}")2
print(f"machine epsilon for float32 = {jnp.finfo(jnp.float32).eps}")3

machine epsilon for float64 = 2.220446049250313e-16
1 + eps/2 == 1? True
machine epsilon for float32 = 1.1920928955078125e-07

 10 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Matrix Structure

 11 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Matrix Structure

A key principle is to ensure you don’t lose “structure”

→ e.g. if sparse, operations should keep it sparse if possible

→ If triangular, then use appropriate algorithms instead of converting back to a dense

matrix

Key structure is:

→ Symmetry, diagonal, tridiagonal, banded, sparse, positive-definite

The worse operations for losing structure are matrix multiplication and inversion

 12 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Example Losing Sparsity

Here the density increases substantially

We use NumPy for sparse matrix creation (JAX sparse support is experimental)

Create sparse random matrix using scipy1
np.random.seed(42)2
A_sp = sp.random(10, 10, density=0.45, format='csr')3
print(f"Non-zeros in A: {A_sp.nnz}")4

5
Invert (must convert to dense)6
A_dense = A_sp.toarray()7
invA_dense = jnp.linalg.inv(A_dense)8
Count non-zeros (threshold for numerical zeros)9
invA_nnz = jnp.sum(jnp.abs(invA_dense) > 1e-10)10
print(f"Non-zeros in inv(A): {invA_nnz}")11

Non-zeros in A: 45
Non-zeros in inv(A): 100

 13 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Losing Tridiagonal Structure

An even more extreme example. Tridiagonal has roughly nonzeros. Inverses are

dense

3𝑁

𝑁
2

N = 51
Create tridiagonal matrix2
lower = jnp.concatenate([jnp.full(N-2, 0.1), jnp.array([0.2])])3
diag = jnp.full(N, 0.8)4
upper = jnp.concatenate([jnp.array([0.2]), jnp.full(N-2, 0.1)])5

6
Build full matrix for inversion7
A_tri = jnp.diag(diag) + jnp.diag(lower, -1) + jnp.diag(upper, 1)8
print("Inverse of tridiagonal (all elements non-zero):")9
print(jnp.linalg.inv(A_tri))10

Inverse of tridiagonal (all elements non-zero):
[[1.2909946e+00 -3.2795697e-01 4.1666660e-02 -5.3763431e-03
 6.7204301e-04]
 [-1.6397849e-01 1.3118279e+00 -1.6666664e-01 2.1505373e-02
 -2.6881720e-03]
 [2.0833330e-02 -1.6666664e-01 1.2916665e+00 -1.6666664e-01
 2.0833334e-02]
 [-2.6881718e-03 2.1505374e-02 -1.6666666e-01 1.3118279e+00
 -1.6397850e-01]
 [6.7204307e-04 -5.3763445e-03 4.1666668e-02 -3.2795700e-01
 1.2909946e+00]]

 14 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Forming the Covariance and/or Gram Matrix

Another common example is 𝐴𝑇
𝐴

A_sp = sp.random(20, 21, density=0.3, format='csr')1
print(f"Sparsity of A: {A_sp.nnz / (20*20):.2%}")2
ATA = A_sp.T @ A_sp3
print(f"Sparsity of A'A: {ATA.nnz / (21*21):.2%}")4

Sparsity of A: 31.50%
Sparsity of A'A: 85.94%

 15 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Specialized Algorithms

Besides sparsity/storage, the real loss is you miss out on algorithms

We’ll compare dense vs. sparse vs. tridiagonal solvers

 16 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Compare Dense vs. Sparse vs. Tridiagonal

Key insight: Lineax uses a direct parallel scan solver (O(N)), much faster than dense solve (O(N^3))

N = 10001
key, subkey = jax.random.split(key)2
b = jax.random.uniform(subkey, (N,))3

4
Create tridiagonal matrix5
lower_diag = jnp.concatenate([jnp.full(N-2, 0.1), jnp.array([0.2])])6
main_diag = jnp.full(N, 0.8)7
upper_diag = jnp.concatenate([jnp.array([0.2]), jnp.full(N-2, 0.1)])8

9
Lineax tridiagonal operator (uses parallel scan, O(N))10
A_tri_op = lx.TridiagonalLinearOperator(main_diag, lower_diag, upper_diag)11
Dense matrix for comparison12
A_dense = jnp.diag(main_diag) + jnp.diag(lower_diag, -1) + jnp.diag(upper_diag, 1)13

