
Symbolic, Numerical, and Automatic Differentiation

Machine Learning Fundamentals for Economists

Jesse Perla

University of British Columbia

jesse.perla@ubc.ca

 1 / 50

mailto:jesse.perla@ubc.ca
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Table of contents

Overview

Numerical Derivatives

Symbolic Differentiation

Automatic Differentiation

AD Implementation and Examples

Implicit Differentiation and Custom Rules

 2 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Overview

 3 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Why the Emphasis on Differentiation?

Modern ML would be impossible without (1) software that makes calculating gradients

easy; and (2) specialized hardware

Old methods, but flexible software + hardware have radically changed the scale of

problems we can solve

You simply can’t solve large problems (or sample from high-dimensional distributions)

without gradients, or jacobian of constraints

A mental shift was towards “differentiable programming”, i.e. to treat entire software

programs as differentiable, nested functions

→ As long as you have helpful software to manage the bookkeeping

→ You can differentiate almost anything continuous, and at least expectations or

distributions of almost anything discrete

 4 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Types of Differentiation

A few general types of differentiation

1. Numerical Differentiation (i.e., finite differences)

2. Symbolic Differentiation (i.e., chain rule and simplify subexpressions by hand)

3. Automatic Differentiation (i.e., execute chain rule on computer)

Use the chain rule forwards vs. backwards

Think matrix-free methods

4. Sparse Differentiation (i.e., use one of the above to calculate directional derivatives,

potentially filling in sparse Jacobians with fewer passes)

 5 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Numerical Derivatives

 6 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Finite Differences

With , take as the th standard basis vector

Requires forward passes for the full . Same as forward-mode AD.

Good rule of thumb with above is

Tough tradeoffs: roundoff vs. truncation errors

→ too small hit machine precision errors, especially with GPUs

→ too large and the approximation is bad

Still useful in many cases, especially for sparse problems

𝑓 : ℝ𝑁 → ℝ
𝑀 𝑒𝑖 𝑖

𝜕𝑓(𝑥)

𝜕𝑥𝑖
≈
𝑓(𝑥 + 𝜖𝑒𝑖) − 𝑓(𝑥)

𝜖

𝑁 ∇𝑓(𝑥)

𝜖 = √𝜖machine

𝜖

𝜖

 7 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

More Points for More Accuracy

Trickier in practice to handle tradeoff than you might expect

Could use more points which improves accuracy at the cost of more function

evaluations. e.g. 5 point central differences

In that case, use

𝑓′(𝑥) ≈
−𝑓(𝑥 − 2𝜖) + 8𝑓(𝑥 − 𝜖) − 8𝑓(𝑥 + 𝜖) + 𝑓(𝑥 + 2𝜖)

12𝜖

𝜖 = 4
√𝜖machine

 8 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Symbolic Differentiation

 9 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Roll up Your Sleeves

Do it by hand, or use Mathematica/Sympy/etc

Seems like it should always be better?

→ Often identical to auto-differentiation, though it gives you more control over algebra

with subexpressions. Prone to algebra or coding errors

→ Substituting expressions could speed things up (or slow things down)

→ Less overhead than many auto-differentiation methods, which may lead to better

performance. Or may not if you do a different calculation (e.g. flatten the

computational graph)

Very useful in many cases, even if only for designing new AD “primitives”

 10 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Sub-Expressions and Computational Graphs

Take . Would you want to substitute/simplify the gradient?

x g(x)

h(g(x))

f(g(x), h(g(x)))

𝑓(𝑔(𝑥), ℎ(𝑔(𝑥)))

𝑓′(𝑥) = 𝑔′(𝑥)𝑓1(𝑔(𝑥), ℎ(𝑔(𝑥))) + 𝑔′(𝑥)ℎ′(𝑔(𝑥))𝑓2(𝑔(𝑥), ℎ(𝑔(𝑥)))

 11 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Automatic Differentiation

 12 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Let the Computer Execute the Chain Rule

