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Overview
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Why the Emphasis on Differentiation?

Modern ML would be impossible without (1) software that makes calculating gradients

easy; and (2) specialized hardware

Old methods, but flexible software + hardware have radically changed the scale of

problems we can solve

You simply can’t solve large problems (or sample from high-dimensional distributions)

without gradients, or jacobian of constraints

A mental shift was towards “differentiable programming”, i.e. to treat entire software

programs as differentiable, nested functions

→ As long as you have helpful software to manage the bookkeeping

→ You can differentiate almost anything continuous, and at least expectations or

distributions of almost anything discrete
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Types of Differentiation

A few general types of differentiation

1. Numerical Differentiation (i.e., finite differences)

2. Symbolic Differentiation (i.e., chain rule and simplify subexpressions by hand)

3. Automatic Differentiation (i.e., execute chain rule on computer)

Use the chain rule forwards vs. backwards

Think matrix-free methods

4. Sparse Differentiation (i.e., use one of the above to calculate directional derivatives,

potentially filling in sparse Jacobians with fewer passes)
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Numerical Derivatives
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Finite Differences

With , take  as the th standard basis vector

Requires  forward passes for the full . Same as forward-mode AD.

Good rule of thumb with above is 

Tough tradeoffs: roundoff vs. truncation errors

→  too small hit machine precision errors, especially with GPUs

→  too large and the approximation is bad

Still useful in many cases, especially for sparse problems

𝑓 : ℝ𝑁 → ℝ
𝑀 𝑒𝑖 𝑖

𝜕𝑓(𝑥)

𝜕𝑥𝑖
≈
𝑓(𝑥 + 𝜖𝑒𝑖) − 𝑓(𝑥)

𝜖

𝑁 ∇𝑓(𝑥)

𝜖 = √𝜖machine

𝜖

𝜖
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More Points for More Accuracy

Trickier in practice to handle tradeoff than you might expect

Could use more points which improves accuracy at the cost of more function

evaluations. e.g. 5 point central differences

In that case, use 

𝑓′(𝑥) ≈
−𝑓(𝑥 − 2𝜖) + 8𝑓(𝑥 − 𝜖) − 8𝑓(𝑥 + 𝜖) + 𝑓(𝑥 + 2𝜖)

12𝜖

𝜖 = 4
√𝜖machine
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Symbolic Differentiation
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Roll up Your Sleeves

Do it by hand, or use Mathematica/Sympy/etc

Seems like it should always be better?

→ Often identical to auto-differentiation, though it gives you more control over algebra

with subexpressions. Prone to algebra or coding errors

→ Substituting expressions could speed things up (or slow things down)

→ Less overhead than many auto-differentiation methods, which may lead to better

performance. Or may not if you do a different calculation (e.g. flatten the

computational graph)

Very useful in many cases, even if only for designing new AD “primitives”
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Sub-Expressions and Computational Graphs

Take . Would you want to substitute/simplify the gradient?

x g(x)

h(g(x))

f(g(x), h(g(x)))

𝑓(𝑔(𝑥), ℎ(𝑔(𝑥)))

𝑓′(𝑥) = 𝑔′(𝑥)𝑓1(𝑔(𝑥), ℎ(𝑔(𝑥))) + 𝑔′(𝑥)ℎ′(𝑔(𝑥))𝑓2(𝑔(𝑥), ℎ(𝑔(𝑥)))
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Automatic Differentiation
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Let the Computer Execute the Chain Rule

Auto-differentiation/differentiable programming works on “computer programs”. i.e.,

computational graphs are just functions

1. Converts the program into a computational graph (i.e., nested functions)

2. Apply the chain rule to the computational graph recursively

3. Provide library of “primitives” where the recursion stops, and provides registration of

new primitives to teach the computer calculus

Finally: many frameworks will compile the resulting sequence of operations to be efficient on

a GPU since this is so central to deep learning performance
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Forward and Reverse Mode

The chain rule can be done forwards or backwards

See  for good examples. Intuition for :

→ Forward-Mode: grab one of the  inputs and wiggle it to see impact on all 

outputs. Need  passes to get full Jacobian

→ Reverse-Mode: grab one of the  outputs and wobble it to see impact on all 

inputs. Need  passes to get full Jacobian

Hence, reverse-mode is good for calculating gradients when  (e.g. neural

networks). If  gradients are the same complexity as evaluating the function

Reverse-mode has significant overhead, so often forward-mode is preferred even if 