14
Warmup both solvers (JIT compilation happens on first call)15
_ = lx.linear_solve(A_tri_op, b).value.block_until_ready()16
_ = jnp.linalg.solve(A_dense, b).block_until_ready()17

18
start = time.perf_counter()19
x_tri = lx.linear_solve(A_tri_op, b).value20
x_tri.block_until_ready()21
tri_time = time.perf_counter() - start22

23
Dense solve (O(N^3))24
start = time.perf_counter()25
x_dense = jnp.linalg.solve(A_dense, b)26
x_dense.block_until_ready()27
dense time = time perf counter() start28

Tridiagonal (Lineax): 2.01 ms
Dense (JAX): 14.95 ms
Speedup: 7.4x

 17 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Triangular Matrices and Back/Forward Substitution

A key example of a better algorithm is for triangular matrices

Upper or lower triangular matrices can be solved in instead of 𝑂(𝑁 2) 𝑂(𝑁 3)

b_small = jnp.array([1.0, 2.0, 3.0])1
U = jnp.array([[1.0, 2.0, 3.0],2
 [0.0, 5.0, 6.0],3
 [0.0, 0.0, 9.0]])4
x = jla.solve_triangular(U, b_small, lower=False)5
print(f"Solution: {x}")6

Solution: [0. 0. 0.33333334]

 18 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Backwards Substitution Example

Solving bottom row for

Move up a row, solving for , substituting for

Generalizes to many rows. For it is “forward substitution”

𝑈𝑥 = 𝑏

𝑈 ≡ [3 1

0 2
] , 𝑏 = [7

2
]

𝑥2

2𝑥2 = 2, 𝑥2 = 1

𝑥1 𝑥2

3𝑥1 + 1𝑥2 = 7, 3𝑥1 + 1 × 1 = 7, 𝑥1 = 2

𝐿

 19 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Factorizations

 20 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Factorizing Matrices

Just like you can factor , you can factor matrices

Unlike integers, you have more choice over the properties of the factors

Many operations (e.g., solving systems of equations, finding eigenvalues, inverting,

finding determinants) have a factorization done internally

→ Instead you can often just find the factorization and reuse it

Key factorizations: LU, QR, Cholesky, SVD, Schur, Eigenvalue

6 = 2 ⋅ 3

 21 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

LU(P) Decompositions

We can “factor” any square into for triangular and . P is for partial-

pivoting

If invertible, then a exists, but may not be numerically stable without pivoting

Returns explicit matrices P, L, U (not a factorization object)

𝐴 𝑃𝐴 = 𝐿𝑈 𝐿 𝑈

𝐴 = 𝐿𝑈

N_lu = 41
key, subkey = jax.random.split(key)2
A = jax.random.uniform(subkey, (N_lu, N_lu))3
key, subkey = jax.random.split(key)4
b_lu = jax.random.uniform(subkey, (N_lu,))5

6
LU factorization returns explicit matrices7
P, L, U = jla.lu(A)8
print(f"P @ A ≈ L @ U? {jnp.allclose(P @ A, L @ U)}")9

P @ A ≈ L @ U? True

 22 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Using LU Factorization

To solve, use triangular solves manually or use jnp.linalg.solve

Manual solve using LU: solve L(Ux) = Pb1
y = jla.solve_triangular(L, P @ b_lu, lower=True)2
x_lu = jla.solve_triangular(U, y, lower=False)3

4
Direct solve for comparison5
x_direct = jnp.linalg.solve(A, b_lu)6

7
print(f"LU solution: {x_lu}")8
print(f"Direct solution: {x_direct}")9
print(f"Solutions match? {jnp.allclose(x_lu, x_direct)}")10

LU solution: [-2.7407506 0.50105435 2.7111826 1.1074696]
Direct solution: [-2.7407506 0.50105435 2.7111826 1.1074696]
Solutions match? True

 23 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

LU Decompositions and Systems of Equations

Pivoting is typically implied when talking about “LU”

Used in the default solve algorithm (without more structure)

Solving systems of equations with triangular matrices: for

1. Define

2. Solve for and for

Since both are triangular, process is (but LU itself)

Could be used to find inv

→ then

→ Solve for in , then solve

Tight connection to textbook Gaussian elimination (including pivoting)

𝐴𝑥 = 𝐿𝑈𝑥 = 𝑏

𝑦 = 𝑈𝑥

𝐿𝑦 = 𝑃𝑏 𝑦 𝑈𝑥 = 𝑦 𝑥

𝑂(𝑁 2) 𝑂(𝑁 3)