Auto-differentiation/differentiable programming works on “computer programs”. i.e.,

computational graphs are just functions

1. Converts the program into a computational graph (i.e., nested functions)

2. Apply the chain rule to the computational graph recursively

3. Provide library of “primitives” where the recursion stops, and provides registration of

new primitives to teach the computer calculus

Finally: many frameworks will compile the resulting sequence of operations to be efficient on

a GPU since this is so central to deep learning performance

 13 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Forward and Reverse Mode

The chain rule can be done forwards or backwards

See for good examples. Intuition for :

→ Forward-Mode: grab one of the inputs and wiggle it to see impact on all

outputs. Need passes to get full Jacobian

→ Reverse-Mode: grab one of the outputs and wobble it to see impact on all

inputs. Need passes to get full Jacobian

Hence, reverse-mode is good for calculating gradients when (e.g. neural

networks). If gradients are the same complexity as evaluating the function

Reverse-mode has significant overhead, so often forward-mode is preferred even if

Wikipedia 𝑓 : ℝ𝑁 → ℝ
𝑀

𝑁 𝑀

𝑁

𝑀 𝑁

𝑀

𝑁 ≫𝑀

𝑀 = 1

𝑁

>𝑀

 14 / 50

https://en.wikipedia.org/wiki/Automatic_differentiation#Forward_and_reverse_accumulation
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Forward and Backwards With the Computational Graph

See for classic treatment, and Section 13.3 for a special

case

Useful to read, but missing key linear algebra interpretations that are useful for

understanding how to adapt AD

Instead, we will think of AD as linearization/etc. and follow

and the JAX documentation

→ While we won’t cover it, this is much more amenable to higher-order derivatives and

perturbations

wikipedia ProbML: Introduction

ProbML: Advanced Topics

 15 / 50

https://en.wikipedia.org/wiki/Automatic_differentiation#Forward_and_reverse_accumulation
https://probml.github.io/pml-book/book1.html
https://probml.github.io/pml-book/book2.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Reminder: Filling in a Matrix from a Linear Operator

A standard basis in is and

Given linear operator and adjoint how can we get the

underlying matrix (i.e. such that for all)?

1. Use the standard basis vectors and calculate

Gives two columns of the matrix, so

2. Use the standard basis vectors (now of) and calculate

Gives the three columns of , i.e.

ℝ
2

𝑒1 = [1 0]
⊤

𝑒2 = [0 1]
⊤

A : ℝ2
→ ℝ

3 A⊤ : ℝ3
→ ℝ

2

𝐴 A(𝑣) = 𝐴𝑣 𝑣 ∈ ℝ
2

𝑒1, 𝑒2 A(𝑒1),A(𝑒2)

𝐴 𝐴 = [A(𝑒1) A(𝑒2)]

𝑒1, 𝑒2, 𝑒3 ℝ
3

A⊤(𝑒1),A
⊤(𝑒2),A

⊤(𝑒3)

𝐴
⊤

𝐴
⊤ = [A⊤(𝑒1) A⊤(𝑒2) A⊤(𝑒3)]

 16 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Jacobians and Linearization

Differentiation linearizes around a point, yielding the Jacobian

i.e., for , then maps to an Jacobian matrix

→ But remember matrix-free linear operators!

Instead of the Jacobian as a matrix, think of matrix-vector products and

 as a linear operator

→ Note: is the linearization point in that notation, not the argument

See Chapter 6

𝑓 : ℝ𝑁 → ℝ
𝑀 𝑥→ 𝜕𝑓(𝑥) 𝑁 ×𝑀

𝜕𝑓(𝑥) : ℝ𝑁

→ ℝ
𝑀

𝑥

ProbML: Advanced Topics

 17 / 50

https://probml.github.io/pml-book/book2.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Push-Forwards and JVPs

Denote the operator, linearized around , and applied to as

→ This is called the “push-forward”. The Jacobian Vector Product (JVP)

→ i.e. , as the product of the jacobian and a direction

JAX (and others) will take an and an and compile a new function from to that

calculates

𝑥 𝑣 ∈ℕ

(𝑥, 𝑣) ↦ 𝜕𝑓(𝑥)[𝑣] ∈ ℝ𝑀

∇𝑓(𝑥) ⋅ 𝑣

𝑓 𝑥 ℝ
𝑁

ℝ
𝑀

𝜕𝑓(𝑥)[𝑣]

