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i
Why the Emphasis on Differentiation?

» Modern ML would be impossible without (1) software that makes calculating gradients
easy; and (2) specialized hardware

» Old methods, but flexible software + hardware have radically changed the scale of
problems we can solve

» You simply can't solve large problems (or sample from high-dimensional distributions)
without gradients, or jacobian of constraints

» A mental shift was towards “differentiable programming’, i.e. to treat entire software
programs as differentiable, nested functions

As long as you have helpful software to manage the bookkeeping

You can differentiate almost anything continuous, and at least expectations or
distributions of almost anything discrete
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a7
Types of Differentiation

A few general types of differentiation

1. Numerical Differentiation (i.e., finite differences)
2. Symbolic Differentiation (i.e., chain rule and simplify subexpressions by hand)
3. Automatic Differentiation (i.e., execute chain rule on computer)

e Use the chain rule forwards vs. backwards

e Think matrix-free methods

4. Sparse Differentiation (i.e., use one of the above to calculate directional derivatives,
potentially filling in sparse Jacobians with fewer passes)

f 5/50


file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

Numerical

Derivatives

-y


file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

n /
Finite Differences

» With £ : RN — RM, take e; as the ith standard basis vector

Jf(x) N f(x+ee;) - f(x)

JX; €

Requires N forward passes for the full Vf(x). Same as forward-mode AD.

Good rule of thumb with above is € = v/€machine

Tough tradeoffs: roundoff vs. truncation errors
€ too small hit machine precision errors, especially with GPUs

€ too large and the approximation is bad

Still useful in many cases, especially for sparse problems
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i
More Points for More Accuracy

» Trickier in practice to handle tradeoff than you might expect

» Could use more points which improves accuracy at the cost of more function
evaluations. e.g. 5 point central differences

—f(x—2€)+8f(x—€) - 8f(x +¢€)+ f(x + 2¢)
12¢

f(x)

» In that case, use € = Y/€machine
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0/
Roll up Your Sleeves

» Do it by hand, or use Mathematica/Sympy/etc
» Seems like it should always be better?

Often identical to auto-differentiation, though it gives you more control over algebra
with subexpressions. Prone to algebra or coding errors

Substituting expressions could speed things up (or slow things down)

Less overhead than many auto-differentiation methods, which may lead to better
performance. Or may not if you do a different calculation (e.g. flatten the
computational graph)

» Very useful in many cases, even if only for designing new AD “primitives”
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Sub-Expressions and Computational Graphs

o Take f(g(x), h(g(x))). Would you want to substitute/simplify the gradient?

f1(x) = g'(x) f1(g(x), h(g(x))) + &' ()’ (g(x)) f2((x), h(g(x)))

° 5(x) f(g(x), h(g(x)))
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0/
Let the Computer Execute the Chain Rule

» Auto-differentiation/differentiable programming works on ‘computer programs’. i.e,,
computational graphs are just functions
1. Converts the program into a computational graph (i.e., nested functions)
7. Apply the chain rule to the computational graph recursively

3. Provide library of "primitives” where the recursion stops, and provides registration of
new primitives to teach the computer calculus

Finally: many frameworks will compile the resulting sequence of operations to be efficient on
a GPU since this is so central to deep learning performance
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a7
Forward and Reverse Mode

e The chain rule can be done forwards or backwards
» See Wikipedia for good examples. Intuition for f : RN — RM:

Forward-Mode: grab one of the N inputs and wiggle it to see impact on all M
outputs. Need N passes to get full Jacobian

Reverse-Mode: grab one of the M outputs and wobble it to see impact on all N
inputs. Need M passes to get full Jacobian

» Hence, reverse-mode is good for calculating gradients when N > M (e.g. neural
networks). If M =1 gradients are the same complexity as evaluating the function

» Reverse-mode has significant overhead, so often forward-mode is preferred even if N
> M
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0/
Forward and Backwards With the Computational Graph