Wikipedia 𝑓 : ℝ𝑁 → ℝ
𝑀

𝑁 𝑀

𝑁

𝑀 𝑁

𝑀

𝑁 ≫𝑀

𝑀 = 1

𝑁

>𝑀
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Forward and Backwards With the Computational Graph

See  for classic treatment, and  Section 13.3 for a special

case

Useful to read, but missing key linear algebra interpretations that are useful for

understanding how to adapt AD

Instead, we will think of AD as linearization/etc. and follow 

and the JAX documentation

→ While we won’t cover it, this is much more amenable to higher-order derivatives and

perturbations

wikipedia ProbML: Introduction

ProbML: Advanced Topics
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Reminder: Filling in a Matrix from a Linear Operator

A standard basis in  is  and 

Given linear operator  and adjoint  how can we get the

underlying matrix (i.e.   such that  for all )?

1. Use the standard basis vectors  and calculate 

Gives two columns of the  matrix, so 

2. Use the standard basis vectors  (now of ) and calculate

Gives the three columns of , i.e. 

ℝ
2

𝑒1 = [1 0]
⊤

𝑒2 = [0 1]
⊤

A : ℝ2
→ ℝ

3 A⊤ : ℝ3
→ ℝ

2

𝐴 A(𝑣) = 𝐴𝑣 𝑣 ∈ ℝ
2

𝑒1, 𝑒2 A(𝑒1),A(𝑒2)

𝐴 𝐴 = [A(𝑒1) A(𝑒2)]

𝑒1, 𝑒2, 𝑒3 ℝ
3

A⊤(𝑒1),A
⊤(𝑒2),A

⊤(𝑒3)

𝐴
⊤

𝐴
⊤ = [A⊤(𝑒1) A⊤(𝑒2) A⊤(𝑒3)]
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Jacobians and Linearization

Differentiation linearizes around a point, yielding the Jacobian

i.e., for , then  maps to an  Jacobian matrix

→ But remember matrix-free linear operators!

Instead of the Jacobian as a matrix, think of matrix-vector products and 

 as a linear operator

→ Note:  is the linearization point in that notation, not the argument

See  Chapter 6

𝑓 : ℝ𝑁 → ℝ
𝑀 𝑥→ 𝜕𝑓(𝑥) 𝑁 ×𝑀

𝜕𝑓(𝑥) : ℝ𝑁

→ ℝ
𝑀

𝑥

ProbML: Advanced Topics
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Push-Forwards and JVPs

Denote the operator, linearized around , and applied to  as

→ This is called the “push-forward”. The Jacobian Vector Product (JVP)

→ i.e.  , as the product of the jacobian and a direction

JAX (and others) will take an  and an  and compile a new function from  to  that

calculates 

𝑥 𝑣 ∈ℕ

(𝑥, 𝑣) ↦ 𝜕𝑓(𝑥)[𝑣] ∈ ℝ𝑀

∇𝑓(𝑥) ⋅ 𝑣

𝑓 𝑥 ℝ
𝑁

ℝ
𝑀

𝜕𝑓(𝑥)[𝑣]
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Adjoints, Pullbacks, and VJPs

Just as we can transpose a linear operator, we can transpose the Jacobian around the

linearization point, 

Which lets us define the “pullback”: 

Just as with matrix-free linear operators, we can think of this as an inner product: The

Vector Jacobian Product (VJP)

i.e.,  or  is the reason for the “adjoint” terminology

JAX (and others) will take an  and an  and compile a new function from  to  that

calculates 

𝑥

𝜕𝑓(𝑥)⊤ : ℝ𝑀 → ℝ
𝑁

(𝑥,𝑢) ↦ 𝜕𝑓(𝑥)⊤[𝑢] ∈ ℝ𝑁

𝑢 ⋅ ∇𝑓(𝑥) ∇𝑓(𝑥)⊤ ⋅ 𝑢

𝑓 𝑥 ℝ
𝑀

ℝ
𝑁

𝜕𝑓(𝑥)⊤[𝑢]
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Example of a Jacobian

Let  be defined as

Then

𝑓 : ℝ2
→ ℝ

2

𝑓(𝑥) ≡ [𝑥2
1 + 𝑥2

2

𝑥1𝑥2
]