 18 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Adjoints, Pullbacks, and VJPs

Just as we can transpose a linear operator, we can transpose the Jacobian around the

linearization point,

Which lets us define the “pullback”:

Just as with matrix-free linear operators, we can think of this as an inner product: The

Vector Jacobian Product (VJP)

i.e., or is the reason for the “adjoint” terminology

JAX (and others) will take an and an and compile a new function from to that

calculates

𝑥

𝜕𝑓(𝑥)⊤ : ℝ𝑀 → ℝ
𝑁

(𝑥,𝑢) ↦ 𝜕𝑓(𝑥)⊤[𝑢] ∈ ℝ𝑁

𝑢 ⋅ ∇𝑓(𝑥) ∇𝑓(𝑥)⊤ ⋅ 𝑢

𝑓 𝑥 ℝ
𝑀

ℝ
𝑁

𝜕𝑓(𝑥)⊤[𝑢]

 19 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Example of a Jacobian

Let be defined as

Then

𝑓 : ℝ2
→ ℝ

2

𝑓(𝑥) ≡ [𝑥2
1 + 𝑥2

2

𝑥1𝑥2
]

∇𝑓(𝑥) ≡ [2𝑥1 2𝑥2

𝑥2 𝑥1
]

 20 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

JVP

Let , i.e. the in the standard basis then

Each gives a column of the Jacobian

Could use to get the full Jacobian

𝑣 = [1 0]
⊤ 𝑒1

𝜕𝑓(𝑥)[𝑣] = ∇𝑓(𝑥) ⋅ [1
0
] = [2𝑥1

𝑥2
]

𝑒1, … , 𝑒𝑁

 21 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

VJP

Let , i.e. the in the standard basis then

The first row of the Jacobian (or the first column of its transpose)

Could use we can get the full Jacobian

𝑢 = [1 0]
⊤ 𝑒1

𝜕𝑓(𝑥)⊤[𝑢] = [1 0] ⋅ ∇𝑓(𝑥) = [2𝑥1 2𝑥2]

𝑒1, … , 𝑒𝑀

 22 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Chain Rule for JVP

Consider with

JVP against an input perturbation

Moving inside out because as we perturbing inputs

𝑓 : ℝ𝑁 → ℝ
𝑀 𝑓 = 𝑐 ∘ 𝑏 ∘ 𝑎

𝜕𝑓(𝑥) = 𝜕𝑐(𝑏(𝑎(𝑥))) ∘ 𝜕𝑏(𝑎(𝑥)) ∘ 𝜕𝑎(𝑥)

𝑣 ∈ ℝ𝑁

𝜕𝑓(𝑥)[𝑣] = 𝜕𝑐(𝑏(𝑎(𝑥))) [𝜕𝑏(𝑎(𝑥))[𝜕𝑎(𝑥)[𝑣]]]

 23 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Calculation Order for JVP Chain Rule

Calculation order inside out, recursively finding linearization points:

1. and

2. and

3. (and if required)

Conveniently follows calculating “primal” calculation. Many ways to do it (e.g. overloading,

duals)

Can calculate the “primal” and the “push-forward” at the same time

𝜕𝑓(𝑥)[𝑣] = 𝜕𝑐(𝑏(𝑎(𝑥))) [𝜕𝑏(𝑎(𝑥))[𝜕𝑎(𝑥)[𝑣]]]

𝜕𝑎(𝑥)[𝑣] 𝑎(𝑥)

𝜕𝑏(𝑎(𝑥))[𝜕𝑎(𝑥)[𝑣]] 𝑏(𝑎(𝑥))

𝜕𝑐(𝑏(𝑎(𝑥)))[𝜕𝑏(𝑎(𝑥))[𝜕𝑎(𝑥)[𝑣]]] 𝑐(𝑏(𝑎(𝑥)))