» See wikipedia for classic treatment, and ProbML: Introduction Section 13.3 for a special
case

» Useful to read, but missing key linear algebra interpretations that are useful for
understanding how to adapt AD

 |nstead, we will think of AD as linearization/etc. and follow ProbML: Advanced Topics
and the JAX documentation

While we won't cover it, this is much more amenable to higher-order derivatives and
perturbations
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Reminder: Filling in a Matrix from a Linear Operator

» Astandard basisinR%2ise; =[1 0] andey; =[0 1]'

» Given linear operator A : R? — R and adjoint AT : R® — R? how can we get the
underlying matrix (i.e. A such that A(v) = Av for all v € R?)?

1. Use the standard basis vectors ey, eo and calculate A(ey), Aler)
e Gives two columns of the A matrix, so A = [A(e1) Aler)]

2. Use the standard basis vectors ej, e;, e3 (now of R?) and calculate
ﬂT(el), ﬂT(ez), ﬂT(eg;)

e Gives the three columns of AT, ie AT = [ﬂT(m) A (er) ff’(T(%)]

16 /50


file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

0/
Jacobians and Linearization

» Differentiation linearizes around a point, yielding the Jacobian
o ie,for f: RN - RM thenx — Jdf(x) mapstoan N x M Jacobian matrix
But remember matrix-free linear operators!

» Instead of the Jacobian as a matrix, think of matrix-vector products and df(x) : RY
— RM as a linear operator

Note: x is the linearization point in that notation, not the argument

e See ProbML: Advanced Topics Chapter 6
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a7
Push-Forwards and JVPs

» Denote the operator, linearized around x, and applied tov € IN as

(x,0) = df(x)[v] € RM

This is called the “push-forward”. The Jacobian Vector Product (JVP)
.e. Vf(x) - v, as the product of the jacobian and a direction

» JAX (and others) will take an f and an x and compile a new function from RN to RM that
calculates df(x)[v]
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i
Adjoints, Pullbacks, and VJPs

» Just as we can transpose a linear operator, we can transpose the Jacobian around the
inearization point, x

Af(x)" : RM - RN

Which lets us define the "pullback” (x, u) > Jf(x)T[u] € RY

Just as with matrix-free linear operators, we can think of this as an inner product: The
Vector Jacobian Product (VJP)

e, u-Vf(x)or VA(x)" - uis the reason for the "adjoint” terminology

JAX (and others) will take an f and an x and compile a new function from R to R¥ that
calculates df(x) "[u]
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Example of a Jacobian

Let f : R? — R? be defined as

_[xf+ 3
f(x)—[ o }
Then
_ 2x1 ZXQ
v = 2
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s
JVP

leto=[1 0]",ie thee;inthe standard basis then

If(@)[v] = VF(x)- [(1)] = [2’“]

X2

» Each gives a column of the Jacobian

» Could useey, ..., eN to get the full Jacobian
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VJP

o letu=[1 0], ie thee; inthe standard basis then

If(x) " [ul=[1 0] -Vf(x)=[2x1 2x]

» The first row of the Jacobian (or the first column of its transpose)

» Could useey, ..., ep we can get the full Jacobian
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iy
Chain Rule for JVP

o Consider f: RN - RMwith f =coboa

2f(x) = de(b(a(x))) o Ab(a(x)) o da(x)

» JVP against an input perturbation v € RN

* Moving inside out because as we perturbing inputs

If()[o] = de(b(a(x))) [Ib(a(x))[dax)[v]]]

f 23 /50


file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html

iy
Calculation Order for JVP Chain Rule

If(@)[v] = de(b(a(x))) [db(a(x))[da()[v]]]

 Calculation order inside out, recursively finding linearization points:
1. da(x)[v] and a(x)
2. db(a(x))[da(x)[v]] and b(a(x))
3. de(b(a(x)))[db(a(x))[da(x)[v]]] (and c(b(a(x))) if required)