∇𝑓(𝑥) ≡ [2𝑥1 2𝑥2

𝑥2 𝑥1
]
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JVP

Let , i.e. the  in the standard basis then

Each gives a column of the Jacobian

Could use  to get the full Jacobian

𝑣 = [1 0]
⊤ 𝑒1

𝜕𝑓(𝑥)[𝑣] = ∇𝑓(𝑥) ⋅ [1
0
] = [2𝑥1

𝑥2
]

𝑒1, … , 𝑒𝑁
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VJP

Let , i.e. the  in the standard basis then

The first row of the Jacobian (or the first column of its transpose)

Could use  we can get the full Jacobian

𝑢 = [1 0]
⊤ 𝑒1

𝜕𝑓(𝑥)⊤[𝑢] = [1 0] ⋅ ∇𝑓(𝑥) = [2𝑥1 2𝑥2]

𝑒1, … , 𝑒𝑀
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Chain Rule for JVP

Consider  with 

JVP against an input perturbation 

Moving inside out because as we perturbing inputs

𝑓 : ℝ𝑁 → ℝ
𝑀 𝑓 = 𝑐 ∘ 𝑏 ∘ 𝑎

𝜕𝑓(𝑥) = 𝜕𝑐(𝑏(𝑎(𝑥))) ∘ 𝜕𝑏(𝑎(𝑥)) ∘ 𝜕𝑎(𝑥)

𝑣 ∈ ℝ𝑁

𝜕𝑓(𝑥)[𝑣] = 𝜕𝑐(𝑏(𝑎(𝑥))) [𝜕𝑏(𝑎(𝑥))[𝜕𝑎(𝑥)[𝑣]]]
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Calculation Order for JVP Chain Rule

Calculation order inside out, recursively finding linearization points:

1.  and 

2.  and 

3.  (and  if required)

Conveniently follows calculating “primal” calculation. Many ways to do it (e.g. overloading,

duals)

Can calculate the “primal” and the “push-forward” at the same time

𝜕𝑓(𝑥)[𝑣] = 𝜕𝑐(𝑏(𝑎(𝑥))) [𝜕𝑏(𝑎(𝑥))[𝜕𝑎(𝑥)[𝑣]]]

𝜕𝑎(𝑥)[𝑣] 𝑎(𝑥)

𝜕𝑏(𝑎(𝑥))[𝜕𝑎(𝑥)[𝑣]] 𝑏(𝑎(𝑥))

𝜕𝑐(𝑏(𝑎(𝑥)))[𝜕𝑏(𝑎(𝑥))[𝜕𝑎(𝑥)[𝑣]]] 𝑐(𝑏(𝑎(𝑥)))
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Chain Rule for VJP

Take the transpose,

In particular, if we multiply by some  (i.e., ), we get

𝜕𝑓(𝑥) = 𝜕𝑐(𝑏(𝑎(𝑥))) ∘ 𝜕𝑏(𝑎(𝑥)) ∘ 𝜕𝑎(𝑥)

𝜕𝑓(𝑥)⊤ = 𝜕𝑎(𝑥)⊤ ∘ 𝜕𝑏(𝑎(𝑥))⊤ ∘ 𝜕𝑐(𝑏(𝑎(𝑥)))⊤

𝑢 ∈ ℝ𝑀 𝑢 ⋅ ∇𝑓(𝑥)

𝜕𝑓(𝑥)⊤[𝑢] = 𝜕𝑎(𝑥)⊤ [𝜕𝑏(𝑎(𝑥))⊤ [𝜕𝑐(𝑏(𝑎(𝑥)))⊤[𝑢]]]
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Calculation Order for VJP Chain Rule

Calculation order outside in (of original):

1.  (i.e., the “primal” calculations required for linearization points)

2. 

3. 

4. 

Unlike with JVP, we need the full calculations before going backwards through the

computational graph at the end (i.e., “backprop” terminology)

𝜕𝑓(𝑥)⊤[𝑢] = 𝜕𝑎(𝑥)⊤ [𝜕𝑏(𝑎(𝑥))⊤ [𝜕𝑐(𝑏(𝑎(𝑥)))⊤[𝑢]]]

𝑎(𝑥), 𝑏(𝑎(𝑥)), 𝑐(𝑏(𝑎(𝑥)))

𝜕𝑐(𝑏(𝑎(𝑥)))⊤[𝑢]

𝜕𝑏(𝑎(𝑥))⊤[𝜕𝑐(𝑏(𝑎(𝑥)))⊤[𝑢]]