 24 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Chain Rule for VJP

Take the transpose,

In particular, if we multiply by some (i.e.,), we get

𝜕𝑓(𝑥) = 𝜕𝑐(𝑏(𝑎(𝑥))) ∘ 𝜕𝑏(𝑎(𝑥)) ∘ 𝜕𝑎(𝑥)

𝜕𝑓(𝑥)⊤ = 𝜕𝑎(𝑥)⊤ ∘ 𝜕𝑏(𝑎(𝑥))⊤ ∘ 𝜕𝑐(𝑏(𝑎(𝑥)))⊤

𝑢 ∈ ℝ𝑀 𝑢 ⋅ ∇𝑓(𝑥)

𝜕𝑓(𝑥)⊤[𝑢] = 𝜕𝑎(𝑥)⊤ [𝜕𝑏(𝑎(𝑥))⊤ [𝜕𝑐(𝑏(𝑎(𝑥)))⊤[𝑢]]]

 25 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Calculation Order for VJP Chain Rule

Calculation order outside in (of original):

1. (i.e., the “primal” calculations required for linearization points)

2.

3.

4.

Unlike with JVP, we need the full calculations before going backwards through the

computational graph at the end (i.e., “backprop” terminology)

𝜕𝑓(𝑥)⊤[𝑢] = 𝜕𝑎(𝑥)⊤ [𝜕𝑏(𝑎(𝑥))⊤ [𝜕𝑐(𝑏(𝑎(𝑥)))⊤[𝑢]]]

𝑎(𝑥), 𝑏(𝑎(𝑥)), 𝑐(𝑏(𝑎(𝑥)))

𝜕𝑐(𝑏(𝑎(𝑥)))⊤[𝑢]

𝜕𝑏(𝑎(𝑥))⊤[𝜕𝑐(𝑏(𝑎(𝑥)))⊤[𝑢]]

𝜕𝑎(𝑥)⊤[𝜕𝑏(𝑎(𝑥))⊤[𝜕𝑐(𝑏(𝑎(𝑥)))⊤[𝑢]]]

 26 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Complexity with Reverse-Mode AD

In principle for can calculate in the same computational order as

itself - independent of

→ This is a key part of the secret sauce that makes ML possible

But in practice it isn’t quite so simple

→ Requires storage for entire “primal” graph before going backwards (unlike forward-

mode). Inplace operations in primal often useless

→ Requires more complicated code to keep track of the steps in the computational

graph, which creates overhead

This means that often forward-mode will be faster even when (e.g., mabye 50-

100 dimensions, but depends)

𝑓 : ℝ𝑁 → ℝ ∇𝑓(𝑥) 𝑓

𝑁

𝑁 >𝑀

 27 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Sparse Differentiation

For the full Jacobian a you need either forward passes or backwards

passes

→ But if sparse, then maybe could use better directional derivatives than

→ e.g. Tridiagonal matrices can be done with 3 directional derivatives.

See and use

→ See for an experimental version in JAX?

Finding the right directional derivatives is hard and requires knowing the sparsity pattern

(and solves a problem equivalent to graph coloring)

𝑓 : ℝ
𝑁
→ ℝ

𝑀 𝑁 𝑀

𝑒𝑖

SparseDiffTools.jl FiniteDiff.jl

sparsejac

 28 / 50

https://github.com/JuliaDiff/SparseDiffTools.jl
https://github.com/JuliaDiff/FiniteDiff.jl#tutorial-2-fast-sparse-jacobians
https://github.com/mfschubert/sparsejac
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

AD Implementation and Examples

 29 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Software and Implementation

Tracking the computational graph for reverse-mode is tricky (especially if there were

inplace modifications)

→ Mutating support rare for reverse-mode, functional style typical

The recursion goes forwards, backwards, or both both ways down the computational

graph until it hits a primitive

→ Recursion stops when it hits a function that has JVP/VJP implemented

These are two extreme cases, where in principle you can mix then (e.g., an internal a

function has , where , then use forward-mode from and

reverse-mode from)