𝐴 = 𝐿𝑈 𝐴𝐴−1 = 𝐼 = 𝐿𝑈𝐴−1 = 𝐼

𝑌 𝐿𝑌 = 𝑃 𝑈𝐴−1 = 𝑌

 24 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Cholesky

LU is for general invertible matrices, but it doesn’t use positive-definiteness or symmetry

The Cholesky is the right factorization for positive-definite matrices

 for lower triangular (or for upper triangular)𝐴 = 𝐿𝐿𝑇 𝐿 𝐴 = 𝑈𝑇𝑈

N_chol = 5001
key, subkey = jax.random.split(key)2
B = jax.random.uniform(subkey, (N_chol, N_chol))3
A_pd = B.T @ B # Easy way to generate positive definite matrix4
print(f"A is symmetric? {jnp.allclose(A_pd, A_pd.T)}")5

A is symmetric? True

 25 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Comparing Cholesky
key, subkey = jax.random.split(key)1
b_chol = jax.random.uniform(subkey, (N_chol,))2

3
Cholesky factorization4
L_chol = jla.cholesky(A_pd, lower=True)5

6
Solve using Cholesky7
y_chol = jla.solve_triangular(L_chol, b_chol, lower=True)8
x_chol = jla.solve_triangular(L_chol.T, y_chol, lower=False)9

10
Warmup both solvers (JIT compilation happens on first call)11
_ = jnp.linalg.solve(A_pd, b_chol).block_until_ready()12
_ = jla.cholesky(A_pd, lower=True).block_until_ready()13
_ = jla.solve_triangular(L_chol, b_chol, lower=True).block_until_ready()14
_ = jla.solve_triangular(L_chol.T, y_chol, lower=False).block_until_ready()15

16
Direct solve (doesn't know it's positive definite)17
start = time.perf_counter()18
x_direct = jnp.linalg.solve(A_pd, b_chol)19
x_direct.block_until_ready()20
direct_time = time.perf_counter() - start21

22
Cholesky solve23
start = time.perf_counter()24
L_chol = jla.cholesky(A_pd, lower=True)25
y_chol = jla.solve_triangular(L_chol, b_chol, lower=True)26
x_chol = jla.solve_triangular(L_chol.T, y_chol, lower=False)27
x chol block until ready()28

Direct solve: 3.02 ms
Cholesky solve: 2.63 ms
Speedup: 1.1x

 26 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Eigen Decomposition

For square, symmetric, non-singular matrix factor into

 is a matrix of eigenvectors, is a diagonal matrix of paired eigenvalues

For symmetric matrices, the eigenvectors are orthogonal and which

form an orthonormal basis

Orthogonal matrices can be thought of as rotations without stretching

More general matrices all have a Singular Value Decomposition (SVD)

With symmetric , an interpretation of is that we can first rotate into the basis,

then stretch by , then rotate back

𝐴

𝐴 = 𝑄Λ𝑄−1

𝑄 Λ

𝑄−1𝑄 = 𝑄𝑇𝑄 = 𝐼

𝐴 𝐴𝑥 𝑥 𝑄

Λ

 27 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Calculating the Eigen Decomposition
key, subkey = jax.random.split(key)1
A_sym = jax.random.uniform(subkey, (5, 5))2
A_sym = (A_sym + A_sym.T) / 2 # Make symmetric3

4
Eigenvalue decomposition5
eigenvalues, Q = jnp.linalg.eigh(A_sym) # eigh for symmetric/Hermitian6
Lambda = jnp.diag(eigenvalues)7

8
print(f"||Q Λ Q^-1 - A||: {jnp.linalg.norm(Q @ Lambda @ jnp.linalg.inv(Q) - A_sym):.2e}")9
print(f"||Q Λ Q^T - A||: {jnp.linalg.norm(Q @ Lambda @ Q.T - A_sym):.2e}")10

||Q Λ Q^-1 - A||: 7.66e-07
||Q Λ Q^T - A||: 6.90e-07

 28 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Eigendecompositions and Matrix Powers

Can be used to find for large (e.g. for Markov chains)