» Conveniently follows calculating "primal” calculation. Many ways to do it (e.g. overloading,
duals)

» Can calculate the "primal” and the “push-forward” at the same time
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a7
Chain Rule for VJP

df(x) = de(b(a(x))) o db(a(x))  da(x)

» Take the transpose,

If(x)" = da(x)" o db(a(x))" ° de(bla(x))) '

» In particular, if we multiply by some u € RM (ie, u - Vf(x)), we get

If()"[u] = da(x)" [b(a(x) T [de(b(ax) " Tul]]
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a7
Calculation Order for VJP Chain Rule

If ()" [u] = da(x) " [Ib(a(x)) " [de(ba(x))) [u]]]

» Calculation order outside in (of original):
1. a(x),b(a(x)), c(b(a(x))) (i.e., the "‘primal” calculations required for linearization points)
2. de(bla(x))) "[u]
3. db(a(x)) " [de(b(a(x))) " [u]]
4. da(x) T [9b(a(x)) T[de(b(ax))) T [ull]

» Unlike with JVP. we need the full calculations before going backwards through the
computational graph at the end (i.e., “backprop” terminology)
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Complexity with Reverse-Mode AD

» In principle for f : RN — R can calculate V£ (x) in the same computational order as f
itself - independent of N

This is a key part of the secret sauce that makes ML possible
» Butin practice it isn't quite so simple

Requires storage for entire "‘primal” graph before going backwards (unlike forward-
mode). Inplace operations in primal often useless

Requires more complicated code to keep track of the steps in the computational
graph, which creates overhead

» This means that often forward-mode will be faster even when N > M (e.g., mabye 50-
100 dimensions, but depends)
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0/
Sparse Ditferentiation

» For the full Jacobian a f : RN — RM you need either N forward passes or M backwards
passes

But if sparse, then maybe could use better directional derivatives than e;

e.g. Tridiagonal matrices can be done with 3 directional derivatives.
o See SparseDiffTools.jl and use FiniteDiff jl

See sparsejac for an experimental version in JAX?

» Finding the right directional derivatives is hard and requires knowing the sparsity pattern
(and solves a problem equivalent to graph coloring)
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0/
Software and Implementation

» Tracking the computational graph for reverse-mode is tricky (especially if there were
inplace modifications)

Mutating support rare for reverse-mode, functional style typical

» The recursion goes forwards, backwards, or both both ways down the computational
graph until it hits a primitive

Recursion stops when it hits a function that has JVP/VJP implemented

» These are two extreme cases, where in principle you can mix then (e.g., an internal a
function has RN — RX — R, where K > N, then use forward-mode from K — N and
reverse-mode from N — 1)

» Similar methods apply for higher order derivatives, e.qg. Hessian-vector products and
taylor series
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Pytorch
e See Probabilistic ML: Chapter 8 Notebook

» Reverse-mode centric, especially convenient for neural networks but can be confusing for
general functions

 In general, you will find it the most convenient for a standard supervised learning
problems (e.g. neural networks with empirical risk minimization)

» We will discuss later when we look at ML pipelines

import torch
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Example with Pytorch . backward ()

» Reverse-mode AD passes values with requires_grad=True

» Traces the intermediates, and does the AD on . backward()

X = torch.tensor(2.0, requires_grad=True) tensor(0.0707)
# Trace computations for the "forward" pass tensor(3.) tensor([ 8., -3.])
y = torch.tanh(x)

# Do the "backward" pass for Reverse-mode AD

y.backward()

print(x.grad)

def f(x, y):
return x**3 + 2 * y[0]**2 - 3 * y[1] + 1

x = torch.tensor (1.0, requires_grad=True)

y = torch.tensor([2.0, 3.0],
requires_grad=True)

z = f(x, y)

z.backward()
print(x.grad, y.grad)
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s
JAX

« Very flexible with high level tools (e.g. grad is RN — R reverse-diff) as well as lower-level
functions to directly use jvp, vijp, and hessian-vector products

Emphasizing JAX here because non-trivial algorithms will typically require more flexibility
to scale (e.g., cross-derivatives, matrix-free, etc.)