𝜕𝑎(𝑥)⊤[𝜕𝑏(𝑎(𝑥))⊤[𝜕𝑐(𝑏(𝑎(𝑥)))⊤[𝑢]]]
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Complexity with Reverse-Mode AD

In principle for  can calculate  in the same computational order as 

itself - independent of 

→ This is a key part of the secret sauce that makes ML possible

But in practice it isn’t quite so simple

→ Requires storage for entire “primal” graph before going backwards (unlike forward-

mode). Inplace operations in primal often useless

→ Requires more complicated code to keep track of the steps in the computational

graph, which creates overhead

This means that often forward-mode will be faster even when  (e.g., mabye 50-

100 dimensions, but depends)

𝑓 : ℝ𝑁 → ℝ ∇𝑓(𝑥) 𝑓

𝑁

𝑁 >𝑀
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Sparse Differentiation

For the full Jacobian a  you need either  forward passes or  backwards

passes

→ But if sparse, then maybe could use better directional derivatives than 

→ e.g. Tridiagonal matrices can be done with 3 directional derivatives.

See  and use 

→ See  for an experimental version in JAX?

Finding the right directional derivatives is hard and requires knowing the sparsity pattern

(and solves a problem equivalent to graph coloring)

𝑓 : ℝ
𝑁
→ ℝ

𝑀 𝑁 𝑀

𝑒𝑖

SparseDiffTools.jl FiniteDiff.jl

sparsejac
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AD Implementation and Examples
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Software and Implementation

Tracking the computational graph for reverse-mode is tricky (especially if there were

inplace modifications)

→ Mutating support rare for reverse-mode, functional style typical

The recursion goes forwards, backwards, or both both ways down the computational

graph until it hits a primitive

→ Recursion stops when it hits a function that has JVP/VJP implemented

These are two extreme cases, where in principle you can mix then (e.g., an internal a

function has , where , then use forward-mode from  and

reverse-mode from )

Similar methods apply for higher order derivatives, e.g. Hessian-vector products and

taylor series

ℝ
𝑁
→ ℝ

𝐾
→ ℝ 𝐾 ≫ 𝑁 𝐾→ 𝑁

𝑁→ 1
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Pytorch

See 

Reverse-mode centric, especially convenient for neural networks but can be confusing for

general functions

In general, you will find it the most convenient for a standard supervised learning

problems (e.g. neural networks with empirical risk minimization)

We will discuss later when we look at ML pipelines

Probabilistic ML: Chapter 8 Notebook

import torch1
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Example with Pytorch .backward()

Reverse-mode AD passes values with requires_grad=True

Traces the intermediates, and does the AD on .backward()

x = torch.tensor(2.0, requires_grad=True)1
# Trace computations for the "forward" pass2
y = torch.tanh(x)3
# Do the "backward" pass for Reverse-mode AD4
y.backward()5
print(x.grad)6

7
def f(x, y):8
    return x**3 + 2 * y[0]**2 - 3 * y[1] + 19

10
x = torch.tensor(1.0, requires_grad=True)11
y = torch.tensor([2.0, 3.0],12
                  requires_grad=True)13
z = f(x, y)14
z.backward()15
print(x.grad, y.grad)16

tensor(0.0707)
tensor(3.) tensor([ 8., -3.])
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JAX

Very flexible with high level tools (e.g. grad is  reverse-diff) as well as lower-level

functions to directly use jvp, vjp, and hessian-vector products

Emphasizing JAX here because non-trivial algorithms will typically require more flexibility

to scale (e.g., cross-derivatives, matrix-free, etc.)

Easier to use for general functions rather than in standard estimation pipelines

See 

See 

See 

ℝ
𝑁
→ ℝ

JAX Autodiff Cookbook

Probabilistic ML: Chapter 8 Notebook

JAX Advanced Autodiff
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JAX Setup

From  and 

Random numbers always require keys, which can be split for reproducibility

Use jax.config.update('jax_enable_x64', True) for 64bit precision (default is

32bit)

Autodiff cookbook ProbML book 1 chapter 8

import jax1
import jax.numpy as jnp2
import numpy as np3
from jax import grad, jit, vmap4
from jax import random, vjp, jvp5
key = random.PRNGKey(0)6
subkey1, subkey2 = random.split(key)7
random.normal(subkey1, (2,))8

Array([ 1.0040143, -0.9063372], dtype=float32)
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High Level Grad (i.e. Reverse-mode)

grad is the high-level reverse-mode AD function

Returns a new function, which could be compiled

grad_tanh = grad(jnp.tanh)1
print(grad_tanh(2.0))2
grad_tanh_jit = jit(grad_tanh)3
print(grad_tanh_jit(2.0))4