Similar methods apply for higher order derivatives, e.g. Hessian-vector products and

taylor series

ℝ
𝑁
→ ℝ

𝐾
→ ℝ 𝐾 ≫ 𝑁 𝐾→ 𝑁

𝑁→ 1

 30 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Pytorch

See

Reverse-mode centric, especially convenient for neural networks but can be confusing for

general functions

In general, you will find it the most convenient for a standard supervised learning

problems (e.g. neural networks with empirical risk minimization)

We will discuss later when we look at ML pipelines

Probabilistic ML: Chapter 8 Notebook

import torch1

 31 / 50

https://github.com/probml/pyprobml/blob/master/notebooks/book1/08/autodiff_pytorch.ipynb
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Example with Pytorch .backward()

Reverse-mode AD passes values with requires_grad=True

Traces the intermediates, and does the AD on .backward()

x = torch.tensor(2.0, requires_grad=True)1
Trace computations for the "forward" pass2
y = torch.tanh(x)3
Do the "backward" pass for Reverse-mode AD4
y.backward()5
print(x.grad)6

7
def f(x, y):8
 return x**3 + 2 * y[0]**2 - 3 * y[1] + 19

10
x = torch.tensor(1.0, requires_grad=True)11
y = torch.tensor([2.0, 3.0],12
 requires_grad=True)13
z = f(x, y)14
z.backward()15
print(x.grad, y.grad)16

tensor(0.0707)
tensor(3.) tensor([8., -3.])

 32 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

JAX

Very flexible with high level tools (e.g. grad is reverse-diff) as well as lower-level

functions to directly use jvp, vjp, and hessian-vector products

Emphasizing JAX here because non-trivial algorithms will typically require more flexibility

to scale (e.g., cross-derivatives, matrix-free, etc.)

Easier to use for general functions rather than in standard estimation pipelines

See

See

See

ℝ
𝑁
→ ℝ

JAX Autodiff Cookbook

Probabilistic ML: Chapter 8 Notebook

JAX Advanced Autodiff

 33 / 50

https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html
https://github.com/probml/pyprobml/blob/master/notebooks/book1/08/autodiff_jax.ipynb
https://jax.readthedocs.io/en/latest/jax-101/04-advanced-autodiff.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

JAX Setup

From and

Random numbers always require keys, which can be split for reproducibility

Use jax.config.update('jax_enable_x64', True) for 64bit precision (default is

32bit)

Autodiff cookbook ProbML book 1 chapter 8

import jax1
import jax.numpy as jnp2
import numpy as np3
from jax import grad, jit, vmap4
from jax import random, vjp, jvp5
key = random.PRNGKey(0)6
subkey1, subkey2 = random.split(key)7
random.normal(subkey1, (2,))8

Array([1.0040143, -0.9063372], dtype=float32)

 34 / 50

https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html
https://github.com/probml/pyprobml/blob/master/notebooks/book1/08/autodiff_jax.ipynb
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

High Level Grad (i.e. Reverse-mode)

grad is the high-level reverse-mode AD function

Returns a new function, which could be compiled

grad_tanh = grad(jnp.tanh)1
print(grad_tanh(2.0))2
grad_tanh_jit = jit(grad_tanh)3
print(grad_tanh_jit(2.0))4

5
def f(x):6
 return x**3 + 2 * x**2 - 3 * x + 17
print(grad(f)(1.0))8
@jit9
def f2(x):10
 return x**3 + 2 * x**2 - 3 * x + 111
grad(f2)(1.0)12

0.070650816
0.070650816
4.0

Array(4., dtype=float32, weak_type=True)

 35 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Fixing an argument
def f3(x, y):1
 return x**2 + y2
v, gx = jax.value_and_grad(f3, argnums=0)(2.0, 3.0)3
print(v)4
print(gx)5

6
gy = grad(f3, argnums=1)(2.0, 3.0)7
print(gy)8

7.0
4.0
1.0

 36 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Full Jacobians (Forward and Reverse)

Goes through full basis forwards or backwards

def fun(x):1
 return jnp.dot(A, x)2
A = np.random.normal(size=(4, 3))3
x = np.random.normal(size=(3,))4
Jf = jax.jacfwd(fun)(x)5
Jr = jax.jacrev(fun)(x)6
print(np.allclose(Jf, Jr))7