Easier to use for general functions rather than in standard estimation pipelines
See JAX Autodiff Cookbook

See Probabilistic ML: Chapter 8 Notebook
See JAX Advanced Autodiff
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JAX Setup

e From Autodiff cookbook and ProbML book 1 chapter 8
» Random numbers always require keys, which can be split for reproducibility

e Use jax.config.update('jax_enable_x64', True) for 64bit precision (default is
32bit)

import jax

import jax.numpy as jnp

import numpy as np

from jax import grad, jit, vmap
from jax import random, vjp, jvp
key = random.PRNGKey(0)

subkeyl, subkey2 = random.split(key)
random.normal(subkeyl, (2,))

Array([ 1.0040143, -0.9063372], dtype=float32)
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High Level Grad (i.e. Reverse-mode)

* grad is the high-level reverse-mode AD function

» Returns a new function, which could be compiled

grad_tanh = grad(jnp.tanh)
print(grad_tanh(2.0))
grad_tanh_jit = jit(grad_tanh)
print(grad_tanh_jit(2.0))

def f(x):

return x**3 + 2 * x**2 - 3 * x + 1
print(grad(f)(1.0))
@jit
def f2(x):

return x**3 + 2 * x**2 - 3 * x + 1
grad(f2)(1.0)

0.070650816
0.070650816
4.0

Array(4., dtype=float32, weak_type=True)

-y
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. iy
FIXINg an argument

def f3(x, y):
return x**2 + vy
vV, gx = jax.value_and_grad(f3, argnums=0)(2.0, 3.0)
print(v)
print(gx)

gy = grad(f3, argnums=1)(2.0, 3.0)
print(gy)

EEN NN
®© oo
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Full Jacobians (Forward and Reverse)

» Goes through full basis forwards or backwards

def fun(x):

return jnp.dot(A, Xx)
A = np.random.normal(size=(4, 3))
X = np.random.normal(size=(3,))
Jf = jax.jacfwd(fun)(x)
Jr = jax.jacrev(fun)(x)
print(np.allclose(Jf, Jr))

True
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Setup for Logistic Regression

def sigmoid(x):
return 0.5 * (jnp.tanh(x / 2) + 1)

def predict(w, b, inputs):
return sigmoid(jnp.dot(inputs, W) + b)
inputs = jnp.array([[0.52, 1.12, ©0.77],

[6.88, -1.08, 0.15],

[0.52, 0.06, -1.30],

[0.74, -2.49, 1.39]])
targets = jnp.array([True, True, False, True])
key, W_key, b_key = random.split(key, 3)

W = random.normal(W_key, (3,))
b = random.normal(b_key, ())
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s
JVP

f = lambda W: predict(W, b, inputs)
key, subkey = random.split(key)
v = random.normal(subkey, W.shape)

# Push forward
y, u=jvp(f, (W,), (v,))
print((y, u))

(Array([0.10947311, 0.79829013, 0.41004258, 0.99217653], dtype=float32), Array([-0.19177328, -0.13542867, 0.18863559,
-0.01155983], dtype=float32))
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VJP

y, vip_fun = vjp(f, W)

key, subkey = random.split(key)
u = random.normal(subkey, y.shape)

# Pull back
# Note need to call function

print((y, vjp_fun(u)))

(Array([0.10947311, 0.79829013, 0.41004258, 0.99217653], dtype=float32), (Array([ 0.24380712, -0.29951894, -0.55004 1,
dtype=float32),))
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i
Differentiating Py Trees

» Key JAX feature is "flattening” of nested data

» Works for arbitrarily nested tree structures

def loss2(params_dict):
preds = predict(params_dict['W'], params_dict['b'], inputs)
label_probs = preds * targets + (1 - preds) * (1 - targets)
return -jnp.sum(jnp.log(label_probs))

params = {'W': W, 'b': b}

print(grad(loss2)(params))

{'W': Array([-0.433146 , -0.7354605, -1.2598922], dtype=float32), 'b': Array(-0.69001776, dtype=float32)}
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0/
Primal and JVP/VJP Calculations are Separate

« Fora JVP or VJP we first need to calculate the f(x)
This could involve complicated algorithms, external libraries, etc.