→ , i.e. for times

→ then where is just the pointwise power

Related can find matrix exponential for square matrices

→ where is just the pointwise exponential

→ Useful for solving differential equations, e.g. for is

𝐴𝑡 𝑡

𝑃𝑡 𝑃 ⋅ 𝑃 ⋅… ⋅ 𝑃 𝑡

𝑃 = 𝑄Λ𝑄−1 𝑃𝑡 = 𝑄Λ𝑡𝑄−1 Λ𝑡

𝑒𝐴

𝑒𝐴 = 𝑄𝑒Λ𝑄−1 𝑒Λ

𝑦′ = 𝐴𝑦 𝑦(0) = 𝑦0 𝑦(𝑡) = 𝑒𝐴𝑡𝑦0

 29 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

More on Factorizations

Plenty more used in different circumstances. Start by looking at structure

Usually have some connection to textbook algorithms, for example LU is Gaussian

elimination with pivoting and QR is Gram-Schmidt Process

Just as shortcuts can be done with sparse matrices in textbook examples, direct sparse

methods can be faster given enough sparsity

→ But don’t assume sparsity will be faster. Often slower unless matrices are big and

especially sparse

→ Dense algorithms on GPUs can be very fast because of parallelism

Keep in mind that barring numerical roundoff issues, these are “exact” methods. They

don’t become more accurate with more iterations

 30 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Sparse Direct Solvers: The SciPy Fallback

JAX limitation: No native direct sparse solver (like UMFPACK/SuperLU)

For sparse systems, we fall back to SciPy

Note: For production sparse linear solves, use SciPy or interface with PETSc, not JAX

Create sparse system1
N_sparse = 10002
A_sparse = sp.random(N_sparse, N_sparse, density=0.01, format='csr')3
A_sparse = A_sparse + sp.eye(N_sparse) * 10 # Make diagonally dominant4
b_sparse = np.random.rand(N_sparse)5

6
Solve using SciPy's sparse solver (uses UMFPACK/SuperLU)7
x_sparse = spla.spsolve(A_sparse, b_sparse)8
print(f"Solved sparse system of size {N_sparse}x{N_sparse} with {A_sparse.nnz} non-zeros")9
print(f"Residual: {np.linalg.norm(A_sparse @ x_sparse - b_sparse):.2e}")10

Solved sparse system of size 1000x1000 with 10987 non-zeros
Residual: 1.71e-14

 31 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Large Scale Systems of Equations

Packages that solve BIG problems with “direct methods” include , ,

, and many others

Sparse solvers are bread-and-butter scientific computing, so they can crush huge

problems, parallelize on a cluster, etc.

But for smaller problems they may not be ideal. Profile and test, and only if you need it.

On Python: scipy has many built in (UMFPACK, SuperLU, etc.) and many wrappers exist.

Same with Matlab

MUMPS Pardiso

UMFPACK

 32 / 42

https://mumps-solver.org/index.php
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-0/onemkl-pardiso-parallel-direct-sparse-solver-iface.html
https://en.wikipedia.org/wiki/UMFPACK
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Preview of Conditioning

It will turn out that for iterative methods, a different style of algorithm, it is often

necessary to multiply by a matrix to transform the problem

The ideal transform would be the matrix’s inverse, which requires a full factorization

But instead, you can do only part of the way towards the factorization. e.g., part of the

way on gaussian elimination

Called “Incomplete Cholesky”, “Incomplete LU”, etc.

 33 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Continuous Time Markov Chains

 34 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Markov Chains Transitions in Continuous Time

For a discrete number of states, we cannot have instantaneous transitions between

states or it ceases to be measurable

Instead: intensity of switching from state to as a where

With is . That is, .

𝑖 𝑗 𝑞𝑖𝑗

ℙ{𝑋(𝑡 + Δ) = 𝑗 |𝑋(𝑡)} = {𝑞𝑖𝑗Δ + 𝑜(Δ) 𝑖 ≠ 𝑗

1 + 𝑞𝑖𝑖Δ + 𝑜(Δ) 𝑖 = 𝑗

𝑜(Δ) little-o notation limΔ→0 𝑜(Δ)/Δ = 0

 35 / 42

https://en.wikipedia.org/wiki/Big_O_notation#Little-o_notation
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Intensity Matrix

 for and

Rows sum to 0

For example, consider a counting process

𝑄𝑖𝑗 = 𝑞𝑖𝑗 𝑖 ≠ 𝑗 𝑄𝑖𝑖 = −∑𝑗≠𝑖 𝑞𝑖𝑗

𝑄 =

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

−0.1 0.1 0 0 0 0

0.1 −0.2 0.1 0 0 0

0 0.1 −0.2 0.1 0 0

0 0 0.1 −0.2 0.1 0

0 0 0 0.1 −0.2 0.1

0 0 0 0 0.1 −0.1

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

 36 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Probability Dynamics

The is the of the stochastic process.