5
def f(x):6
    return x**3 + 2 * x**2 - 3 * x + 17
print(grad(f)(1.0))8
@jit9
def f2(x):10
    return x**3 + 2 * x**2 - 3 * x + 111
grad(f2)(1.0)12

0.070650816
0.070650816
4.0

Array(4., dtype=float32, weak_type=True)
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Fixing an argument
def f3(x, y):1
    return x**2 + y2
v, gx = jax.value_and_grad(f3, argnums=0)(2.0, 3.0)3
print(v)4
print(gx)5

6
gy = grad(f3, argnums=1)(2.0, 3.0)7
print(gy)8

7.0
4.0
1.0
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Full Jacobians (Forward and Reverse)

Goes through full basis forwards or backwards

def fun(x):1
    return jnp.dot(A, x)2
A = np.random.normal(size=(4, 3))3
x = np.random.normal(size=(3,))4
Jf = jax.jacfwd(fun)(x)5
Jr = jax.jacrev(fun)(x)6
print(np.allclose(Jf, Jr))7

True
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Setup for Logistic Regression
def sigmoid(x):1
    return 0.5 * (jnp.tanh(x / 2) + 1)2

3
def predict(W, b, inputs):4
    return sigmoid(jnp.dot(inputs, W) + b)5
inputs = jnp.array([[0.52, 1.12,  0.77],6
                   [0.88, -1.08, 0.15],7
                   [0.52, 0.06, -1.30],8
                   [0.74, -2.49, 1.39]])9
targets = jnp.array([True, True, False, True])                   10
key, W_key, b_key = random.split(key, 3)11
W = random.normal(W_key, (3,))12
b = random.normal(b_key, ())                    13
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JVP

f = lambda W: predict(W, b, inputs)1
key, subkey = random.split(key)2
v = random.normal(subkey, W.shape)3

4
# Push forward5
y, u = jvp(f, (W,), (v,))6
print((y, u))7

(Array([0.10947311, 0.79829013, 0.41004258, 0.99217653], dtype=float32), Array([-0.19177328, -0.13542867,  0.18863559, 
-0.01155983], dtype=float32))
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VJP

y, vjp_fun = vjp(f, W)1
2

key, subkey = random.split(key)3
u = random.normal(subkey, y.shape)4

5
# Pull back6
# Note need to call function7
print((y, vjp_fun(u)))8

(Array([0.10947311, 0.79829013, 0.41004258, 0.99217653], dtype=float32), (Array([ 0.24380712, -0.29951894, -0.55004   ], 
dtype=float32),))

 40 / 50

file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html
file:///home/runner/work/grad_econ_ML/grad_econ_ML/.lectures_output/index.html


Differentiating PyTrees

Key JAX feature is “flattening” of nested data

Works for arbitrarily nested tree structures

def loss2(params_dict):1
    preds = predict(params_dict['W'], params_dict['b'], inputs)2
    label_probs = preds * targets + (1 - preds) * (1 - targets)3
    return -jnp.sum(jnp.log(label_probs))4
params = {'W': W, 'b': b}5
print(grad(loss2)(params))6

{'W': Array([-0.433146 , -0.7354605, -1.2598922], dtype=float32), 'b': Array(-0.69001776, dtype=float32)}
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Implicit Differentiation and Custom
Rules
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Primal and JVP/VJP Calculations are Separate

For a JVP or VJP, we first need to calculate the 

→ This could involve complicated algorithms, external libraries, etc.

Often madness to descend recursively into primal calculations

→ e.g. if  then should it step inside ?

→ Alternatively, use the known derivative to find

AD systems all have a library of these rules, and typically a way to create new ones for

“custom” rules for complicated functions

𝑓(𝑥)

𝑓(𝑥) = cos(𝑥) cos(𝑥)

𝜕𝑓(𝑥)[𝑣] = − sin(𝑥) ⋅ 𝑣
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Custom Rules/Primitives

Derive the derivative by hand, and register it with the AD system

See  and , and  for examples

Derivations for forward-mode is relatively easier using the total derivative

Derivations for reverse-mode is difficult.

→ See tricks for reverse using the trace of the Frobenius Inner product.