» Often madness to descend recursively into primal calculations
e.g.if f(x) = cos(x) then should it step inside cos(x)?
Alternatively, use the known derivative to find

df(x)[v] = —sin(x) - v

» AD systems all have a library of these rules, and typically a way to create new ones for
‘custom’ rules for complicated functions
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n /7
Custom Rules/Primitives

 Derive the derivative by hand, and register it with the AD system
e See Matrix Algebra and Matrix Derivative Results, and ChainRules.jl Docs for examples

 Derivations for forward-mode is relatively easier using the total derivative

o Derivations for reverse-mode is difficult.

— See tricks for reverse using the trace of the Frobenius Inner product.

See here for JAX implementation
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n /
Smooth Matrix Functions

o Consider f : RMN — RN*N gnd following Mathias 1996 and Higham 2008

» Assume a suitably smooth function and a perturbation 6A, where we want to calculate
the forward-mode df(A)[0A]

» Then, apply () to the following R?N*2N block matrix and extract the answer form the
upper right corner

0 A 0 f(A)

This is a remarkable result true for any 6A. Not always the most efficient way, but
very general

il o) - oy
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iy
Registering JVPs in JAX

@jax.custom_jvp
def f(x, y):
return jnp.sin(x) * vy
@f .defjvp
def f_jvp(primals, tangents):
X, y = primals
x_dot, y_dot = tangents
primal_out = f(x, y)
tangent_out = jnp.cos(x) * x_dot * y + jnp.sin(x) * y_dot
return primal_out, tangent_out

print(f(2., 3.))
y, y_dot = jvp(f, (2., 3.), (1., 0.)) # perturb x, not vy
print(y, y_dot)

2.7278922
2.7278922 -1.2484405
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i
Deriving Rules for Matrix Inverse

o Let f: RNVN — RNN where f(A)= A1 =C

[=CA
0= JdCA + CIA
0 = ICAC + C(dA)C
0 = dC + C(dA)C
IC = —-C(dA)C

» So given the A, the “primal” can be calculated C = A™! using the appropriate method
(e.g. LU decomposition, cholesky, etc.)

» Then the forward mode AD is just matrix products
» Reverse is harder to derive (dA = -CT(dC)CT)
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0/
Implicit Functions

» The implicit function theorem helps us linearize around a solution
» Forexample:

— Optimistix for root finding and optimization in JAX

— DSGE solutions

— Dynamax for Filters and State Space Models

— See Implicit Layers Tutorial for fixed point example and for differentiable
optimizers
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i
Differentiating a Fixed Point Solution

 Solve primal problem z*(a) = f(a, z*(a)) for z*(a) using Anderson iteration, Newton, etc.
fixing a. Use implicit function theorem at z* = z*(ag)

dz'(a) [I— df(a,z") ]_1 df(a,z")
da 0z da

» For JVP: (a,0) » Z@yp

0r(@) [1_ If(az) r of@z)
da 0z da

 Note that this requires the gradients of f(a, z) using symbolics, AD, etc.
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i
JAX Packages with Builtin Implicit Differentiation

» Most JAX and Pytorch packages will be built with AD rules
import optimistix as optx

def F(x, factor):
return factor * x ** 3 - x - 2

@jax.jit
def root(factor):
solver = optx.Newton(rtol=1le-6, atol=1le-6)
sol = optx.root_find(F, solver, yO=jnp.array(1.5),
args=factor, max_steps=20, throw=False)
return sol.value

# Derivative of root with respect to factor at 2.0
print(grad(root)(2.0))

-0.22139916
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