True

 37 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Setup for Logistic Regression
def sigmoid(x):1
 return 0.5 * (jnp.tanh(x / 2) + 1)2

3
def predict(W, b, inputs):4
 return sigmoid(jnp.dot(inputs, W) + b)5
inputs = jnp.array([[0.52, 1.12, 0.77],6
 [0.88, -1.08, 0.15],7
 [0.52, 0.06, -1.30],8
 [0.74, -2.49, 1.39]])9
targets = jnp.array([True, True, False, True]) 10
key, W_key, b_key = random.split(key, 3)11
W = random.normal(W_key, (3,))12
b = random.normal(b_key, ()) 13

 38 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

JVP

f = lambda W: predict(W, b, inputs)1
key, subkey = random.split(key)2
v = random.normal(subkey, W.shape)3

4
Push forward5
y, u = jvp(f, (W,), (v,))6
print((y, u))7

(Array([0.10947311, 0.79829013, 0.41004258, 0.99217653], dtype=float32), Array([-0.19177328, -0.13542867, 0.18863559,
-0.01155983], dtype=float32))

 39 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

VJP

y, vjp_fun = vjp(f, W)1
2

key, subkey = random.split(key)3
u = random.normal(subkey, y.shape)4

5
Pull back6
Note need to call function7
print((y, vjp_fun(u)))8

(Array([0.10947311, 0.79829013, 0.41004258, 0.99217653], dtype=float32), (Array([0.24380712, -0.29951894, -0.55004],
dtype=float32),))

 40 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Differentiating PyTrees

Key JAX feature is “flattening” of nested data

Works for arbitrarily nested tree structures

def loss2(params_dict):1
 preds = predict(params_dict['W'], params_dict['b'], inputs)2
 label_probs = preds * targets + (1 - preds) * (1 - targets)3
 return -jnp.sum(jnp.log(label_probs))4
params = {'W': W, 'b': b}5
print(grad(loss2)(params))6

{'W': Array([-0.433146 , -0.7354605, -1.2598922], dtype=float32), 'b': Array(-0.69001776, dtype=float32)}

 41 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Implicit Differentiation and Custom
Rules

 42 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Primal and JVP/VJP Calculations are Separate

For a JVP or VJP, we first need to calculate the

→ This could involve complicated algorithms, external libraries, etc.

Often madness to descend recursively into primal calculations

→ e.g. if then should it step inside ?

→ Alternatively, use the known derivative to find

AD systems all have a library of these rules, and typically a way to create new ones for

“custom” rules for complicated functions

𝑓(𝑥)

𝑓(𝑥) = cos(𝑥) cos(𝑥)

𝜕𝑓(𝑥)[𝑣] = − sin(𝑥) ⋅ 𝑣

 43 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Custom Rules/Primitives

Derive the derivative by hand, and register it with the AD system

See and , and for examples

Derivations for forward-mode is relatively easier using the total derivative

Derivations for reverse-mode is difficult.

→ See tricks for reverse using the trace of the Frobenius Inner product.

See for JAX implementation

Matrix Algebra Matrix Derivative Results ChainRules.jl Docs

here

 44 / 50

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://people.maths.ox.ac.uk/gilesm/files/AD2008.pdf
https://juliadiff.org/ChainRulesCore.jl/stable/maths/arrays.html
https://jax.readthedocs.io/en/latest/notebooks/Custom_derivative_rules_for_Python_code.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Smooth Matrix Functions

Consider and following Mathias 1996 and Higham 2008

Assume a suitably smooth function and a perturbation , where we want to calculate

the forward-mode

Then, apply to the following block matrix and extract the answer form the

upper right corner

→ This is a remarkable result true for any . Not always the most efficient way, but

very general

𝑓 : ℝ𝑁×𝑁
→ ℝ

𝑁×𝑁

𝛿𝐴
𝜕𝑓(𝐴)[𝛿𝐴]

𝑓(⋅) ℝ
2𝑁×2𝑁

𝑓 ([𝐴 𝛿𝐴

0 𝐴]) = [𝑓(𝐴) 𝜕𝑓(𝐴)[𝛿𝐴]