See  for JAX implementation

Matrix Algebra Matrix Derivative Results ChainRules.jl Docs

here
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Smooth Matrix Functions

Consider  and following Mathias 1996 and Higham 2008

Assume a suitably smooth function and a perturbation , where we want to calculate

the forward-mode 

Then, apply  to the following  block matrix and extract the answer form the

upper right corner

→ This is a remarkable result true for any . Not always the most efficient way, but

very general

𝑓 : ℝ𝑁×𝑁
→ ℝ

𝑁×𝑁

𝛿𝐴
𝜕𝑓(𝐴)[𝛿𝐴]

𝑓(⋅) ℝ
2𝑁×2𝑁

𝑓 ([𝐴 𝛿𝐴

0 𝐴 ]) = [𝑓(𝐴) 𝜕𝑓(𝐴)[𝛿𝐴]

0 𝑓(𝐴)
]

𝛿𝐴
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Registering JVPs in JAX
@jax.custom_jvp1
def f(x, y):2
  return jnp.sin(x) * y3
@f.defjvp4
def f_jvp(primals, tangents):5
  x, y = primals6
  x_dot, y_dot = tangents7
  primal_out = f(x, y)8
  tangent_out = jnp.cos(x) * x_dot * y + jnp.sin(x) * y_dot9
  return primal_out, tangent_out10

11
print(f(2., 3.))12
y, y_dot = jvp(f, (2., 3.), (1., 0.)) # perturb x, not y13
print(y, y_dot)  14

2.7278922
2.7278922 -1.2484405
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Deriving Rules for Matrix Inverse

Let  where 

So given the , the “primal” can be calculated  using the appropriate method

(e.g. LU decomposition, cholesky, etc.)

Then the forward mode AD is just matrix products

Reverse is harder to derive ( )

𝑓 : ℝ𝑁×𝑁
→ ℝ

𝑁×𝑁 𝑓(𝐴) = 𝐴−1 = 𝐶

𝐼 = 𝐶𝐴

0 = 𝜕𝐶𝐴 + 𝐶𝜕𝐴
0 = 𝜕𝐶𝐴𝐶 + 𝐶(𝜕𝐴)𝐶

0 = 𝜕𝐶 + 𝐶(𝜕𝐴)𝐶
𝜕𝐶 = −𝐶(𝜕𝐴)𝐶

𝐴 𝐶 = 𝐴−1

𝜕𝐴 = −𝐶⊤(𝜕𝐶)𝐶⊤
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Implicit Functions

The implicit function theorem helps us linearize around a solution

For example:

→  for root finding and optimization in JAX

→

→  for Filters and State Space Models

→ See  for fixed point example and for 

Optimistix

DSGE solutions

Dynamax

Implicit Layers Tutorial differentiable

optimizers
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Differentiating a Fixed Point Solution

Solve primal problem  for  using Anderson iteration, Newton, etc.

fixing . Use implicit function theorem at 

For JVP: 

Note that this requires the gradients of  using symbolics, AD, etc.

𝑧∗(𝑎) = 𝑓(𝑎, 𝑧∗(𝑎)) 𝑧∗(𝑎)
𝑎 𝑧∗ ≡ 𝑧∗(𝑎0)

𝜕𝑧∗(𝑎)

𝜕𝑎
= [𝐼− 𝜕𝑓(𝑎,𝑧∗)

𝜕𝑧
]
−1 𝜕𝑓(𝑎, 𝑧∗)

𝜕𝑎
.

(𝑎, 𝑣) ↦ 𝜕𝑧∗(𝑎)
𝜕𝑎

𝑣

𝜕𝑧∗(𝑎)

𝜕𝑎
⋅ 𝑣 = [𝐼− 𝜕𝑓(𝑎,𝑧∗)

𝜕𝑧
]
−1 𝜕𝑓(𝑎, 𝑧∗)

𝜕𝑎
⋅ 𝑣

𝑓(𝑎, 𝑧)
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JAX Packages with Builtin Implicit Differentiation

Most JAX and Pytorch packages will be built with AD rules

import optimistix as optx1
2

def F(x, factor):3
    return factor * x ** 3 - x - 24

5
@jax.jit6
def root(factor):7
    solver = optx.Newton(rtol=1e-6, atol=1e-6)8
    sol = optx.root_find(F, solver, y0=jnp.array(1.5),9
                         args=factor, max_steps=20, throw=False)10
    return sol.value11

12
# Derivative of root with respect to factor at 2.013
print(grad(root)(2.0))14

-0.22139916
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