Let with

Then the probability distribution evolution (Fokker-Planck or KFE), is

Or, often written as , i.e. in terms of the “adjoint” of the linear operator

A steady state is then a solution to

→ i.e., the left-eigenvector associated with eigenvalue 0 (i.e.)

𝑄 infinitesimal generator

𝜋(𝑡) ∈ ℝ𝑁 𝜋𝑖(𝑡) ≡ ℙ[𝑋𝑡 = 𝑖 |𝑋0]

𝑑

𝑑𝑡
𝜋(𝑡) = 𝜋(𝑡)𝑄, given 𝜋(0)

𝑑
𝑑𝑡
𝜋(𝑡) = 𝑄⊤

⋅ 𝜋(𝑡) 𝑄

𝑄⊤
⋅ ¯𝜋 = 0

¯𝜋 ¯𝜋𝑄 = 0 × ¯𝜋

 37 / 42

https://en.wikipedia.org/wiki/Infinitesimal_generator_(stochastic_processes)
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Setting up a Counting Process
alpha = 0.11
N_ctmc = 62

3
Create tridiagonal Q matrix4
lower_ctmc = jnp.full(N_ctmc-1, alpha)5
main_ctmc = jnp.concatenate([jnp.array([-alpha]),6
 jnp.full(N_ctmc-2, -2*alpha),7
 jnp.array([-alpha])])8
upper_ctmc = jnp.full(N_ctmc-1, alpha)9

10
Build dense matrix for display11
Q = jnp.diag(main_ctmc) + jnp.diag(lower_ctmc, -1) + jnp.diag(upper_ctmc, 1)12
print("Q matrix:")13
print(Q)14

Q matrix:
[[-0.1 0.1 0. 0. 0. 0.]
 [0.1 -0.2 0.1 0. 0. 0.]
 [0. 0.1 -0.2 0.1 0. 0.]
 [0. 0. 0.1 -0.2 0.1 0.]
 [0. 0. 0. 0.1 -0.2 0.1]
 [0. 0. 0. 0. 0.1 -0.1]]

 38 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Finding the Stationary Distribution

There will always be at least one eigenvalue of 0, and the corresponding eigenvector is

the stationary distribution

We use dense eigenvalue decomposition here (for iterative methods, see next lecture)

Eigenvalue decomposition of Q^T1
eigenvalues, eigenvectors = jnp.linalg.eig(Q.T)2

3
Find eigenvector corresponding to eigenvalue ≈ 04
idx = jnp.argmin(jnp.abs(eigenvalues))5
pi_stationary = eigenvectors[:, idx].real6
pi_stationary = pi_stationary / jnp.sum(pi_stationary)7

8
print(f"Eigenvalues:\n{eigenvalues.real}")9
print(f"\nStationary distribution:")10
print(pi_stationary)11

Eigenvalues:
[-3.7320518e-01 -3.0000022e-01 -2.0000000e-01 -9.9999972e-
02
 -1.0465228e-08 -2.6794920e-02]

Stationary distribution:
[0.16666669 0.16666669 0.16666669 0.16666666 0.16666664
0.16666664]

 39 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Using the Generator in a Bellman Equation

Let be a vector of payoffs in each state, and a discount rate

Then we can use the generator as a simple Bellman Equation (using the Kolmogorov

Backwards Equation) to find the value in each state

Rearranging,

𝑟 ∈ ℝ𝑁 𝜌 > 0

𝑄

𝑣

𝜌𝑣 = 𝑟 +𝑄𝑣

(𝜌𝐼 −𝑄)𝑣 = 𝑟

 40 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Implementing the Bellman Equation

Teaser: Can we use iterative methods to avoid forming the full matrix? See next lecture!

rho = 0.051
r = jnp.linspace(0.0, 10.0, N_ctmc)2

3
Solve (rho * I - Q) v = r4
A_bellman = rho * jnp.eye(N_ctmc) - Q5
v = jnp.linalg.solve(A_bellman, r)6

7
print(f"Value function:")8
print(v)9

Value function:
[38.153847 57.230774 84.92308 115.076935 142.76924
161.84616]

 41 / 42

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

References
Rader, Jason, Terry Lyons, and Patrick Kidger. 2023. “Lineax: Unified Linear Solves and Linear Least-Squares in JAX and

Equinox.” AI for Science Workshop at Neural Information Processing Systems 2023. .https://arxiv.org/abs/2311.17283

 42 / 42

https://arxiv.org/abs/2311.17283
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