0 𝑓(𝐴)
]

𝛿𝐴

 45 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Registering JVPs in JAX
@jax.custom_jvp1
def f(x, y):2
 return jnp.sin(x) * y3
@f.defjvp4
def f_jvp(primals, tangents):5
 x, y = primals6
 x_dot, y_dot = tangents7
 primal_out = f(x, y)8
 tangent_out = jnp.cos(x) * x_dot * y + jnp.sin(x) * y_dot9
 return primal_out, tangent_out10

11
print(f(2., 3.))12
y, y_dot = jvp(f, (2., 3.), (1., 0.)) # perturb x, not y13
print(y, y_dot) 14

2.7278922
2.7278922 -1.2484405

 46 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Deriving Rules for Matrix Inverse

Let where

So given the , the “primal” can be calculated using the appropriate method

(e.g. LU decomposition, cholesky, etc.)

Then the forward mode AD is just matrix products

Reverse is harder to derive ()

𝑓 : ℝ𝑁×𝑁
→ ℝ

𝑁×𝑁 𝑓(𝐴) = 𝐴−1 = 𝐶

𝐼 = 𝐶𝐴

0 = 𝜕𝐶𝐴 + 𝐶𝜕𝐴
0 = 𝜕𝐶𝐴𝐶 + 𝐶(𝜕𝐴)𝐶

0 = 𝜕𝐶 + 𝐶(𝜕𝐴)𝐶
𝜕𝐶 = −𝐶(𝜕𝐴)𝐶

𝐴 𝐶 = 𝐴−1

𝜕𝐴 = −𝐶⊤(𝜕𝐶)𝐶⊤

 47 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Implicit Functions

The implicit function theorem helps us linearize around a solution

For example:

→ for root finding and optimization in JAX

→

→ for Filters and State Space Models

→ See for fixed point example and for

Optimistix

DSGE solutions

Dynamax

Implicit Layers Tutorial differentiable

optimizers

 48 / 50

https://docs.kidger.site/optimistix/
https://github.com/HighDimensionalEconLab/DifferentiableStateSpaceModels.jl
https://github.com/probml/dynamax
http://implicit-layers-tutorial.org/implicit_functions/
http://implicit-layers-tutorial.org/differentiable_optimization/
http://implicit-layers-tutorial.org/differentiable_optimization/
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Differentiating a Fixed Point Solution

Solve primal problem for using Anderson iteration, Newton, etc.

fixing . Use implicit function theorem at

For JVP:

Note that this requires the gradients of using symbolics, AD, etc.

𝑧∗(𝑎) = 𝑓(𝑎, 𝑧∗(𝑎)) 𝑧∗(𝑎)
𝑎 𝑧∗ ≡ 𝑧∗(𝑎0)

𝜕𝑧∗(𝑎)

𝜕𝑎
= [𝐼− 𝜕𝑓(𝑎,𝑧∗)

𝜕𝑧
]
−1 𝜕𝑓(𝑎, 𝑧∗)

𝜕𝑎
.

(𝑎, 𝑣) ↦ 𝜕𝑧∗(𝑎)
𝜕𝑎

𝑣

𝜕𝑧∗(𝑎)

𝜕𝑎
⋅ 𝑣 = [𝐼− 𝜕𝑓(𝑎,𝑧∗)

𝜕𝑧
]
−1 𝜕𝑓(𝑎, 𝑧∗)

𝜕𝑎
⋅ 𝑣

𝑓(𝑎, 𝑧)

 49 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

JAX Packages with Builtin Implicit Differentiation

Most JAX and Pytorch packages will be built with AD rules

import optimistix as optx1
2

def F(x, factor):3
 return factor * x ** 3 - x - 24

5
@jax.jit6
def root(factor):7
 solver = optx.Newton(rtol=1e-6, atol=1e-6)8
 sol = optx.root_find(F, solver, y0=jnp.array(1.5),9
 args=factor, max_steps=20, throw=False)10
 return sol.value11

12
Derivative of root with respect to factor at 2.013
print(grad(root)(2.0))14

-0.22139916

 50 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

